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Abstract.—The marginal likelihood of a model is a key quantity for assessing the evidence provided by the data in support
of a model. The marginal likelihood is the normalizing constant for the posterior density, obtained by integrating the
product of the likelihood and the prior with respect to model parameters. Thus, the computational burden of computing
the marginal likelihood scales with the dimension of the parameter space. In phylogenetics, where we work with tree
topologies that are high-dimensional models, standard approaches to computing marginal likelihoods are very slow. Here,
we study methods to quickly compute the marginal likelihood of a single fixed tree topology. We benchmark the speed and
accuracy of 19 different methods to compute the marginal likelihood of phylogenetic topologies on a suite of real data sets
under the JC69 model. These methods include several new ones that we develop explicitly to solve this problem, as well as
existing algorithms that we apply to phylogenetic models for the first time. Altogether, our results show that the accuracy
of these methods varies widely, and that accuracy does not necessarily correlate with computational burden. Our newly
developed methods are orders of magnitude faster than standard approaches, and in some cases, their accuracy rivals the
best established estimators. [Bayesian inference; evidence; importance sampling; model selection; variational Bayes.]

In phylogenetic inference, the tree topology forms a
key object of inference. In Bayesian phylogenetics, this
translates to approximating the posterior distribution of
tree topologies. Typically, a joint posterior distribution
of tree topologies and continuous parameters, including
branch lengths and substitution model parameters,
is approximated directly via Markov chain Monte
Carlo (MCMC), as done in the popular Bayesian
phylogenetics software MrBayes (Ronquist et al. 2012).
However, MCMC over topologies is computationally
expensive (Höhna et al. 2008; Lakner et al. 2008). These
MCMC algorithms spend a nontrivial amount of time
marginalizing over branch lengths and substitution
models parameters and discarding them so that the
estimated posterior probability of a tree topology
is the proportion of MCMC iterations in which it
appears. Therefore, fast marginalization over continuous
phylogenetic parameters may offer a boon to MCMC
algorithm efficiency or even allow one to perform
Bayesian phylogenetic inference without MCMC. In
this article, we review existing methods and develop
new ones to compute the posterior probabilities of tree
topologies by quickly marginalizing out branch lengths
to compute the marginal likelihood of a given topology.
We compare speed and accuracy of 19 methods and
examine whether there is a speed–accuracy trade off.

Given that the bulk of Bayesian inference is performed
with methods that work because they allow the marginal
likelihood to be avoided, why would one want to
compute them at all? Given fast MCMC-free algorithms
for computing marginal likelihoods of topologies, one
could apply these algorithms to the development of fast,
MCMC-free Bayesian phylogenetic inference. To make
such an advance, first one would need to identify a large

enough set of a posteriori highly probable tree topologies,
such as with a new optimization-based method called
phylogenetic topographer (PT) (Whidden et al. 2019).
Once a set of promising tree topologies is formed, we can
compute their marginal likelihoods, then renormalize
these marginal likelihoods (perhaps after multiplying by
a prior) to obtain approximate posterior probabilities of
tree topologies—the key output of Bayesian phylogenetic
inference. Luckily, we can tap into a substantial body of
research on computing the marginal likelihood of purely
continuous statistical models in order to integrate out
continuous parameters for any given tree topology (Hans
et al. 2007; Lenkoski and Dobra 2011). It is, therefore,
high time we consider the possibility of constructing the
posterior distribution on topologies without MCMC. To
do so, we must know: how well, and how quickly, can
we compute the marginal likelihood of a topology?

In this article, we address this question by
benchmarking a wide range of methods for calculating
the marginal likelihood of a topology with respect to
branch lengths under the JC69 model, the simplest
nucleotide substitution model. These approaches
include very fast approximations including several
based on the Laplace approximation (Tierney and
Kadane 1986; Kass and Raftery 1995) and variational
approaches (Ranganath et al. 2014). There are also
approaches that require some sampling (though
not of topologies), including those that make use
of MCMC samples (c.f., bridge sampling, Overstall
and Forster 2010; Gronau et al. 2017) and approaches
that employ importance sampling (c.f., naïve Monte
Carlo, Hammersley and Handscomb 1964; Raftery and
Banfield 1991). We also include approaches that make
use of a set of so-called power posteriors, including
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TABLE 1. Names, abbreviations, and number of required MCMC chains involved in applying the
19 methods

Abbreviation Full name # MCMC chains

ELBO Evidence lower bound 0
GLIS Gamma Laplus importance sampling 0∗
VBIS Varational Bayes importance sampling 0∗
BL Beta′ Laplus 0
GL Gamma Laplus 0
LL Lognormal Laplus 0
MAP Maximum un-normalized posterior probability 0
ML Maximum likelihood 0
NMC Naïve Monte Carlo 0∗
BS Bridge sampling 1
CPO Conditional predictive ordinates 1
HM Harmonic mean 1
SHM Stabilized harmonic mean 1
NS Nested sampling Multiple short chains
PPD Pointwise predictive density 1
PS Path sampling 50
MPS Modified path sampling 50
SS Stepping stone 50
GSS Generalized stepping stone 50

