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Abstract: Texture segmentation is a challenging problem in computer vision due to the subjective
nature of textures, the variability in which they occur in images, their dependence on scale and
illumination variation, and the lack of a precise definition in the literature. This paper proposes a
method to segment textures through a binary pixel-wise classification, thereby without the need
for a predefined number of textures classes. Using a convolutional neural network, with an
encoder–decoder architecture, each pixel is classified as being inside an internal texture region
or in a border between two different textures. The network is trained using the Prague Texture
Segmentation Datagenerator and Benchmark and tested using the same dataset, besides the Brodatz
textures dataset, and the Describable Texture Dataset. The method is also evaluated on the separation
of regions in images from different applications, namely remote sensing images and H&E-stained
tissue images. It is shown that the method has a good performance on different test sets, can precisely
identify borders between texture regions and does not suffer from over-segmentation.
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1. Introduction

Textures constitute an important feature for human visual discrimination [1]. Even though
they do not have a precise definition in the literature, they are normally characterized by their
pattern, regularity, granularity, and complexity [2]. Although the segmentation of textures has
direct applications in medical image analysis [3–7] quality inspection [8,9], content-based image
retrieval [10], analysis of satellite and aerial images [11–13], analysis of synthetic aperture sonar
images [14], and object recognition [15], it is still a challenging problem due to its subjective nature
and variability in terms of viewpoints, scales, and illumination conditions [16].

Texture analysis methods in digital images can be broadly divided into four categories [17–19]:
statistical methods, structural methods, model-based methods, and filter-based methods. Statistical
methods describe textures based on local spatial distribution of pixel intensities using statistical
measures. As a classical example of statistical method in texture analysis, the gray level co-occurrence
matrix technique [20,21] uses local statistics based on the spatial relationship between neighboring
pixels in the image. This technique has originated many variations [22–25] and is widely used
in applications of texture classification [26,27]. Another example of a statistical approach in texture
analysis is the local binary patterns (LBP) [28], and its variations [29–31], which analyze the texture
content of an image by comparing pixels and their neighbors by searching for local patterns is also
used in many works that deal with texture classification [32,33].
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Structural methods describe textures using well-defined primitives and the spatial relationship
between those primitives using placement rules [21]. Those primitives are considered to be fundamental
structures of textural visual perception, known in the literature as textons [34,35]. Another structural
approach based on morphological mathematical operations is presented in [36]. Model-based
techniques represent textures using stochastic models or generative image models. Examples of
models used for describing textures are Markov random field models [37,38] and fractal models [39,40].
Finally, filter-based methods, also known as transform-based methods, describe textures through
frequency analysis based on Fourier transforms [41,42], Gabor filters [43–45] and wavelets [46–48].

In the last few years, deep learning techniques and, more specifically, convolutional neural
networks have presented remarkable results in computer vision applications [49–53] and naturally,
in view of the significant results, these methods were also applied in image texture analysis. However,
even though many applications related to textures in computer vision involving deep learning deal
with texture classification [54–62] and texture synthesis [63–65], only a few papers present deep
learning techniques applied to texture segmentation. In [66], a two-dimensional long short-term
memory (LSTM) network was proposed to classify each pixel of an image according to a predefined
class, where the spatial recurrent behavior of the network made it possible to consider neighborhood
contributions to the final decision. A convolutional neural network was used in [62] to segment image
patches found by a region proposal algorithm through their classification. The network was used as
a feature extractor and its output was used in a Fisher Vector (FV) encoding followed by a support
vector machine (SVM) classifier.

In [67], Andrearczyk and Whelan proposed a convolutional neural network with skip connections
based on the fully convolutional network (FCN) [68] to combine information from shallower and
deeper layers to segment textures. In [69], Huang et al. used a similar architecture, but they also
employed texture features extracted from the images by using an empirical curvelet transform.
Currently, this technique presents the best results on the Prague Texture Segmentation Datagenerator
and Benchmark [70]. Although the results presented in [67,69] showed a good performance,
the methods were restricted to a limited number of classes of textures in the images to perform
the pixel-wise classification. Karabağ et al. [71] presented an evaluation on texture segmentation
comparing a U-Net architecture with traditional algorithms, namely co-occurrence matrices, watershed
method, local binary patterns, filters, and multi-resolution sub-band filtering.

Additionally, in [72], a Siamese convolutional neural network for texture feature extraction
followed by a hierarchical region merging is proposed for unsupervised texture segmentation;
and in [73], a convolutional neural network is used for one-shot texture segmentation, where a patch of
texture is used to segment a whole region in another image through an encoder–decoder architecture.

