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ABSTRACT: In response to the ongoing COVID-19 pandemic, there
is a worldwide effort being made to identify potential anti-SARS-CoV-
2 therapeutics. Here, we contribute to these efforts by building
machine-learning predictive models to identify novel drug candidates
for the viral targets 3 chymotrypsin-like protease (3CLpro) and RNA-
dependent RNA polymerase (RdRp). Chemist-curated training sets of
substances were assembled from CAS data collections and integrated
with curated bioassay data. The best-performing classification models
were applied to screen a set of FDA-approved drugs and CAS
REGISTRY substances that are similar to, or associated with, antiviral
agents. Numerous substances with potential activity against 3CLpro or
RdRp were found, and some were validated by published bioassay
studies and/or by their inclusion in upcoming or ongoing COVID-19
clinical trials. This study further supports that machine learning-based
predictive models may be used to assist the drug discovery process for COVID-19 and other diseases.

1. INTRODUCTION

The ongoing COVID-19 pandemic has challenged the health
system of many countries with its high rate of morbidity and
mortality. Developing effective treatments against the disease is
critical in the effort to save human lives and help society return to
normal. In order to respond quickly, scientists have been
exploring various ways to accelerate the drug development
process, including drug repurposing and computational
approaches in drug discovery. One promising way to achieve
this goal is to build machine learning models by applying the
quantitative structure−activity relationship (QSAR) method-
ology to suitable protein targets of the SARS-CoV-2 virus, which
could predict possible drug candidates for treating COVID-19.
Among all the proteins in SARS-CoV-2, the 3 chymotrypsin-

like protease (3CLpro) and RNA-dependent RNA polymerase
(RdRp) are two ideal protein targets for QSAR modeling.
3CLpro is a protease that is required in order for the coronavirus
to cleave the polyprotein peptides into individual functional
nonstructural proteins.1 In addition, by comparing the amino
acid sequences and protein structures, the 3CLpro was found to
be highly conserved among SARS-CoV-2 and other human
coronaviruses, with sequence identities of 96% with SARS-CoV-
1, 87% with MERS-CoV, and 90% with Human-CoV.2−5

Therefore, the 3CLpro inhibitors identified in previous
coronavirus-related research are promising inhibitors for
SARS-CoV-2 3CLpro and their associated SAR study data are
valuable information as training material for machine learning
models in searching for new inhibitors of SARS-CoV-2 3CLpro.
Consequently, it is reasonable to propose that broad-spectrum
inhibitors against human coronaviruses are promising drug
candidates that can be developed into suitable drugs for
targeting SARS-CoV-2 and many other human coronaviruses.
RdRp is the major enzyme that is responsible for replicating

viral genomic RNA in host cells. The amino acid residues of
active sites in RdRp are highly conserved among single-stranded,
positive-sense RNA [(+)ssRNA] viruses, including SARS-CoV-
1 and hepatitis C virus (HCV).6 In addition, RdRp of SARS-
CoV-2 shares an almost identical protein sequence with that of
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SARS-CoV-1, indicating that it also shares the highly conserved
amino acid residues in the active sites among the (+)ssRNA
viruses.1 Indeed, the EM-cryo structure of SARS-CoV-2 RdRp
reveals that this enzyme contains the classic divalent-cation-
binding residue D618, which is conserved in most viral
polymerases including HCV (residue D220), and the catalytic
residues [759 to 761 (SDD)], which are also conserved in most
viral RdRps, such as HCV.7 Fortunately, various viral RdRps
have been widely studied for inhibitors in the (+)ssRNA viruses,
especially in HCV-related research.8 Therefore, these existing
RdRp inhibitors for the (+)ssRNA viruses, such as HCV, may
provide valuable insights for drug development for SARS-CoV-2
RdRp inhibition.8