Note: GLIS, VBIS, and NMC (∗) do not require MCMC samples but perform importance sampling.
Stepping stone and path sampling methods employ an unspecified number of steps; we found 50 to be
sufficient.

the path sampling (Ogata 1989; Gelman and Meng
1998; Lartillot and Philippe 2006; Baele et al. 2012)
method frequently used in phylogenetics. Using a set of
empirical data sets and a common inference framework,
we benchmark 19 methods for computing the marginal
likelihood of tree topologies. These 19 methods include
some well-known in the phylogenetics literature, some
we apply for the first time in phylogenetics, and others
that we develop explicitly for this problem. We find
that some of these new methods provide estimates that
compare favorably to the precise (but slow) state-of-the-
art approaches, while running orders of magnitudes
more quickly. The title of our article is adapted from
the classic review of matrix exponentiation methods
by Moler and Van Loan (1978, 2003); it is not meant to
cast doubt on the methods presented here, although we
do find that some rather “dubious” methods making
strong simplifying assumptions perform surprisingly
well!

MATERIALS AND METHODS

Marginal likelihoods
Consider a (fixed) unrooted topology � for S

species with unconstrained branch length vector θ=
(�1,�2,...,�2S−3) and the JC69 (Jukes–Cantor) model
(Jukes and Cantor 1969). The rate matrix of the JC69
model does not any have free parameters as it assumes
equal base frequencies and equal substitution rate for all
pairs of nucleotides. If branch lengths are measured in
units of the expected number of substitutions per site and
the JC69 substitution model is employed, the posterior
distribution is given by:

p(θ |�,D)= p(D |θ,�)p(θ |�)∫
[0,∞]2S−3 p(D |θ,�)p(θ |�)dθ

.

The normalizing constant in the denominator of the
right-hand side is the marginal likelihood of the
phylogenetic tree topology model �, p(D |�). It is this
marginal likelihood (of a sequence alignment given
a topology) that is the quantity of interest in this
article. As is typical, we place independent exponential
priors on branch lengths with a prior expectation of 0.1
substitutions, such that p(θ |�)=p(θ)=∏2S−3

i=1 p(�i), where
p(x) is the exponential density.

Calculating marginal likelihoods is an area of
active statistical research, both inside and outside of
phylogenetics. A complete review of all the methods
that have been proposed for this purpose is outside the
scope of this article, and we refer readers to reviews by
Gelman and Meng (1998) and Gronau et al. (2017). We
will first provide a basic sketch of the types of methods
we employ (see Table 1 for abbreviations). Second, we
describe some new methods for calculating the marginal
likelihood designed specifically for topologies. Finally, a
more detailed explanation of all the methods used in this
article can be found in the supplementary materials.

Methods for calculating the marginal likelihood can
be broken down into two main categories: sampling-free
methods and sampling-based methods. The majority
of sampling-free methods revolve around replacing
the intractable posterior distribution with one whose
normalizing constant can be more easily computed.
These approaches include the Laplace approximation
(Tierney and Kadane 1986; Kass and Raftery 1995),
three new variations on this theme that we introduce
here (the Laplus approximations), and a variational
Bayes approximation (Ranganath et al. 2014) from
which we derive the evidence lower bound (ELBO).
We additionally investigate the performance of the
maximum likelihood and maximum a posteriori
estimators to approximate the marginal likelihood.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[19:29 23/1/2020 Sysbio-OP-SYSB190045.tex] Page: 211 209–220

2020 FOURMENT ET AL.—THE MARGINAL LIKELIHOOD OF A TREE TOPOLOGY 211

These extremely simple estimators simply use the height
of the mode to approximate the marginal likelihood
integral.

The sampling-based approaches can further be broken
down into importance sampling and MCMC-based
approaches. In importance sampling, samples drawn
from a tractable proposal distribution are used to
calculate the marginal likelihood using simple identities.
How well an importance sampling method works
depends on how close the proposal distribution is to the
true posterior. We examine three importance sampling
approaches, naïve Monte Carlo (NMC) (Hammersley
and Handscomb 1964; Raftery and Banfield 1991), which
uses the prior distribution as the proposal distribution,
and two approaches using more sophisticated proposal
distributions. Lastly, the MCMC-based methods can
be broken down into those that can be used with
a single chain, and those that require many chains.
Among single-chain methods, we include the well-
known harmonic mean (HM) estimator (Newton and
Raftery 1994), a variation thereof known as the stabilized
harmonic mean (SHM) (Newton and Raftery 1994),
bridge sampling (BS) (Overstall and Forster 2010; Gronau
et al. 2017), conditional predictive ordinates (CPO)
(Lewis et al. 2013), and the pointwise predictive density
(PPD) (Vehtari et al. 2017). Finally, the nested sampling
(NS) method sits somewhere in between the single-
and multiple-chain categories as it requires simulations
from multiple short MCMC runs (Skilling 2004, 2006;
Maturana Russel et al. 2018).