This paper presents a novel method for detecting the edges between textures without the need
for a prior knowledge about the types and number of texture regions in the image. Through an
encoder–decoder architecture with skip connections, each pixel in the image is classified as being
inside an internal texture region. In this paper, the term internal texture region refers to the internal
part of a texture region of the image or in a border between two or more different textures. This way,
the technique is not restricted to a specific number of texture classes and it is able to segment images
with textures classes that were not present in the training stage. Moreover, the method does not need
any pre-processing step and is able to separate a texture mosaic directly from the original image.

This approach is different from other pixel classification segmentation approaches in which each
pixel is classified as a predefined class from a limited prior number of classes, such as the popular
U-Net [74] and SegNet [75], and the texture segmentation networks proposed by Andrearczyk and
Whelan (2017) [67] and Huang et al. (2019) [69].

The proposed technique is also different from an edge detector because it detects edges with a
highly specific purpose. The only edges detected by the presented approach are supposed to be the
boundaries between two or more textures, whereas, on the other hand, the edges in an internal texture
region should be ignored, despite the internal contrast that the texture may present.
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The paper is structured as follows. Section 2 describes the neural network architecture in detail.
Section 3 presents the datasets used in the experiments. Section 4 shows the results comparing the
segmentation with a conventional class-dependent convolutional neural network method and the
performance of the proposed method tested on different texture sets, on mosaics containing remote
sensing images and on Hematoxylin and Eosin-stained tissue images. Section 5 concludes the paper.

2. Neural Network Architecture

In the presented method, a convolutional neural network is used to identify the boundaries
between different texture regions in an image. The convolutional neural network has an encoder–decoder
architecture with skip connections that is similar to other well-known architectures in the literature,
such as the U-Net [74] and SegNet [75]. This architecture is used because it can output an image of the
same dimensions as the input image. The encoder part is responsible for mapping the main features
that help on the identification of borders between different textures in the mosaic image, but due to
the max pooling layers, it reduces the input dimensions. The decoder part is then responsible for
retrieving the original dimensions of the image using the information from the encoder part. Moreover,
the skip connections help this process by using information from different layers.

This paper proposes to perform the training process in an end-to-end manner considering images
depicting boundaries between different texture regions. Figure 1 presents the network architecture.
The first three blocks are the compression blocks (the encoder part of the network), in which the weights
are expected to be adjusted to suppress internal borders in texture regions while preserving the borders
between different texture regions as the information is propagated to the deeper layers. This weight
adjustment is performed by analyzing patches of the input image, given by the convolutional kernels
in different scales which, in turn, are given by the different layers of the network.

Following the encoder part, the expansion (or decoder) part of the network is composed by three
blocks and is responsible for recovering the information from the receptive fields in the contraction
blocks in order to produce an image with the same dimensions as the input image. In addition,
skip connections between the contraction part and the expansion part are used so that the network can
use information from different levels, combining the information of different layers to produce the
output. Finally, a final processing block and an output layer form the last part of the network.
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Figure 1. Network architecture.
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Each compression block is composed of three convolutional layers, a batch normalization layer
which reduces the internal covariate shift [76] and accelerates the training [77], a rectified linear unit
(ReLU) activation function [78] layer, and a maximum pooling layer that reduces the size of the
input by half. The number of filters in the convolutional layers of each compression block is 32, 64,
and 128, respectively.

The expansion blocks follow the same structure of three convolutional layers, a batch normalization
layer, and a ReLU layer. However, instead of a maximum pooling layer, they have an upsampling layer
that duplicates the size of the input using a bilinear interpolation function. The first expansion block
follows the last compression block such that it is directly connected to its corresponding receptive
field dimension at the compression step. The two last expansion layers combine the information from
their previous expansion layer with the output of its corresponding receptive field dimension at the
compression block, before the maximum pooling operation, through the sum of the filters. The number
of filters in the convolutional layers of each expansion layer is 128, 64, and 32, respectively.

The input of the final processing layer block is the sum of the output of the last expansion block
with the output of the first compression block before the maximum pooling operation. This block is
formed by three convolutional layers with 32 filters each, a batch normalization layer, and a ReLU
layer. Finally, at the end of the network there is an output layer with a single convolutional layer and a
sigmoid activation function, since the model performs a binary classification. The input of this layer
is the output of the final processing block. All the convolutional filters have the same size of 3× 3.
Table 1 summarizes the parameters of each layer.

It is worth noting that the proposed architecture is shallower than similar segmentation
architectures. This is because the technique deals with textures instead of objects which are better
represented by shapes whose information is represented in the deeper layers of convolutional neural
networks [6].

