Skip to main content
. 2020 Oct 15;9(2):55. doi: 10.1167/tvst.9.2.55

Table 2.

Area Under the Receiver Operating Characteristic Curve (AROC) Values of Different Machine Learning (ML) Classifiers Using OCT Imaging for Glaucoma Diagnosis

Study Input Data No. of Eyes/Images ML Classifiers AROC OCT Parameter with Best Diagnostic Accuracy AROC Significance Level (best ML Approach Versus Conventional)
Burgansky-Eliash Z. et al. (2005)27 38 conventional OCT parameters (macular and ONH) 27 early glaucoma, 20 advanced glaucoma, 42 healthy eyes LDA 0.979 Rim area 0.969 0.07
SVML 0.981
RPART 0.885 Mean RNFL 0.938 0.01
GLM 0.975
GAM 0.854
Huang et al. (2005)51 56 OCT parameters 89 glaucoma, 100 healthy LDA 0.824 Inferior quadrant thickness 0.832 n/a
MD 0.849
ANN 0.821
Naithani et al. (2007)52 Peripapillary RNFL and ONH parameters (HRT) 19 parameters 30 early glaucoma 30 moderate glaucoma 60 healthy LDA 0.982 Average RNFL thickness 0.953 n/a
ANN 0.938
CTREE 0.979
Bizios et al. (2010)54 28 RNFL parameters 62 glaucoma, 90 healthy SVML 0.959 to 0.999 Global transformed A-scan data global transformed A-scan data 0.977 0.977 n/a
ANN 0.958 to 0.995
Barella et al. (2013)53 23 parameters (RNFL thickness and ONH topography) 57 glaucoma, 46 healthy SVML 0.690 Cup/disc area ratio 0.846 0.542
BAG 0.804
NB 0.818
SVMG 0.753
MLP 0.768
RBF 0.839
RAN 0.877
ENS 0.793
CTREE 0.687
ADA 0.839
Xu J et al. (2013)57 OCT with super pixel analysis 59 glaucoma suspects Log 0.903 Average RNFL thickness 0.707 0.031
84 glaucoma
44 healthy
Larrosa et al. (2015)55 RNFL thickness: 2 semi-circles, 4 quadrants, and 6, 8, 12, 16, 24, 32, 64, and 768 sectors 117 glaucoma ANN 0.770 to 0.845 12 peripapillary RNFL thickness sectors 0.845 0.0001
123 healthy
Muhammad et al. (2017)56 RNFL thicknesses and retinal ganglion cell plus inner plexiform layer 57 glaucoma, 45 healthy RAN 0.77 to 0.97 Average RNFL thickness 0.973 n/a
Maetschke et al. (2019)58 RNFL thicknesses, rim area, disc area, cup-to-disc ratio, vertical cup-to-disc ratio, cup volume 263 healthy, 847 glaucoma DL 0.94 n/a n/a n/a

KNN, k-nearest neighbor; LDA, linear discriminant analysis; SVML, support vector machine linear; RPART, recursive partitioning and regression tree; GLM, generalized linear model; GAM, generalized additive model; MD, Mahalanobis distance; ANN, artificial neural network; Log, LogitBoost adaptive boosting; BAG, bagging; NB, naive-bayes; SVMG, support vector machine Gaussian; MLP, multi-layer perception; RBF, radial basis function; RAN, random forest; ENS, ensemble selections; CTREE, classification tree; ADA, AdaBoost M1; SAP, standard automatic perimetry.