The final set of methods all require multiple chains,
which are “heated” with a heating parameter that
interpolates between the posterior distribution and some
other distribution. For the path sampling (Ogata 1989;
Gelman and Meng 1998; Lartillot and Philippe 2006; Friel
and Pettitt 2008; Baele et al. 2012) and stepping stone (SS)
methods (Xie et al. 2011), the power posterior path links
the posterior to the prior distribution. Fan et al. (2011)
proposed the generalized stepping stone (GSS) method
in which the path is defined between the posterior and a
reference distribution, hence avoiding issues associated
with sampling from vague priors.

A number of the above methods have been previously
applied to phylogenetics, including all power posterior
approaches, the HM, and CPO. In phylogenetics, path
sampling and stepping stone are currently the most
widely used methods, and are included in popular
inference programs like BEAST (Suchard et al. 2018) and
MrBayes (Ronquist et al. 2012).

Laplus.—The Laplace approximation (Tierney and
Kadane 1986; Kass and Raftery 1995) replaces the true
log-posterior distribution with a multivariate normal
distribution. The mean is taken to be the joint posterior
mode (θ̃= (�̃1,�̃2,...,�̃2S−3), and the covariance matrix
is taken to be the inverse of the observed information
matrix of l(θ)= log(p(D|θ,�)p(θ |�)) evaluated at θ̃.
Previous studies have approximated the likelihood
surface of phylogenies using multivariate normal
distributions (Thorne et al. 1998; Guindon 2010),

including the use of parameter transformations to
account for positivity and skew (Reis and Yang 2011).
However, the posterior distribution of branch lengths
may have its mode at 0 in some dimensions, which is
not a shape that can be attained by any transformation
of a normal distribution. In related work, the conditional
posterior distribution of single branch lengths has been
approximated with a gamma distribution, which can
accommodate the zero mode, enabling independence
sampling (Aberer et al. 2015).

We depart from the aforementioned approaches and
introduce a novel framework to approximate the joint
posterior distribution on branch lengths. For simplicity,
in all cases, we assume that a posteriori branch lengths are
independent. This is obviously not true in practice, but
we find that posterior correlations are often quite small,
and that our independence assumption works well.
This assumption also greatly reduces the computational
burden by allowing us to sidestep computing all second
partial derivatives.

Our “Laplus” approximation then takes the maximum
a posteriori (MAP) vector of branch lengths θ̃ and

the vector of second derivatives
(

∂2l
∂�2

1
, ∂2l
∂�2

2
,..., ∂2l

∂�2
2S−3

)

and finds the parameters of our approximating
distributions for each branch, φi, by matching modes and
second derivatives of the approximating and posterior
distributions of branch lengths. Unlike the method
of moments and maximum likelihood estimation, our
approach is fast as it does not require a set of samples to
estimate the parameters of the distribution. We consider
three distributions for approximating the marginal
posteriors of branch lengths: lognormal, gamma, and
beta′ (i.e., beta prime). The general procedure for
the Laplus approximations is similar regardless of
what distribution (i.e., the choice of q in q(x;φi)) is
chosen to approximate the posterior and is written here
algorithmically:

(1) Find the (joint) MAP branch lengths, θ̃=
(�̃1,�̃2,...,�̃2S−3)

(2) For i=1,...,2S−3

(i) Compute ∂2l
∂�2

i
, the second derivative of the log

unnormalized posterior with respect to the ith
branch

(ii) Find parameters of φi by solving

d2

dx2 log(q(x;φi))=
∂2l

∂�2
i

∣∣∣
�i=�̃i

,

mode(q(x;φi))= �̃i

(iii) Catch exceptions

(3) Compute the marginal likelihood as

p̂Laplus(D |�)= p(D | θ̃,�)p(θ̃ |�)∏
i q(�̃i;φi)

.



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[19:29 23/1/2020 Sysbio-OP-SYSB190045.tex] Page: 212 209–220

212 SYSTEMATIC BIOLOGY VOL. 69

Exceptions occur when elements of φi are outside of
the domain of support, when the second derivative is
nonnegative (so the posterior has a mode at 0), or when
elements of φi are otherwise suspect (such as producing
particularly high-variance distributions with very short
branches). Exceptions and their handling depend on the
distributional kernel (choice of q), and we defer a full
discussion of this to the Supplementary material.

Variational inference.—The main idea behind variational
inference is to transform posterior approximation into
an optimization problem using a family of approximate
densities. The aim is to find the member of that family
with the minimum Kullback–Leibler (KL) divergence to
the posterior distribution of interest:

φ∗ =argmin
φ∈�

KL(q(θ;φ)‖p(θ |D,�)),

where q(θ;φ) is the variational distribution
parameterized by a vector φ∈� and KL is defined
as

KL(q‖p)=
∫
θ
q(θ;φ)log

q(θ;φ)
p(θ |D,�)

.