QSAR and machine learning9a modeling have increasingly
been used to facilitate drug discovery in recent years. QSAR is
usually one of the first steps in the drug discovery process, in
which large databases of chemical structures are screened
through a variety of predictive mathematical models in order to
narrow down the number of potential drug candidates. Simply
put, QSARs are mathematical models approximating rather
complicated biological or physicochemical properties of
chemicals based on quantitative measures of the corresponding
molecular structures. The underlying assumption is that the
activity is directly related to the structure of the chemicals. Thus,
molecules with similar structural features will exhibit similar
physical properties or similar biological effects. One major
challenge in QSAR is the selection of appropriate structural
features to be used as molecular descriptors. To a large degree,
the development of an accurate machine learning model
depends on the results of the analysis of the factors that may
be meaningful in the mechanism of action (MOA). Relevant
molecular descriptors can be defined and calculated only after a
solid understanding of the MOA has been achieved.
Many techniques have been developed to describe molecular

structures in QSAR. Hansch et al.13−15 used 1-octanol/water
partition coefficients and Hammett substituent constants to
model hydrophobic and electronic effects. Methods that utilize
topological indexes,16−20 3D geometry descriptors,21−24 elec-
tronic structural descriptors,25−27 molecular shape descrip-
tors,28 fragment-based approaches,29−31 and 3D QSAR32,33

have been extensively used to model a wide range of biological
end points.
Since the outbreak of COVID-19, different QSAR studies

have been employed to predict the possibilities of FDA-
approved drugs or investigational drugs to be repurposed for
COVID-19, as well as the likelihood of repurposing inhibitors
for other viruses related to SARS-CoV-2. QSAR modeling has
been proven to be useful in virtual screening and lead
optimization for drug discovery. Monte Carlo optimization-
based and classification QSAR models of SARS-CoV main
protease (Mpro) were developed and used for screening of some
natural products.9b Multiple linear regression analysis combined
with 2D-QSAR modeling was successfully employed to identify
potential SARS-CoV-3CLpro enzyme inhibitors.10−12a Classi-
fication QSAR data mining of diverse SARS-CoV papain-like
protease (PLpro) inhibitors were utilized to generate predictive
QSAR models and later used for virtual screening to identify
molecules that could be effective against SARS-CoV PLpro.12b

Development of a QSAR model also requires thorough
collaboration between computational and experimental scien-
tists who have deep knowledge of their respective fields and have
made effort to understand and develop working knowledge of
the complementary field. In this study, computational scientists
and chemists with related background closely collaborated to
curate training data and build highly predictive QSAR models
for 3CLpro and RdRp. The two QSAR models presented here
were validated with high sensitivity, specificity, and accuracy.
After modeling protease inhibitor activity as a function of the
substance structure, we identified some of the most promising
candidates among substances predicted to be active inhibitors
against coronavirus 3CLpro.

2. METHODS

In this study, as illustrated in Figure 1, scientists curated over
1000 inhibitors with structure−bioactivity data as training
molecules for 3CLpro and RdRp protein targets. We collected
these data from the most current SARS-CoV-2 bioassay studies
as well as existing studies with SARS-CoV-1, MERS-CoV, and
other related viruses in the CAS data collection. Using this data,

Figure 1. Overall process flow.
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we applied a variety of machine learning algorithms to build
several dozen QSAR modelsselecting from among these, the
strongest performing modelsone targeting 3CLpro and one
targeting RdRp.
We used the resulting models to screen 1087 FDA-approved

drugs,34 nearly 50,000 substances from the CAS COVID-19
Antiviral Candidate Compounds Dataset,35a and a list of
113,000 substances with CAS-assigned pharmacological activity
or a therapeutic role indexed in SARS, MERS, and COVID-19-
related documents published since 2003. Some predicted
molecules of these models were validated by published bioassay
studies and clinical trials as a positive indication of the predictive
models.
2.1. 3CLpro & RdRp Training Data set Preparation. To

