Skip to main content
. 2020 Oct 15;9(2):55. doi: 10.1167/tvst.9.2.55

Table 4.

Area Under the Receiver Operating Characteristic Curve (AROC), Sensitivity and Specificity Values of Different Machine Learning Classifiers Using Optical Coherence Tomography (OCT) or Standard Automated Perimetry (SAP) Alone, or in Combination for Glaucoma Diagnosis

Study Input Data No. of Eyes/Images ML Classifiers AROC/Sensitivity and Specificity OCT Parameter Alone AROC/Sensitivity and Specificity SAP Parameters Alone AROC/Sensitivity and Specificity for Combined Parameters
Brigatti et al. (1996)77 SAP indices (mean defect, corrected loss variance, and short-term fluctuation) and structural data (cup/disk ratio, rim area, cup volume, and nerve fiber layer height) 185 glaucoma, 54 healthy NN 87% sensitivity and 56% specificity 84% sensitivity and 86% specificity 90% sensitivity and 84% specificity
Bowd et al. (2008)76 RNFL thickness + SAP 69 glaucoma, 156 healthy RVM 0.809 0.815 0.845
SSMoG 0.817 0.841 0.896
Grewal et al. (2008)78 Age, sex, myopia, intraocular pressure (IOP), optic nerve head, and retinal nerve fiber layer (RNFL), SAP and GDx parameters 35 glaucoma, 30 glaucoma suspects, 35 healthy ANN Sensitivity of 93.3% at 80% specificity (normal versus glaucoma)
Bizios et al. (2011)75 SAP and OCT 135 glaucoma, 125 healthy ANN 0.970 0.945 0.978
Sugimoto et al. (2013)80 VF damage, age, gender, right or left eye, axial length, 237 different OCT measurements 224 glaucoma, 69 healthy RAN m-RNFL (0.86), cp-RNFL (0.77), GCL + IPL (0.80), rim area (0.78) 0.9 (all parameters)
Silva et al. (2013)79 SD-OCT parameters and global indices of SAP 62 glaucoma, 48 healthy Conventional 0.574−0.813 0.828−0.915
BAG 0.893
NB 0.912
MLP 0.845
RBF 0.857
RAN 0.933
ENS 0.910
CTREE 0.777
ADA 0.932
SVMG 0.913
SVML 0.929
Kim et al. (2017)81 Age, IOP, corneal thickness, RNFL, GHT, MD, PSD 178 glaucoma, 164 healthy C5.0 0.97
RAN 0.979
SVM 0.97
KNN 0.97

ANN, artificial neural network; MLC, machine learning classifier; RVM, relevance vector machine; BAG, bagging; NB, naïve Bayes; NN, neural network; MLP, multilayer perception; RBF, radial basis function; RAN, random forest; ENS, ensemble selection; CTREE, classification tree; ADA, AdaBoost M1; SVML, support vector machine linear; SVMG, support vector machine Gaussian; SSMoG, subspace mixture of Gaussians; KNN, k-nearest neighbor; SAP, standard automatic perimetry; GHT, Glaucoma Hemifield test.