For the training process, the objective function, J, for this binary pixel classification is defined by
the binary cross-entropy error [79], described as:

J = −
N

∑
n=1

tn log(yn) + (1− tn) log(1− yn), (1)

where N is the total number of samples, tn is the target class and yn is the predicted class. For a given
sample, only one of the two terms, tn log(yn) or (1− tn) log(1− yn), in the summation is computed,
since tn ∈ {0, 1}, and a perfect classification does not increase the cross-entropy error, because, in this
case, yn = 1, if tn = 1, or yn = 0, if tn = 0, and the logarithm of the term being computed would be
equal to zero.

The adjustment of the weights is performed using the Adam optimization algorithm [80] due
to its popularity and performance in recent deep learning applications, but other gradient descent
algorithms or other optimization techniques could be used as well. The convolutional neural network
was programmed using a TensorFlow API [81] and the parameters used for the optimization algorithm
were the default ones.
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Table 1. Network architecture parameters.

Number Layer Number of Filters

01 Convolution 3 × 3 32
02 Convolution 3 × 3 32
03 Convolution 3 × 3 32
04 Batch Normalization + ReLU Activation
05 MaxPooling
06 Convolution 3 × 3 64
07 Convolution 3 × 3 64
08 Convolution 3 × 3 64
09 Batch Normalization + ReLU Activation
10 MaxPooling
11 Convolution 3 × 3 128
12 Convolution 3 × 3 128
13 Convolution 3 × 3 128
14 Batch Normalization + ReLU Activation
15 MaxPooling
16 Convolution 3 × 3 128
17 Convolution 3 × 3 128
18 Convolution 3 × 3 128
19 Batch Normalization + ReLU Activation
20 Bilinear Upsampling
21 Sum (outputs from layers 20 and 14)
22 Convolution 3 × 3 64
23 Convolution 3 × 3 64
24 Convolution 3 × 3 64
25 Batch Normalization + ReLU Activation
26 Bilinear Upsampling
27 Sum (outputs from layers 26 and 09)
28 Convolution 3 × 3 32
29 Convolution 3 × 3 32
30 Convolution 3 × 3 32
31 Batch Normalization + ReLU Activation
32 Bilinear Upsampling
33 Sum (outputs from layers 32 and 04)
34 Convolution 3 × 3 32
35 Convolution 3 × 3 32
36 Convolution 3 × 3 32
37 Batch Normalization + ReLU Activation
38 Convolution 3 × 3 1

3. Texture Images Datasets

The texture images used in this paper are extracted from the Prague Texture Segmentation
Datagenerator and Benchmark dataset [70], the Brodatz textures dataset [82], and the Describable
Textures Dataset (DTD) [83].

The Prague Texture Segmentation Datagenerator and Benchmark dataset [70] has 114 color texture
images from 10 thematic classes composed of natural and artificial textures, where each image contains
a unique texture. Figure 2 presents some of the texture images from this dataset.

The Brodatz textures dataset [82] has 112 color texture images that are relatively distinct from
each other and do not have much variation in illumination, scale, and rotation. Figure 3 show some of
the texture images from this dataset.



Sensors 2020, 20, 5432 6 of 26

Figure 2. Texture images from the Prague Texture Segmentation Datagenerator and Benchmark [70].

Figure 3. Texture images from the Brodatz dataset [82].

The Describable Textures Dataset [83] is a larger image set with 5640 different texture images.
Those textures are more challenging than the ones from the other two datasets since there is significant
variation in illumination, scale, and rotation in the same image. There is also a greater number of
complex images, such as faces and natural scenes. Figure 4 presents some of the texture images from
this dataset.

Figure 4. Texture images from the Describable Textures Dataset [83].

For the training, only 103 texture images from the Prague Texture Segmentation Datagenerator
and Benchmark dataset were used for the creation of the texture mosaics. The other 11 texture images
were used exclusively on the test mosaics. Moreover, texture images from the Brodatz dataset and
from the Describable Textures Dataset were exclusively used for the tests.

Three different types of mosaic structures types were used: Voronoi mosaics, random walk
mosaics, and circular mosaics. Regarding the Voronoi structure, the mosaic images were created
by placing 2 to 10 centroids in random points in the image. Afterwards, each pixel of the image
was assigned to a class according to the closest centroid. The random walk mosaics were created by
choosing two random points, one in the horizontal borders and another one in the vertical borders of
the image and performing a random walk in the opposite direction. Finally, the circular mosaics were
created by placing up to four circles on the image with random centers and radius.