To minimize the KL divergence, we first rewrite the KL
equation:

KL(q(θ;φ)‖p(θ |D,�))

=E[logq(θ;φ)]−E[logp(θ |D,�)]
=E[logq(θ;φ)]−E[logp(θ,D |�)]+logp(D |�),

where the expectations are taken with respect to the
variational distribution q. The third term logp(D |�) on
the right-hand side of the last equality is a constant with
respect to the variational distribution so it can be ignored
for the purpose of the minimization. After switching the
sign of the other two terms, the minimization problem
can be framed as a maximization problem of the function

ELBO(φ)=E[logp(θ,D |�)]−E[logq(θ;φ)].
The ELBO is easier to calculate than the KL divergence
as it does not involve computing the intractable posterior
normalization term p(D |�). The ELBO gives a lower
bound of the marginal likelihood, the very measure
we are interested in estimating here. Here, we use
the ELBO estimate p̂ELBO(D |�) :=maxφ∈�ELBO(φ) to
approximate the marginal likelihood of a topology.

We used a Gaussian variational mean-field
approximation applied to log-transformed branch
lengths to ensure that the variational distribution stays
within the support of the posterior. The mean-field
approximation assumes complete factorization of the
distribution over each of the 2S−3 branch length
variables and each factor is governed by its own
variational parameters φi:

q(�1,...,�2S−3;φ)=
2S−3∏
i=1

q(�i;φi),

where q(�i;φi) is a lognormal density and φi = (�i,�i). As
in the Laplus approximation, this model also assumes
that there is no correlation between branches.

The variational parameters are estimated using
stochastic gradient ascent using a black box approach
(Ranganath et al. 2014) similar to the algorithm
implemented in Stan (Kucukelbir et al. 2015).

Importance sampling.—The Laplus and variational Bayes
approximations of the marginal likelihood are fast, but
in practice the approximate posterior does not always
match the posterior of interest well. Since these methods
rely on independent univariate probability distributions
(e.g., gamma, normal, etc.), samples can be efficiently
drawn from the approximate posterior distributions. We
thus also used importance sampling to reduce the bias
of the Laplus and variational Bayes methods using the
approximate posterior distribution as the importance
instrument distribution.

The importance sampling estimate of p(D |�) using
an approximate normalized probability distribution
(instrument distribution) g is

p̂IS(D |�)= 1
N

N∑
i=1

p(D | θ̃i,�)p(θ̃i |�)
g(θ̃i)

, where θ̃i ∼g(θ).

Benchmarks
We benchmark the 19 methods for estimating fixed-

tree marginal phylogenetic likelihood on five empirical
data sets from a suite of standard test data sets (Lakner
et al. 2008; Höhna and Drummond 2011; Larget 2013;
Whidden and Matsen 2015), which we call DS1 through
DS5. These data sets vary from 25 to 50 taxa, with
alignment number of sites ranging from 378 to 2520.
Instead of focusing primarily on the accuracy of the
estimate of the single-tree marginal likelihoods, we focus
on the approximate posterior of topologies we obtain
by applying our marginal likelihood methods to each
and normalizing the result as described below. We take
measures of the goodness of these posteriors that directly
address approximation error in quantities of interest,
namely the posterior probabilities of topologies and
the probabilities of tree splits. These are compelling
choices because Bayesian phylogenetic inference is not
performed to answer the question “what is the marginal
likelihood of this topology” but rather to quantify
support for evolutionary relationships/hypotheses. We
note that the posterior of trees is also useful in other
contexts, such as examining the information content of
a data set (Lewis et al. 2016).

To compare marginal likelihood methods’ accuracy
and precision, we need to establish a ground truth
for p(�i |D) for each tree topology �i. To accurately
approximate the ground truth, we use the extensive
runs (called golden runs) of MrBayes from Whidden and
Matsen (2015), which consist of 10 chains run for 1 billion
generations each (subsampled every 1000 generations),

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
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with 25% discarded as burnin and all chains pooled
when computing posterior summaries. For each of the
five data sets, this results in 7.5 million MCMC samples
from 7.5 billion generations, with common diagnostics
showing convergence of the chains. The credible sets
contain between 5 and 1,141,881 topologies. For data sets
DS1 to DS4, we run each of the 19 methods for calculating
marginal likelihoods on every tree in the 95% posterior
credible set. DS5 has a credible set that is too large (over
one million topologies), so we consider only the 1000
most probable trees from this data set. The only input for
each of the 19 methods from the golden runs is the tree
topology without branch lengths. In the Golden runs,
MrBayeswas set up to use a uniform prior for topologies
and an unconstrained exponential(10.0) prior for branch
lengths.