develop training sets for predicting active substances to target
SARS-CoV-2 3CLpro and RdRp, we examined bioassay data
published from 2000 to 2020 in the CAS data collections. This
included substance information, targets, activity measures [half
maximal inhibitory concentration (IC50), half maximal effective
concentration (EC50), inhibition constant (Ki), and dissociation
constant (Kd)], source organisms, and assay details. We selected

substances with assay data of IC50≤ 10 μM, EC50≤ 10 μM,Ki≤
10 μM, and/or Kd ≤ 10 μM toward the targets as active
substances from these bioassay dataa threshold suggested by
Deng et al.35b and by Zhou et al.35c Substances with IC50, EC50,
Ki, and Kd values above 100 μM from these bioassay data were
considered to be inactive.

2.1.1. 3CLpro Inhibitors of SARS-CoV-1 and other
Coronaviruses. For the training set for the 3CLpro model, we
collected 468 diverse active substances from 76 different
documents published prior to 2020and 700 inactive
substances. Over 70% of active substances are from SARS-
CoV-1 3CLpro studies. The rest of the active substances are
from MERS-CoV, common human coronavirus, feline infec-
tious peritonitis, transmissible gastroenteritis coronavirus, and
infectious bronchitis virus 3CLpro studies. Seven unique small
molecules representing the structural diversity of SARS-CoV-1
3CLpro inhibitors are shown in Table 1. See Supporting
Information Table S1 for the complete training set.

2.1.2. RdRp Inhibitors of SARS-CoV-1 and Other Viruses.
For the training set for the RdRp model, we collected 1212
diverse active substances from 51 documents published prior to

Table 1. List of Example Training Substances with In Vitro Inhibitory Effect on SARS-CoV-1 3CLpro
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2020. We also collected 67 SARS-COV-2 RdRp inhibitors from
journal articles published in 2020. Four unique small molecules
representing the structural diversity of HCV RdRp inhibitors
and two unique small molecules representing SARS-CoV-2
RdRp inhibitors are shown in Table 2. A full list of the training
substances can be seen in Table S4.
2.2. Machine Learning Methods. An automated machine

learning platform, DataRobot v6.0.3 https://www.datarobot.
com/, was used to train and evaluate performance of more than
40 different machine learning algorithms. DataRobot is a
commercial tool that we used to build informative features
selected from molecular descriptors.38 Model training and
testing with fivefold cross-validation was utilized in the model
selection process. Grid search was used as the default method for
hyperparameter optimization.
Support Vector Classifier (Radial Kernel) is a robust

algorithm that has been actively used to model biological
activity of small molecules for various targets.39,40 DataRobot
implementation is based on scikit-learn.41 This algorithm
searches the optimal hypersurface in multidimensional feature
space38 that separates the active and inactive classes of
compounds. DataRobot tool identified SVM with Radial Kernel
as the best model for our RdRp data set based on highest cross-
validation area under curve (AUC) values among the other

explored models. Hyperparameters Gamma and C were
optimized using default DataRobot grid search.
XGBoost is a decision-tree-based ensemble ML algorithm

that uses a gradient boosting framework.42,43 For building RdRp
models, default DataRobot optimized parameters were used.
Previously XGBoost demonstrated both high accuracy and
robustness on bioactivity prediction tasks with highly imbal-
anced class distributions.44

Many ensemble models that are called “blenders” in
DataRobot also demonstrated excellent performance that was
comparable to top selected models. For example, the ENET
Blender model combines the predictions generated by SVM and
XGBoost models followed by Elastic-Net Classifier45which is
a linear model trained with L1 and L2 prior as regularizers. Very
similar to that, average blender also combines the output of SVM
and XGBoost predictions and returns mean that can improve
performance of individual models.46 Ensemble-based models
also were found to be an improvement for building QSAR
models.47

2.3. Binary Classifiers. In our models, bioactivity prediction
is a binary classification task that generates the probability of
compounds, represented as a structural feature vector, being a
member of the active or inactive class. An automated machine