All pixels placed in a transition between two or more different regions were labeled as being in a
border between two textures, therefore, the borders in the targets are always more than two pixels
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wide. Figure 5 presents one mosaic structure with the different regions and the associated borders,
and Figure 6 presents one of each type of mosaic structure.

Figure 5. Example of mosaic structure and its associated borders.

Figure 6. Example of mosaic structure and its associated borders.

For each mosaic image from the training set, a random type of structure was chosen and after
the mosaic structure was created, each region was filled with a randomly chosen image from the
103 texture images belonging to the Prague Texture Segmentation Datagenerator and Benchmark
dataset. In order to increase the network robustness, an image augmentation technique was applied to
each texture [84].

The augmentation was made by randomly rotating, translating, shearing, and changing the scale
of the image, applying a random uniform noise and a random image processing technique. The image
processing techniques considered were adaptive histogram equalization, histogram equalization,
logarithmic adjustment, sigmoid adjustment, a random Gamma correction, a random Gaussian
blurring, or an image inversion [85]. All random parameters used for the image augmentation
procedure were taken from uniform distributions. Table 2 presents the interval limits for each
procedure. The techniques of adaptive histogram equalization, histogram equalization, logarithmic
adjustment, and sigmoid adjustment used the default parameters of the scikit-image library [86].

Table 2. Uniform distributions limits used in the image augmentation process.

Procedure Inferior Limit Superior Limit

Rotation 0◦ 360◦

Translation −12 pixels +12 pixels
Scale change 0.5× 1.5×
Shear −30◦ +30◦

Uniform noise 0 0.02
Gaussian smoothing σ value 0 5
Gamma correction γ value 0.5 1.5

With this procedure, 100,000 different training mosaics were created. Four different test sets were
created with 10,000 mosaics each. The first one contained textures from the 103 images belonging to
the Prague Texture Segmentation Datagenerator and Benchmark that were also used to construct the
training mosaics, whereas the second test set had only textures from the 11 remaining texture images,
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from this dataset, that were not used for the training. The third and fourth test sets were filled with
texture images from the Brodatz and Describable Textures Dataset, respectively. It is important to note
that each individual mosaic image from the training and test sets had a different mosaic structure.
This was done in order to prevent the network from learning the mosaic structure instead of the
separation of textures.

4. Results

This section is divided in five subsections. In Section 4.1, a visual presentation of the results
on a few examples of mosaic images is made in order to visually explain the results of the method
and its advantages over a multi-label pixel classification technique and an edge detection method.
In Section 4.2, the results of the method over the four different test sets are presented. In Section 4.3,
a comparison with state-of-the-art methods on the Prague Texture Datagenerator and Benchmark is
made. Finally, in Sections 4.4 and 4.5, the technique is qualitatively evaluated on remote sensing and
tissue images, respectively.

4.1. Visual Results on Test Mosaics

To perform a visual comparison of the results obtained by the proposed technique, the same
convolutional encoder–decoder neural network architecture was trained, but instead of classifying
each pixel in the image as being in a border between textures or in an internal texture region, each pixel
was classified as a specific texture class in a similar manner as a fully convolutional network [67].

A comparison was also made with a popular edge detector called holistically nested edge detector
(HED) [87]. In the original paper [87] the network of HED was defined considering the architecture of a
VGG-16 [88] with the weights adjusted for the ImageNet dataset [89]. The network was then fine-tuned
using the Berkeley Segmentation Dataset - BSDS 500 [90]. In this paper, the HED was initialized as
in the original paper, but it was then trained with the same texture mosaics used for the training of
the proposed method. This was made in order to show that a complex technique like HED results
in over-segmentation, when employed for textures.

Figure 7 presents an arbitrary mosaic from the first test set, which has textures images from
the Prague Texture Segmentation Datagenerator and Benchmark dataset that were also used for the
generation of the training mosaics.

(a) (b) (c) (d)

Figure 7. (a) An example mosaic, (b) the results of a multi-class labeling approach, (c) a HED
architecture, and (d) the proposed method.

Figure 7a presents a test mosaic image containing texture images in its regions that were also
used in the training mosaics. As can be seen in Figure 7b, a multi-class pixel labeling convolutional
encoder–decoder neural network is able to capture the general mosaic structure if the mosaic has
texture classes that were also used in the training set, but it lacks accuracy to precisely determine the
borders between two or more different texture regions. Also, inside texture regions there are pixels
that are wrongly labeled. This is the reason most segmentation techniques employ a post-processing
algorithm to eliminate those small regions and obtain a well-defined image. The HED architecture is
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also able to capture the general structure of the borders between the different texture regions, as shown
in Figure 7c, but due to its greater complexity, it presents difficulty in precisely finding the edges
between textures. Finally, in Figure 7d it is shown that the presented method is able to determine the
separation between the different regions with greater precision than in Figure 7c,d.