After arriving at a set of trees for each benchmark data
set, we renormalize MrBayes posterior probabilities so
that they sum to one over the selected trees:

∑
i P(�i |D)=

1. We assume these probabilities form the true posterior
mass function of tree topologies and measure accuracy
with respect to this function. We use Bayes’ rule to
convert our approximations of the marginal likelihood
to the posterior probability:

p̂(�i |D)= p̂(D |�i)p(�i)∑
j p̂(D |�j)p(�j)

= p̂(D |�i)∑
j p̂(D |�j)

,

where the last equality holds because we assumed the
uniform prior over the tree topologies. The marginal
likelihood estimations were replicated 10 times for each
combination of method and data set, allowing us to
derive the standard deviation of the marginal likelihood
estimates.

We employ two different measures to determine
closeness of an approximate posterior to the golden run
posterior. Since many questions in phylogenetics concern
the probabilities of individual splits, we consider the
error in their estimated posterior probabilities. We
calculate the root mean-squared deviation (RMSD)
of the probabilities of splits, computed as RMSD=√

1
S
∑

i(f̂ (si)−f (si))2, where si is a split (or bipartition)
and S the number of splits in the tree topology set. The
probabilities of a split are given by f (si)=

∑
j p(�j |D)1si∈�j

and f̂ (si)=
∑

j p̂(�j |D)1si∈�j , that is, they are the sums of
posterior probabilities of the topologies that contain that
split. To assess how well the posterior probabilities of
topologies are estimated, we use the Kullback–Leibler
(KL) divergence from p̂= (p̂(�1 |D),...,p̂(�N |D)) to p=
(p(�1 |D),...,p(�N |D)), where N is the number of unique
topologies in the 95% posterior credible set of the
golden run. This is computed as as KL(p‖ p̂)=∑

i p(�i |
D)log p(�i|D)

p̂(�i|D) .
Given that these 19 marginal likelihood calculation

methods vary widely in their computational efficiency,
we also seek to benchmark the speed of the methods.
As our measure of speed, we take the average time (per
data set) required to compute the marginal likelihood of

a topology. The speed of these methods depends on a
number of data set-specific features (including the size
of the data set and the number of phylogenies in the
credible set), on run-time decisions (such as the number
of MCMC iterations), and on the code that implements
them. By incorporating multiple data sets (to average
over data set-specific effects) and implementing the
methods in a single package (to control for run-time and
implementation-specific effects), we are able to examine
the general tradeoff between speed and accuracy, and
highlight the use-cases we think the methods are suited
for.

Every method was implemented within the
phylogenetic package physher (Fourment and Holmes
2014) (https://github.com/4ment/physher) and we
used the same priors as in the golden runs of MrBayes.
We used 50 power posteriors (a.k.a. stones) of one
million iterations each. The powers were taken to be the
quantiles of the beta distribution with shape parameters
�=0.3 and �=1, as recommended by Xie et al. (2011).

Data sets and scripts used in this study are
available from https://github.com/4ment/marginal-
experiments/. All analyses were run on a single
thread, leaving much room to improve the speed of
these algorithms, many of which are embarrassingly
parallelizable. Analysis performed on an Intel Xeon E5-
2697 2.60GHz processors running CentOS release 6.1
with 244 GB of RAM.

RESULTS

Accuracy and precision
RMSD.—When comparing multiple replicate MCMC
analyses (multiple runs), a standard metric in
phylogenetics is the average standard deviation of
split frequencies (ASDSF). Typically an ASDSF below
0.01 is taken to be evidence that two MCMC analyses are
sampling the same distribution. We use the related (but
stricter) RMSD as our measure of approximation error
(Fig. 1). By considering the plots of split probabilities
organized by their RMSD (Fig. 2, Supplementary
Figs. S1–S4), we developed two cutoffs for RMSD to
classify method performance. We call methods with
RMSD less than 0.01 to be in “good” agreement with
ground truth, while we say that methods with RMSD
between 0.01 and 0.05 are in “acceptable” agreement.
RMSD above 0.05 indicates substantial disagreement
between ground truth and estimates. Most of the
19 methods’ estimates fall within these categories
consistently across the five data sets. MAP, ML, GL, and
BL span the boundary between good and acceptable,
while LL spans all three categories. Recall that all
methods abbreviations are in Table 1.

KL divergence.—Broadly speaking, there is concordance
between the performance of approximations whether
measured by KL divergence or RMSD (Figs. 2 and 3). This
is expected, as a good approximation should estimate

https://github.com/4ment/physher
https://github.com/4ment/marginal-experiments/
https://github.com/4ment/marginal-experiments/
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
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FIGURE 1. Average split posterior RMSD for 10 replicate runs of each
data set. LL, GL, BL, MAP, and ML are deterministic and therefore only
one replicate is shown. The horizontal dashed and solid lines depict
RMSDs of 0.05 and 0.01, respectively.

the marginal likelihoods well, which should result in
good approximations to the posterior, and thus good
estimation of the split probabilities. We also find that
the methods do a better job approximating the marginal
likelihood of more probable trees than less probable trees
(seen as triangular shapes of scatter points in Fig. 3).
However, even methods that lead to notable scatter
between truth and approximation, such as PPD, can
yield quite good estimates of the probabilities of splits.
Additionally, if the only quantity of interest is the 50%
majority-rule consensus tree, then even methods that
estimate the marginal likelihood quite poorly can lead to
reasonable trees (Fig. 5). To get the same consensus tree,
a method must merely place the same splits in the upper
50% range of posterior probability, so this measure can
hide a substantial amount of variability in the estimated
marginal likelihoods.