Table 2. Examples of Training Substances with Inhibitory Effect on RdRp of HCV (a Positive-Stranded ssRNA Virus) in Various
Biological Studies
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learning tool was used to train and evaluate performance of more
than 40 different machine learning algorithms.
A number of commonmetrics were used to evaluate statistical

performance of our models, including:

sensitivity TP/(TP FN)= +

specificity TP/(TN FP)= +

accuracy (TP TN)/(TP TN FP FN)= + + + +

Receiver Operating Characteristic (ROC)35

where: TPtrue positives. TNtrue negatives. FPfalse
positives. FNfalse negatives.
To estimate the statistical performance of the models, a

common fivefold cross-validation procedure has been used for
all models in this study. In each of five iterations of this approach,
80% of the data is used to build a model, and 20% is held as a test
set. Across the whole process, then, every record is held out as
validation in one part of the process, yet all records are made
available to the model.
To measure the statistical quality of our models, we used the

receiver−operator-characteristic (ROC)-AUC36 that is a
measure of model fit ranging from 0 to 1 and created by
plotting the true positive rate against the false positive rate at
various threshold settings, with a perfect model having an ROC-
AUC of 1.
Many binary classifiers from our training data showed high

AUC, accuracy, sensitivity, and specificity in the cross-validation
tests. AUCs are shown in Supporting Information Table S5, with
a description of validation metrics. ROC plots for the final
models are shown in Figure 2. Many modelsincluding
Support Vector Machine with Radial Kernel (SVM), Gradient
Boosted Trees, ENET, and variations of AVG Blenders
showed AUC values of 0.99.
The high performance of these binary classifier models

provides us with the ability to identify the most relevant active
molecules in large data sets. This can be attributed to (i) the
more separated distributions of actives and inactives (observa-
tions with a midrange of 10 μM< IC50 < 100 μMwere excluded
from the training data sets) and (ii) the high diversity of active
and inactive examples in the training data that were prepared by
CAS scientists.
2.4. Molecular Descriptors. In order to train the binary

classification machine learning models that predict the

probability of whether a new chemical will inhibit the human
coronavirus 3CLpro or RdRp, the abovementioned training set
molecules were used, and their molecular features were studied
for the models. Molecular descriptors available in the software
library RDKit,37 including Morgan48 (radius = 3; length =
2048), MACCS keys,49 Atom Pairs,50 Topological Torsion51

fingerprints, as well as Crippen LogP52 and MR,52 Molecular
Quantum Numbers (MQN),38 PEOE_VSA and SMR_VSA,53

and FractionCSP3 (fraction of C atoms that are SP3 hybridized)
were utilized to build the models.

2.5. Structure−Functional Analysis. In order to calculate
and evaluate structural alerts, the following structure-functional
analysis approach has been developed. The molecular graph of a
given chemical structure is split into subfragments similar to
Klopman.29 However, beyond just linear fragments, we further
generated all possible subfragments with extended connectivity
length from 1 to 9 atoms. The activity of the molecular structure
is assigned to any of the generated subfragments. The above
procedure is applied to every single molecule structure in the
training set; thus, we end up with an extended list of fragments
that may belong to several different molecules. In this study, we
calculate the activity of a substructure as the mean value of the
activities of the molecules that contain the fragment. Once the
activity of the fragments is calculated, we order the list of
fragments so that at the top of the list, are the most active
structural alerts and at the bottom, the most inactive ones.

3. RESULTS AND DISCUSSION

3.1. 3CLpro Model. After the calculation of the molecular
descriptors, several machine learning algorithms, including
Random Forest, Gradient Boosting, Neural Networks, and
Support Vector Machine (SVM), to name a few (see Methods
Section 2.2 above), were exploited in order to obtain robust
machine learning models. The best model was obtained by using
a Random Forest Classifier algorithm and utilizing Crippen
LogP and Morgan fingerprints as molecular representations.
This model achieved a ROC-AUC of 0.99, as previously shown
in Figure 2.
To assess the predictive ability of the 3CLpro model, we then

performed a thorough structure−functional analysis of the
substances in the training set. The following salient structural
features, or “alerts”, were found to be prevalent among active
substances and might be partly responsible for the 3CLpro
inhibition activity (Table 3).