Figures 8–10 show random mosaics from the fourth test set, which has textures from the
Describable Textures Dataset, and the results from a multi-class approach, a HED architecture, and the
presented technique.

(a) (b) (c) (d)

Figure 8. (a) An example mosaic, (b) the results of a multi-class labeling approach, (c) a HED
architecture, and (d) the proposed method.

(a) (b) (c) (d)

Figure 9. (a) An example mosaic, (b) the results of a multi-class labeling approach, (c) a HED
architecture, and (d) the proposed method.

(a) (b) (c) (d)

Figure 10. (a) An example mosaic, (b) the results of a multi-class labeling approach, (c) a HED
architecture, and (d) the proposed method.

Figures 8b, 9b and 10b show the results for the multi-class pixel labeling approach when texture
classes that were not present in the training set are used in the mosaics. The network is not able to
capture the general mosaic structure with the same performance when compared to Figure 7b, where
there were known classes in the mosaic regions, wrongly classifying many pixels in an internal texture
region where only a single label should be used, especially when the texture class differs in structure
and appearance from the texture classes on the training set.
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On the other hand, as shown in Figures 8c, 9c and 10c, a HED architecture results in an
over-segmentation of the mosaic image due to its complex structure, especially in textures with
high internal contrast. In the lower texture region of Figure 8c, there is a contrast between two regions,
and the HED architecture is susceptible to it. In the lower-right texture of Figure 9c, there is a sudden
change of scale and illumination in the texture region, and the HED architecture is also susceptible
to it. It can be seen that this change of scale also affects the presented method, shown in Figure 9d,
but with less intensity. Also, the vertical lines of the leftmost texture slightly affects the result from the
HED architecture. Finally, in Figure 10c, the small and repeated ellipses are over-segmented by the
HED architecture.

The results from the proposed technique are presented in Figures 8d, 9d and 10d. It can be seen
that the method precisely identifies the border between different texture regions, as opposed to a
multi-class label method, without over-segmenting the internal texture regions, as the HED architecture
does. Moreover, the performance of the proposed method remains the same when new texture classes,
not used for the training set, are included in the mosaics.

4.2. Results on the Different Test Sets

Since the main contribution of this paper is a class-independent texture segmentation method,
in order to validate the robustness of the technique, the test was performed on four different sets,
each one with 10,000 mosaics. The mosaics of the first test set were created with the 103 texture
images from Prague Texture Segmentation Datagenerator and Benchmark dataset used for the training
whereas the mosaics of the second test set were created with the remaining 11 texture images from the
same dataset that were not used for training the network. The mosaics of the third and fourth set were
created with textures from the Brodatz dataset and from the Describable Textures Dataset, respectively,
that were also not used for the training.

To quantify the results, the F-measure, the area under the precision–recall curves, and the Pratt
Figure of Merit were used to evaluate the performance of the technique. The F-measure is the harmonic
mean between precision and recall measures [91], and can be described as:

F-measure = 2
precision× recall
precision + recall

, (2)

where the precision is the measure of correctly classified border pixels relative to all pixels classified
as borders, and the recall is the measure of correctly classified border pixels relative to all pixels that
should be classified as borders.

A precision–recall curve is a plot of the precision and the recall for different probability thresholds.
The F-measure and the precision–recall curves were chosen to evaluate the method performance
because of the imbalanced distribution between the two classes, since the number of pixels that
belong to internal texture regions is considerably larger than the number of pixels that belong to the
borders between textures. Therefore, those metrics are more adequate when dealing with imbalanced
datasets [92–94].

The Pratt Figure of Merit, R, is a measure that balances the errors caused by missing valid edge
points, the failure to localize edge points, and the classification of noise fluctuations as edge points [95].
Mathematically, it is described as:

R =
1

max(II , IA)

IA

∑
i=1

1
1 + ad2 , (3)

where II and IA represent the number of ideal and actual edge map points, respectively, a is a scaling
constant, usually set to 1/9 [96–98], and d is the separation of an actual edge point normal to a line of
ideal edge points. The measure is normalized so that its value for a perfectly detected edge equals one.
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Figures 11–13 present the mean precision–recall curves, the mean F-measure for different
probability threshold, and the mean Pratt Figure of Merit for different probability thresholds,
respectively, whereas Table 3 presents the area under the mean precision–recall curves, the maximum
mean F-measure, and the maximum mean Pratt Figure of Merit achieved for each test set.
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Figure 11. Precision–recall curves for the four different test sets.