Speed
Fast methods can give accurate results, while slow

methods need not be accurate (Fig. 4). Indeed, GL is
very fast to compute and gives good results, GLIS is only
slightly slower and gives excellent results, while NS is
slow to compute and gives rather bad results for this
problem.

Method speed is primarily determined by the amount
of sampling performed by the method: the more
sampling required by a method, the slower it is.
The fastest methods are deterministic and do not
perform sampling at all, with MAP and ML being the
fastest of the 19, requiring only optimization. There
is a minor added computational cost of calculating
additional derivatives of the phylogenetic likelihood
function (here purely the derivatives with respect to
branch lengths) in the case of the Laplus approximations.
The calculation of the ELBO is slightly slower due
to the cost of optimizing the variational parameters
through stochastic gradient ascent. The next jump in
speed is to methods that perform importance sampling.

The single-chain methods are very consistent in time
requirements since the computation time is largely
dominated by the MCMC. They are notably slower
than the importance sampling methods, because MCMC
here used one million samples per tree, while we use
10,000 for importance sampling. The slowest methods
require running multiple MCMC chains, and aside
from GSS time requirements are essentially identical
between these methods. We used 50 power posteriors
in our analysis of stepping stone and path sampling
methods, and as expected we find that they are
very nearly 50 times slower than the single-chain
methods. The consistency of the number of chains
and the time requirement of the method clearly
demonstrates that the largest computational effort is
in the MCMC. It is worth noting, though, that after
an MCMC analysis has run (power posteriors or
single chains), any appropriate method can be used
to post-process the chains and calculate the marginal
likelihood, as MrBayes does with arithmetic and HMs.
As an implementation detail of this study, every
single-chain method uses the same MCMC samples to
estimate the marginal likelihood and similarly, the power
posterior-based methods use the same power posterior
samples.

Monte Carlo error
No method to estimate the posterior probability of

a tree is without sources of error. Monte Carlo error
is a feature of all of sampling-based methods we
benchmarked, including the methods using at least
one MCMC chain and importance sampling methods
(marked by asterisks in Table 1). For these methods,
and the variational approach (which uses stochastic
optimization with noisy gradient estimates and thus also
has inter-run variability) we ran 10 replicate analyses
(Supplementary Fig. S11). Interestingly, we find that the
inter-run variability of the methods is correlated with the
goodness of the estimates (and hence the rank-orderings
of the methods are similar in Supplementary Fig. S11 and
Fig. 1). In discussing how well the methods approximate
the posterior distribution of trees, to diminish the effects
of Monte Carlo error, we use the average estimated
marginal likelihood across the replicate analyses.

Summary trees
The accuracy of summary trees was correlated as

expected with the accuracy of the posterior estimate
on splits (Fig. 5). We use majority-rule consensus
trees (Margush and McMorris 1981), where a split
appears in the consensus tree only if it appears in
tree topologies whose posterior probabilities sum to
at least 0.5. Thus for two approximate posteriors to
produce the same summary tree, they must only agree
on whether a split probability is above or below this
threshold, meaning this is a less sensitive measure of
how good an approximate posterior is than RMSD or

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syz046#supplementary-data
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FIGURE 2. The posterior probabilities of all the splits observed in DS5 for a single replicate. MrBayes posteriors are plotted on the x-axis versus
the denoted approximation on the y-axis. Points are colored by the thresholds we discuss: RMSD < 0.01 is a good approximation (green), 0.01
≤ RMSD < 0.05 is a potentially acceptable approximation (yellow), and RMSD ≥ 0.05 is poor (red). Panels are ordered by RMSD in increasing
order.

KL. In Figure 5, we show consensus trees for a subset
of methods representing good approximations (RMSD
< 0.01), acceptable approximations (0.01 ≤ RMSD <
0.05), and poor approximations (RMSD ≥ 0.05) for DS5
for a single run of each method. In this run, every

good approximate posterior and most (59%) acceptable
approximate posteriors produced a consensus tree
identical to the golden run consensus tree. A small
portion (25%) of poor approximate posteriors also
produced identical consensus trees.
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FIGURE 3. The approximate posterior probabilities of the topologies in DS5 versus the ground truth posterior probabilities from MrBayes,
plotted on the log scale for clarity. The rank-ordering of the methods is closest to average for DS5. Results are for a single run of each method.
Panels are ordered by RMSD in increasing order.