Figure 2. ROC curves for 3CLpro and RdRp trained binary classifiers.
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In order to predict the possibilities of FDA-approved drugs to
be repurposed for COVID-19, this 3CLpro model was applied
to predict inhibition activity in a data set of 1087 FDA-approved
drugs. As approved drugs, these substances would be expected to
have an acceptable ADME profile and side effects and might be

likely to secure faster FDA approval as coronavirus or COVID-
19 therapeutics. The model predicted that 37 of these drugs are
likely to be active against 3CLpro of the coronavirus and, by
extension, could be used as potential inhibitors of 3CLpro in
SARS-CoV-2.

Table 3. Structural Alerts for the 3CLpro Model
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Table 4. Examples of Substances Predicted to be Active Using 3CLpro Model
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Table 4. continued
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The model was then also applied to the CAS COVID-19
Antiviral Candidate Compounds Dataset, which contains
49,437 compounds with potential antiviral activity identified
by CAS scientists. The model predicted that 970 of these
chemical compounds are likely to be active against 3CLpro of
the coronavirus. From each of these applications, a few selected
molecules with the highest inhibition probability are shown in
Table 4. A full list of chemical structures predicted to be active is
shown in Table S3 of Supporting Information. As expected, the
model identified several well-known HIV-1 protease inhibitors
(ritonavir and lopinavir)54 and identified substances (RNs
2243743-58-8, 1934276-50-2, and 2229818-46-4) that target
3C protease/3CLpro and was shown to inhibit Enterovirus,
MERS-CoV, and SARS-CoV-1 when tested in bioassays.55−57

These could represent new lead candidates as therapeutic agents
for COVID-19 or other viral infections. The model further
identified substances against host proteins involved in cellular
processes, including diltiazem hydrochloride and leflunomide.
Leflunomide is a dihydroorotate dehydrogenase inhibitor and
involved in nucleotide synthesis.58 In a recent multiomics study,
dihydroorotate dehydrogenase was identified as a possible target

for SARS-CoV-2 infection.59 In addition, leflunomide has been
shown to inhibit SARS-CoV-2 activity.60 Diltiazem hydro-
chloride is a calcium channel blocker that helps to increase blood
flow and variably decrease the heart rate via strong depression of
the A-V node. It has also been reported to be an inhibitor of the
NF-κB signaling pathway. As hypertension is one of the
common comorbidities seen in COVID-19 infected patients,
and as diltiazem has dual effects (lowering high blood pressure
and inhibiting NF-κB signaling), it may be an attractive
substance to use in place of ACE inhibitors.61,62

Furthermore, the 3CLpro model has been applied to screen-
predicted active molecules from a data set that contains over 113
K substances with CAS-assigned pharmacological activity or a
therapeutic role indexed in SARS-, MERS-, and COVID-19-
related documents published since 2003. Beyond these
substances known to be active from the training set, this process
identified about 2500 additional substances predicted to be
active against 3CLpro.Many of these compounds with predicted
activities were previously shown as inhibitors of coronavirus
3CLpro, serving as a validating mechanism of the model that
several substances predicted by the model are currently being

Table 4. continued
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Table 5. Sample of Predicted Active Substances with Experimentally Validated Inhibitory Effect on Viral 3CLpro
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pursued for repurposing against COVID-19. Table 5 shows
several predicted substances with experimentally validated
3CLpro inhibition activity (IC50) and inhibition of RNA
replication (EC50) for SARS-CoV-1, MERS-CoV, and/or
SARS-CoV-2.