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

Prague 103 Textures
Prague 11 Textures
Brodatz Textures
DTD Textures

Figure 12. F-measure curves for the four different test sets.
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Figure 13. Pratt Figure of Merit curves for the four different test sets.

Table 3. Area under mean precision–recall curve, maximum mean F-measures, and maximum mean
Pratt Figure of Merit. The values are expressed as percentage values.

Test Set Area under Precision–Recall Curve Maximum F-Measure Maximum Pratt Figure of Merit

Prague 103 textures 91.690 88.023 87.272
Prague 11 textures 89.960 87.633 83.166
Brodatz textures 92.869 93.996 92.593
DTD textures 86.522 88.071 82.535

Ideally, a perfect model would have the precision and the recall values equal to one for all the
different probability thresholds, such that the area under the precision–recall curve and the F-measure
would equal the unity. As can be seen in Table 3, the results achieved by the proposed method are
close to the unity, and are similar between the four different test sets. Also, the results obtained from
the second, third, and fourth datasets, which did not include any textures seen during the training
suggest that the model is indeed able to segment mosaic with any texture classes and is not restricted
to the classes seen during the training phase.

The Brodatz textures dataset is known to be easy, with remarkable intensity differences between
the different classes, so it is expected that the model performs better on this dataset. In addition, it is
worth noting that the results between the two Prague textures test sets are close to each other. The DTD
dataset is the most challenging one of the used texture sets, but, as seen in Figures 8–10, the model was
capable of separating the different textures and most of the errors obtained were due to heterogeneous
non-repetitive regions inside textures.

4.3. Comparison with State-Of-The-Art Methods

Since the training of the presented method was made using textures from the Prague Texture
Segmentation Datagenerator and Benchmark, in this subsection, a comparison is made between the
edges that results from the presented technique and the results related to be the current best texture
segmentation methods when considering this dataset.

The best texture segmentation results are the ones from the method presented by Andrearczyk
and Whelan [67], and the ones from the method presented by Huang et al. [69]. Those methods
use a multi-class pixel labeling approach followed by a post-processing step to clean the regions by
eliminating the small ones. For comparison, the edges between the regions generated by those methods
were obtained and are shown in Figures 14–17 along with the original mosaics and their respective
ground truths, as well as the borders from the presented method.
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The presented technique, as seen in the results, generally identifies the edges between the texture
regions. Moreover, it does not need either to pre-process the mosaic image (as in [69]) or post-process
the images (as in both [67,69]). In terms of network parameters, the technique presented in this paper
has only 1,138,081 of them. On the other hand, the network presented in [67] has an order of 70 million
parameters whereas the network used in [69] uses an even greater number of parameters, due to the
preprocessed features.

It should be noted, however, that the proposed technique has a disadvantage, when compared to
the techniques in [67,69], if the pixel regions must be precisely obtained. If neighboring regions have
similar textures, the border between the two regions may not be complete or even be absent. This is
the case in the upper-right border of Figure 15e and the border on the bottom-center of Figure 16d.
In this case, the present method is unable to identify two distinct regions, merging them into one
single region.

Table 4 presents the F-measure and the Pratt Figure of Merit for the benchmark images shown
in Figures 7–10 obtained using the proposed technique, the method presented in [67], and the method
presented in [69], in the order that they are presented in those figures. To fairly compare the proposed
technique with the other two methods, the threshold value was not optimized, so that the probability
used to threshold the borders in the proposed method was 50%.

(a)

(b)

(c)

Figure 14. Comparison on the Prague Texture Dataset Generator and Benchmark [70]. From the first to
the fifth column, respectively: original images; ground truths; edges produced by the network in [67];
edges produced by the network in [69]; edges produced in the presented method. Letters (a–c) present
different benchmark textures mosaics and are used for referencing the images in the text.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 15. Comparison on the Prague Texture Dataset Generator and Benchmark [70]. From the first to
the fifth column, respectively: original images; ground truths; edges produced by the network in [67];
edges produced by the network in [69]; edges produced in the presented method. Letters (a–f) present
different benchmark textures mosaics and are used for referencing the images in the text.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 16. Comparison on the Prague Texture Dataset Generator and Benchmark [70]. From the first to
the fifth column, respectively: original images; ground truths; edges produced by the network in [67];
edges produced by the network in [69]; edges produced in the presented method (continuation). Letters
(a–f) present different benchmark textures mosaics and are used for referencing the images in the text.
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(a)

(b)

(c)

(d)

(e)

Figure 17. Comparison on the Prague Texture Dataset Generator and Benchmark [70]. From the first to
the fifth column, respectively: original images; ground truths; edges produced by the network in [67];
edges produced by the network in [69]; edges produced in the presented method (continuation). Letters
(a–e) present different benchmark textures mosaics and are used for referencing the images in the text.