DISCUSSION

In this article, we present the most comprehensive
benchmark to date of methods for computing marginal
likelihoods of fixed phylogenetic tree topologies. We
emphasize that this is a different goal than computing

marginal likelihoods when the tree topology is allowed
to vary, which has been carefully addressed in previous
work (Lartillot and Philippe 2006; Fan et al. 2011; Xie et al.
2011; Baele et al. 2012; Lewis et al. 2013; Baele et al. 2016;
Maturana Russel et al. 2018).
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FIGURE 4. Average RMSD of splits in the approximate posterior against running time. Text denotes method used, while superscripts label
applications to individual data sets. Four methods are omitted for visual clarity: MAP is essentially identical to ML, BL is nearly identical to
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A number of estimators we benchmark are well-
known to the phylogenetics community, namely power
posterior methods (e.g., GSS) and the HM. We also
include estimators that have been used less frequently
in phylogenetics and are mainly more recent proposals:
CPO, NS, and the SHM. Three estimators, BS, PPD, and

Golden run ML

GLIS NMC

FIGURE 5. Majority rule consensus trees DS5 based on four sources
for posterior probabilities of trees. Each taxon is assigned a unique color
and the branch leading to that taxon is colored the same in all four trees
to show differences. The golden run and GLIS trees are identical, while
the tree for ML has a Robinson–Foulds distance of four to those trees
and the tree for NMC a distance 14 (and 10 from the ML tree). Nodes
with red circles denote parts of the tree different from the golden run
tree.

NMC, to the best of our knowledge, have not previously
been used in phylogenetics. Variational approaches
have been proposed for models of heterogeneous
stationary frequencies (Dang and Kishino 2019),
otherwise intractable phylogenetic models (Jojic et al.
2004; Wexler and Geiger 2007; Cohn et al. 2010), and
to fit approximations to distributions on trees (Zhang
and Matsen 2018), but to our knowledge, this is the
first application of the ELBO to phylogenetic model
comparison. One goal of this article is to find methods
that could work well with MCMC-free tree exploration
approaches like PT, which requires evaluating the
marginal likelihoods of hundreds or thousands of
topologies. Aside from the ELBO, none of the above
methods are fast enough to be suitable for this purpose.
To this end, we develop the Laplus approximations and
importance sampling methods based on Laplus and
variational approximations. We also consider simply
using the ML and the MAP.

Choosing a method to use in practical scenarios
As expected, methods differ drastically in runtime

in proportion to the required Monte Carlo sampling
effort. The fastest methods took less than one second
per topology on all data sets analyzed, while the slowest
took over 10,000. Perhaps surprisingly, there is no general
tradeoff between speed and accuracy; while the slowest
methods are among the most accurate, there are fast
methods that are as good. We break the methods down
into four categories: slow, moderately slow, fast, and
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ultrafast, and will now be reviewing the methods by
category—from slow and well-known to fast and novel—
highlighting the best performers and their use cases.

At the slow end of the spectrum, we find that the tried-
and-true power posterior methods perform quite well,
with GSS providing the best (and most precise) estimates
of all 19 methods. The boost in performance compared
from GSS relative to the other power posterior methods
comes at the cost of a marginal increase in computation
time due to the estimation and multiple evaluation of the
reference distribution. The approximations produced
by PS, MPS, and SS are all acceptable (i.e., RMSD
<0.05), with most of approximations falling into the
good category (i.e., RMSD <0.01), and are similar in
terms of speed, accuracy, and precision. We note that
balance between speed and accuracy of PS, MPS, and
SS can be manipulated by changing the number of
power posteriors used by each method (we used 50 in
all numerical experiments). For example, reducing the
number of power posteriors from 50 to 2–5 may move
these methods to the next category of moderately fast
but less accurate methods. The power posterior methods
remain the best general-purpose tools for phylogenetic
model comparisons, though they are too slow to explore
the tree space produced by PT even if one uses a small
number of power posteriors.

In the middle of the speed axis, we find that BS is the
most promising method, with performance that is on
par with PS, MPS, and SS. As BS requires an order of
magnitude less time than these power posterior-based
methods, if it is extended to incorporate sampling trees
(perhaps following Baele et al. (2016)) it could become a
valuable general-purpose model selection tool. The other
estimators in this category span from poor to acceptable.
The HM is a very bad estimator of the marginal
likelihood, though the related SHM produces posteriors
that are acceptable. Two other methods similar in spirit to
the HM, CPO (a harmonic sitewise approach) and PPD (a
sitewise arithmetic approach), both perform much better
than the HM or the SHM. NS would appear to be an
unwise choice for estimating the marginal likelihoods of
topologies, as it produces poor approximate posteriors.
We note that this is a somewhat different application of
NS than the recent work by Maturana Russel et al. (2018),
who report better results of using NS when averaging
over (ultrametric) trees.

GLIS is the best fast method, and one of the best among
the 19. With 10,000 samples, it produces estimates of
the marginal likelihood on par with GSS, while working
three orders of magnitude more quickly. VBIS produces
marginal likelihoods almost as good but is somewhat
slower. The ELBO, while faster than either GLIS or
VBIS (which uses the variational approximation as the
importance distribution) is notably worse. It is possible
that this approach suffers from getting stuck in local
minima, and that multiple starting points could improve
its performance, and consequently the performance
of VBIS. The worst method in this speed category
with regards to accuracy, indeed of all 19 methods, is
NMC.