3.2. RdRp TargetModel and Results. In order to
identify potential drug candidates of RdRp, we built machine
learning models that can be used to predict the ability of a small
molecule to inhibit the polymerase function of RdRp. The
abovementioned training set molecules of RdRp were used as

Table 6. Examples of Substances Predicted to be Active Using the RdRp Model64,77−88a

aSee Table S6 for additional substances predicted to be active.
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training materials for this model. Each molecule was represented
as a 42-component vector using MQNs that were used
previously for organic molecule classification tasks.38

A “Radial Kernel Support VectorMachine”model (SVM)was
determined to be the most accurate and efficient model with a
ROC-AUC value of 0.99 (Figure 2). Cumulative gain and lift
analysis for this model is shown in Figures S2 and S3 and Tables
S8 and S9 in Supporting Information. We applied this model for
screening of RdRp inhibitors in the same three data sets
screened above for 3CLpro: a data set of FDA-approved drugs,
the CAS COVID-19 Antiviral data set, and a larger list of
substances indexed by CAS from SARS, MERS. and COVID-19
published literature.
With a probability threshold of 0.50, we found more than

21,000 active candidates with diverse structural features when
we applied the SVM model to the three data sets described
above. Previously, CAS framework identifiers were used to
evaluate the diversity of the CAS REGISTRY.68 We found more
than 2000 unique framework IDs within the predicted active
candidates, indicating a high structural diversity of the screened
active compound data sets. The relative importance of several
individual features can be seen in more detail in Figure S1 of
Supporting Information.
An important class of the screened active compounds for

RdRp that we found were nucleotide analogues with structural
similarity to remdesivir. As it was recently demonstrated, cyano-
substituted adenosines69 not only effectively compete with
natural RdRp substrates but also inhibit RNA synthesis via steric
effect. Several interesting nucleotide analogues including cyano-
substituted adenosines that were found are listed in Table 6.
We usedCASREGISTRY information such as framework and

ring identifiers to highlight the structural similarity between
candidates. In addition to cyano-substituted compounds, we
found several azido-substituted nucleotide analogues. Azido-
substituted nucleotide analogues are known for their ability to
generate reactive intermediates that are often used to modify
enzyme active sites.70

Beyond providing the molecular structures of these identified
substances, Table 6 also provides information on their mode of
action, current use, and inclusion in ongoing or upcoming
clinical trials. As expected, the model identified several RdRp or
polymerase inhibitors (dasabuvir, cytarabine, and sofosbuvir)
and also identified several substances that inhibit enzymes or
receptors involved in the host immune response (ruxolitinib
phosphate, duvelisib, acalabrutinib, and telmisartan) and in
cholesterol synthesis (fluvastatin sodium). In addition to the
suggestion by the model that these substances could be useful in
modulating RdRp, an overview of their current uses indicates
they might have an ancillary benefit in treating COVID-19
patients. Of the substances inhibiting the host immune response,
ruxolitinib phosphate and telmisartan are being studied in
numerous current or upcoming COVID-19 clinical trials,
i n c l ud i n g NCT04362137 , NCT04348071 , a nd
NCT04360551.71−73

Ruxolitinib phosphate is an inhibitor of protein kinase JAK1
and JAK2 shown to be part of the severe immune overreaction
called a cytokine storm that can lead to life-threatening
respiratory complications in some patients with COVID-19.74

Telmisartan, an antagonist of angiotensin II receptor type 1
(AT1) and a modulator of peroxisome proliferator-activated
receptor gamma, could be used to reduce the negative
inflammatory response seen in COVID-19 patients.63 Duvelisib,
a phosphoinositide 3-kinase (PI3K) inhibitor, is being studied in

NCT04372602 to determine if it can reduce the aberrant
hyperactivation of the innate immune system, preferentially
polarize macrophages, reduce pulmonary inflammation, and
limit viral persistence.75 Fluvastatin sodium, a HMG-CoA
reductase inhibitor and cholesterol-lowing drug, is being tested
in clinical trial NCT00664742 that includes patients with
metabolic syndrome.76 As cardiovascular disease is a risk factor
for COVID-19, this clinical study may provide some assistance
for COVID-19 patients.