As seen in Table 4, the proposed technique outperforms the other two methods when identifying
the borders between the different mosaic regions.
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Table 4. F-measure and Pratt Figure of Merit for the benchmark images from the Prague Texture
Datagenerator and Benchmark [70]. The measures are expressed as percentage values. The best results
for each image are highlighted in bold.

Image Number
Proposed Technique Andrearczyk and Whelan [67] Huang et al. [69]

F-Measure Pratt Figure of Merit F-Measure Pratt Figure of Merit F-Measure Pratt Figure of Merit

01 99.9983 99.9973 99.5517 99.9446 99.9207 99.9881
02 99.9501 99.9930 99.1007 99.9012 99.6143 99.9606
03 99.9958 99.9995 99.0568 99.6746 99.4385 99.8868
04 99.9483 99.9267 99.1682 99.8339 99.3949 99.8676
05 99.9602 99.9933 98.7681 99.7680 99.4474 99.9441
06 99.9380 99.9911 98.7147 99.7864 99.5670 99.9224
07 99.9551 99.9937 98.6946 99.6323 99.0139 99.6561
08 99.9270 99.9889 98.4671 99.5851 99.1441 99.8715
09 99.9555 99.9923 98.4910 99.7344 99.4847 99.8817
10 99.9648 99.9959 98.1720 99.4887 99.1403 99.6654
11 99.9125 99.9866 98.8090 99.7117 98.6177 99.2335
12 99.9870 99.9932 98.5885 99.6422 99.6217 99.9536
13 99.9510 99.9939 98.5994 99.6237 99.1777 99.8007
14 99.9842 99.9801 99.0517 99.8547 99.4689 99.8413
15 99.9850 99.9970 98.9852 99.8438 99.6247 99.9360
16 99.9884 99.9930 98.6254 99.3674 99.5489 99.9466
17 99.9658 99.9954 98.7843 99.7094 99.4507 99.9448
18 99.9570 99.9944 99.1690 99.8263 99.6912 99.9221
19 99.9967 99.9978 99.1172 99.8461 99.7941 99.9789
20 99.9940 99.9983 99.0665 99.7099 99.1944 99.6728

4.4. Results on Remote Sensing Texture Mosaics

In this subsection, the presented technique will be applied to mosaics comprising regions made
of remote sensing images from the GeoEye RGB images. The images are also available in the Prague
Texture Segmentation Datagenerator and Benchmark [99]. It should be noted however, that as the
mosaic structure presented in [99] the mosaics created for this paper only approximately correspond
to satellite scenes.

Figure 18 presents the results of the methods applied on some of those mosaics. It is worth stating
that the network was not trained again using remote sensing images, but it was used directly after
being trained on the 103 textures from the Prague Texture Datagenerator and Benchmark.

The proposed method has no difficulty in separating regions when they differ in color and
texture characteristics as shown in Figure 18a. In Figure 18b it can be seen that the method could not
separate the regions composed of textures from a city landscape, from the center to the right regions.
Although those regions were formed from different images, they belong to the same semantic class and
even the human eye cannot immediately recognize the separation between these textures. Another
difficulty occurs in the bottom of Figure 18c where the texture and color of the two adjacent regions
are almost indistinguishable, even to the human eye. Also, the brighter part in the bottom-left part of
the image does not present any similarity with the rest of its ground-truth region and is thus separated.
Finally, in Figure 18d, the road between the grass does not present any repetitive pattern with other
parts of this region and is classified as a separated region.

To quantify the results, 10,000 mosaic images were generated using remote sensing images from
the Prague Texture Segmentation Datagenerator and Benchmark [99]. The area under the mean
precision–recall curve, the maximum mean F-measure, considering all images, and the maximum
mean Pratt Figure of Merit, also considering all images, are presented in Table 5.
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(a)

(b)

(c)

(d)
Figure 18. Application on remote sensing images. From left to right, respectively: original image;
ground-truth; and the results on the proposed method. Letters (a–d) present different mosaic images
and are used for referencing the images in the text.
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Table 5. Area under mean precision–recall curve, maximum mean F-measures, and maximum
mean Pratt Figure of Merit for the remote sensing images mosaics. The values are expressed as
percentage values.