Among the ultrafast methods, the best candidate
is GL. All the Laplus approximations are capable
of yielding quite good estimates of the posterior
distribution on trees, though they are quite variable in
performance between methods, and LL can produce
poor approximate posteriors. MAP and ML are faster
than any of the Laplus approximations, but are not
as good. However, the success of all of these methods
is truly remarkable. Empirical posterior distributions
on branch lengths are clearly not point-masses, and
yet simply normalizing the unnormalized posterior at
the maximum outperforms 6 of the 19 tested methods.
The success of the Laplus approximations suggests that
our assumption of independence of branch lengths
may not be too unreasonable, though their rather large
inter-data set variability and the improvement from
importance sampling (i.e., GLIS) suggest that relaxing
this assumption may improve performance.

Future directions
We restricted ourselves here to fixed-topology

inference under the simplest substitution model. Future
work should generalize beyond this simplest model to
obtain a marginal likelihood across all continuous model
parameters for more complex substitution models, time
trees, coalescent priors, and rate heterogeneity across
sites. We note that some of the methods presented in
this study (e.g., GSS, SS, PS) already implement marginal
likelihoods for such models in software packages
(Ronquist et al. 2012; Baele et al. 2016; Suchard et al.
2018). More sophisticated models such as those based
on the Dirichlet process, which do not have a likelihood
function analytically available, are categorically more
difficult (Lartillot and Philippe 2004).

Another direction for future work is to investigate
the effect of modeling correlation between model
parameters, including among branch lengths. Although
our preliminary results suggest that correlation between
branch lengths is not strong, this assumption is not
likely to hold for other parameters in more sophisticated
models, such as the coalescent model in which the tree
height/length is likely to be positively correlated with
parameters governing population dynamics.

In this study, we used i.i.d. exponential priors on
branch lengths, which are the historically most common
choice for Bayesian phylogenetics. This prior is known to
induce an informative prior on the tree length favoring
long trees (Rannala et al. 2011; Zhang et al. 2012). This
work has not clearly established that the resulting branch
length artifacts meaningfully change the posterior
distribution of phylogenetic tree topology splits, so
our use of i.i.d. exponential priors should not affect
significantly split probability estimates. Nevertheless,
in future work, we will adapt our approximation
methods to handle more sophisticated priors such as the
compound gamma-Dirichlet prior (Zhang et al. 2012).
This will not be entirely trivial: independence between
branch lengths is necessary in order to approximate the
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posterior distribution using the mean-field variational
Bayes and the Laplus methods described in this study.
However, such an extension will also have the benefit
of relaxing the assumption of a priori branch lengths
independence.

Another future research avenue is to find some way
to reduce the inter-data set variability of the Laplus
approximations. While this class of methods does very
well on some data sets, in others there is a subset of
topologies that present difficulties, possibly due to short
branches with odd posterior distributions. The problems
of identifying these branches and what to do with them
remain open, but solving them may greatly improve the
performance of the Laplus approximation.

For fixed topology models, our results suggest BS is
an accurate estimator that does not require as much
compute time as the power posterior-based methods.
To apply this method more broadly to the phylogenetic
field we must develop novel BS proposal distributions,
perhaps modeling correlation between parameters other
than branch lengths, and more importantly proposals
that sample a variety of tree topologies. However, there
has been some work on developing approximations
of the posterior probability of trees (Höhna and
Drummond 2011; Larget 2013; Zhang and Matsen 2018),
notably within the GSS framework (Baele et al. 2016).

Another avenue for research would be to develop
a diagnostic to determine an appropriate number of
power posteriors that is required to accurately estimate
marginal likelihoods. Preliminary analyses have shown
that the estimates calculated from 100 power posteriors
were similar to estimates using 50 steps, it is however
possible that fewer steps would be sufficient. Indeed,
if the working distribution of the GSS estimator is
a good approximation of the true posterior, GSS is
expected to perform better than the stepping stone and
path sampling estimators for a lower number of power
posteriors (Fan et al. 2011).

Perhaps more enticing, though, is the prospect of
integrating one of the fast or ultrafast methods with PT.
PT currently uses ML—the fastest method of the 19—
because speed is important, but GL is comparable in
speed, while producing much better marginal likelihood
estimates, so its inclusion in PT is worth investigating.
For the added time cost of drawing samples and
calculating additional likelihoods, GLIS achieves an even
more impressive estimate of the marginal likelihood than
GL. However, given that PT explores far more trees
than it eventually stores, this added time cost is almost
certainly prohibitive, unless the number of importance
samples can be drastically reduced. Nonetheless, once
PT has found a set of high-likelihood trees, it seems
prudent to use GLIS on this set to produce the final
approximate posterior.
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