4. SUMMARY AND PERSPECTIVES
The COVID-19 pandemic caused by the new coronavirus
SARS-CoV-2 represents a serious threat to the global health
system. In order to aid development of efficient therapeutics
against the disease, we use machine learning-based predictive
modeling to identify novel drug candidates for the viral targets
3CLpro and RdRp. Chemist-curated training sets of substances
were assembled from CAS data collections and integrated with
curated bioassay data. Using suitable binary classifiers, we were
able to screen a set of FDA-approved drugs, nearly 50,000
substances in the CAS COVID-19 Antiviral Candidate
Compounds Dataset, and a list of 113,000 substances with
CAS-assigned pharmacological activity or a therapeutic role
indexed in SARS-, MERS-, and COVID-19-related documents.
Through these screenings, we identified many potential
inhibitors with potential activity against 3CLpro or RdRp.
Many of these predicted active substances also have ancillary
activities such as cardiovascular effects [diltiazem hydrochloride
(cardizem)], cholesterol-reduction [fluvastatin sodium (lescol
XL)], dihydroorotate dehydrogenase inhibition [leflunomide
(arava)] and signal transduction inhibition [ruxolitinib
phosphate (jakafi)], which may have other beneficial effects in
treating COVID-19. For example, as noted above, heart disease
is a known risk factor for COVID-19, so a candidate substance
for treating COVID-19, which has known effectiveness treating
heart disease, could potentially offer a dual benefit in certain
cases. Dihydroorotate dehydrogenase inhibitors have been
shown to have anti-SARS-CoV-2 activity, and Janus kinase
inhibitors are being studied for inhibiting the cytokine storm
process. Additionally, as mentioned above in this report, many of
the predicted active substances have FDA approval for specific
treatments, and several are included in current or future
COVID-19 clinical trials, which could assist or accelerate finding
therapeutic agents to use in COVID-19 treatment. In summary,
it is hoped that the information provided in this study will be of
value in the ongoing search for anticoronaviral therapeutic
agents.
While this paper focused on identifying potential therapeutic

compounds for use in the current COVID-19 crisis, it is not
certain but possible that there will be additional pandemics in
the years to come. Many of these will be of viral origin. Because
viral transmission and spread can occur very fast, while the
typical drug discovery process can take a decade or longer of
costly development, it is urgent that preparation for future
outbreaks begins now and that the current focus on antiviral
agent research continues into the future. The ongoing
development of computer-based drug discovery methods such
as the machine learning procedures described here and
elsewhere, molecular docking and virtual screening of potential
therapeutics, and other artificial intelligence methods will be of
central importance. Facilitating this is the ongoing increase in
computer processing power, continued development of docking
and structure prediction algorithms, and protein crystal
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structure determination. Additionally, the use of high-
throughput screening, omics technologies, and the repurposing
of already developed drugs will continue and increase in
importance as these can shave years off the development time for
antiviral drugs. These new research methods will not replace
human-based laboratory research but will instead complement
it. Finally, because different types of viruses can cause epidemics
(e.g., coronavirus, influenza viruses, Ebola viruses, and
retroviruses), the development of broad-spectrum antiviral
agents or vaccines would be of great value. This would also be
useful in that despite the use of faster drug discovery methods,
safety and effectiveness testing in humans still takes time. Organ-
on-a-chip methods will help but will not eliminate this time-
consuming step. Therefore, research on broad-spectrum
antivirals will be essential. We hope the current work combining
human data curation and machine learning-based predictive
models to identify potential small molecule drug candidates for
COVID-19 will contribute in some small way to the ongoing
efforts in antiviral research.
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