Metric Percentage Value

Area under precision–recall curve 84.312
Maximum F-measure 80.063
Maximum Pratt Figure of Merit 76.817

As shown in Table 5, due to the fact that remote sensing images have more contextual information
rather than solely texture and color characteristics, the observed results have a worse performance
when compared with texture mosaics.

For a visual comparison with a multi-class approach and a HED architecture, as presented
in Section 4.1, Figure 19 presents additional texture mosaics and the results from the method presented
in this paper and the other two approaches. It can be seen that the multi-label method presents
difficulties in precisely defining the borders between the regions and that the HED architecture, due to
its complexity, has a tendency to excessive segmentation, while the presented method identify the
borders with more precision compared to those other approaches.

(a) (b) (c) (d)
Figure 19. (a) An example mosaic, (b) the results of a multi-class labeling approach, (c) a HED
architecture, and (d) the proposed method.

4.5. Results on Tissue Texture Mosaics

In this subsection the present method will be applied on mosaics composed by Hematoxylin
and Eosin-stained tissue with malignant lymphoma images [100]. There are three types of malignant
lymphoma: chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma
(MCL). This way, the mosaics were formed by a maximum of three different regions, and each region
was randomly filled with a tissue images of one of those three types of malignant lymphoma.

It is worth stating that the mosaics do not represent real images and were created in order to
evaluate the performance of the proposed method on different types of images for various applications.
Moreover, the network was applied without any additional training. Figure 20 presents the results of
the method on different sample mosaics.
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(a)

(b)

(c)
Figure 20. Application on lymphoma tissue images. From left to right, respectively: original image;
ground-truth; and the results on the proposed method. Letters (a–c) present different mosaic images
and are used for referencing the images in the text.

It can be seen that the method could precisely separate the different parts of the image even
when they presented similar colors, which is the case for Figure 20b,c. Those results corroborate the
robustness of the presented method and its independence of a limited number of texture classes.

As in Section 4.4, to quantify the results, 10,000 mosaic images were generated using H&E-stained
tissue images. The area under the mean precision–recall curve, the maximum mean F-measure,
considering all images, and the maximum mean Pratt Figure of Merit, also considering all images,
are presented in Table 6. The precision and recall measures for this maximum mean F-measure are
also presented.
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Table 6. Area under mean precision–recall curve, maximum mean F-measures, precision and recall for
the F-measure presented, and maximum mean Pratt Figure of Merit for the H&E-stained tissue images
mosaics. The values are expressed as percentage values.

Metric Percentage Value

Area under precision–recall curve 98.302
Maximum F-measure 94.872
Precision for the maximum F-measure value 92.757
Recall for the maximum F-measure value 96.488
Maximum Pratt Figure of Merit 92.280

The results in Table 6 show that the presented method is effective in separating regions of
H&E-stained tissue images mosaics. This is because texture and color are the main information of
those images. Moreover, for a given type of lymphoma malignant tissue, the internal variability inside
a mosaic region is rarely observed.

For a visual comparison, Figure 21 presents additional texture mosaics and the results from the
method presented in this paper and the multi-class approach and the HED architecture. It can be seen
that the same characteristics observed in Section 4.1 are present in the mosaics shown.

(a) (b) (c) (d)

Figure 21. (a) An example mosaic, (b) the results of a multi-class labeling approach, (c) a HED
architecture, and (d) the proposed method.

5. Conclusions

This paper proposed a class-independent technique for texture segmentation, thus it is not
restricted to a limited number of different texture classes in the image. The segmentation is achieved
through a binary pixel-wise classification where each pixel in the image is classified as either belonging
to an internal texture region of the image or to a border between two or more textures. The classification
is made with a convolutional neural network with an encoder–decoder architecture.

The results suggest that the proposed method is more robust than a multi-class pixel labeling
approach, especially in the borders between different textures while it does not over-segment internal
texture regions of the image. It is also shown that the technique has a good performance with
similar results when considering texture image sets that were not used in the training of the network.
The presented technique is also adaptable to different applications and can separate various regions of
mosaic images with a smaller number of parameters than similar methods.
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Abbreviations

The following abbreviations are used in this manuscript:

BSDS Berkeley Segmentation Dataset and Benchmark
CLL Chronic lymphocytic leukemia
CNN Convolutional neural network
DTD Describable Textures Dataset
FL Follicular lymphoma
FN False negatives
FP False positives
FV Fisher vector
FCN Fully convolutional network
HED Holistically nested edge detector
LBP Local binary patterns
LSTM Long short-term memory
MCL Mantle cell lymphoma
ReLU Rectified linear unit
SVM Support vector machine
TN True negatives
TP True positives
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