Table 4.
Study | Input Data | No. of Eyes/Images | ML Classifiers | AROC/Sensitivity and Specificity OCT Parameter Alone | AROC/Sensitivity and Specificity SAP Parameters Alone | AROC/Sensitivity and Specificity for Combined Parameters |
---|---|---|---|---|---|---|
Brigatti et al. (1996)77 | SAP indices (mean defect, corrected loss variance, and short-term fluctuation) and structural data (cup/disk ratio, rim area, cup volume, and nerve fiber layer height) | 185 glaucoma, 54 healthy | NN | 87% sensitivity and 56% specificity | 84% sensitivity and 86% specificity | 90% sensitivity and 84% specificity |
Bowd et al. (2008)76 | RNFL thickness + SAP | 69 glaucoma, 156 healthy | RVM | 0.809 | 0.815 | 0.845 |
SSMoG | 0.817 | 0.841 | 0.896 | |||
Grewal et al. (2008)78 | Age, sex, myopia, intraocular pressure (IOP), optic nerve head, and retinal nerve fiber layer (RNFL), SAP and GDx parameters | 35 glaucoma, 30 glaucoma suspects, 35 healthy | ANN | Sensitivity of 93.3% at 80% specificity (normal versus glaucoma) | ||
Bizios et al. (2011)75 | SAP and OCT | 135 glaucoma, 125 healthy | ANN | 0.970 | 0.945 | 0.978 |
Sugimoto et al. (2013)80 | VF damage, age, gender, right or left eye, axial length, 237 different OCT measurements | 224 glaucoma, 69 healthy | RAN | m-RNFL (0.86), cp-RNFL (0.77), GCL + IPL (0.80), rim area (0.78) | 0.9 (all parameters) | |
Silva et al. (2013)79 | SD-OCT parameters and global indices of SAP | 62 glaucoma, 48 healthy | Conventional | 0.574−0.813 | 0.828−0.915 | |
BAG | 0.893 | |||||
NB | 0.912 | |||||
MLP | 0.845 | |||||
RBF | 0.857 | |||||
RAN | 0.933 | |||||
ENS | 0.910 | |||||
CTREE | 0.777 | |||||
ADA | 0.932 | |||||
SVMG | 0.913 | |||||
SVML | 0.929 | |||||
Kim et al. (2017)81 | Age, IOP, corneal thickness, RNFL, GHT, MD, PSD | 178 glaucoma, 164 healthy | C5.0 | 0.97 | ||
RAN | 0.979 | |||||
SVM | 0.97 | |||||
KNN | 0.97 |
ANN, artificial neural network; MLC, machine learning classifier; RVM, relevance vector machine; BAG, bagging; NB, naïve Bayes; NN, neural network; MLP, multilayer perception; RBF, radial basis function; RAN, random forest; ENS, ensemble selection; CTREE, classification tree; ADA, AdaBoost M1; SVML, support vector machine linear; SVMG, support vector machine Gaussian; SSMoG, subspace mixture of Gaussians; KNN, k-nearest neighbor; SAP, standard automatic perimetry; GHT, Glaucoma Hemifield test.