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Abstract

The brain is organized into networks that reorganize dynamically in response to cognitive demands 

and exogenous stimuli. In recent years, repetitive transcranial magnetic stimulation (rTMS) has 

gained increasing use as a noninvasive means to modulate cortical physiology, with effects both 

proximal to the stimulation site and in distal areas that are intrinsically connected to the proximal 

target. In light of these network-level neuromodulatory effects, there has been a rapid growth in 

studies attempting to leverage information about network connectivity to improve 

neuromodulatory control and intervention outcomes. However, the mechanisms-of-action of rTMS 

on network-level effects remain poorly understood and is based primarily on heuristics from 

proximal stimulation findings. To help bridge this gap, the current paper presents a systematic 

review of 33 rTMS studies with baseline and post-rTMS measures of fMRI resting-state functional 

connectivity (RSFC). Literature synthesis revealed variability across studies in stimulation 

parameters, studied populations, and connectivity analysis methodology. Despite this variability, it 

is observed that active rTMS induces significant changes on RSFC, but the prevalent low-

frequency-inhibition/high-frequency-facilitation heuristic endorsed for proximal rTMS effects 

does not fully describe distal connectivity findings. This review also points towards other 

important considerations, including that the majority of rTMS-induced changes were found 

outside the stimulated functional network, suggesting that rTMS effects tend to spread across 

networks. Future studies may therefore wish to adopt conventions and systematic frameworks, 

such as the Yeo functional connectivity parcellation atlas adopted here, to better characterize 
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network-level effect that contribute to the efficacy of these rapidly developing noninvasive 

interventions.
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1. Introduction

Repetitive transcranial magnetic stimulation (rTMS) is a well-established noninvasive 

technique for neuromodulation that uses a stimulating coil to deliver electromagnetic pulses 

to induce electric currents in the brain, resulting in modulation of neural tissue. As this field 

has grown, researchers have come to better understand how variability in the stimulation 

intensity, frequency, duration, and target location impacts modulatory effects. For example, 

stimulation frequencies between 5 and 20 Hz have generally produced increases in cortical 

responses as measured by brain activity (Pascual-Leone et al., 1998; Speer et al., 2000) or 

motor evoked potentials (Peinemann et al., 2004; Speer et al., 2000), and are often tied to 

behavioral facilitation (Guse et al., 2010, for a review). Conversely, stimulation at 

frequencies below 5 Hz tends to produce decreased cerebral blood flow (Pascual-Leone et 

al., 1998; Speer et al., 2000) and inhibition of neural responses and behavior (Chen et al., 

1997; Gerschlager et al., 2001). This, in turn, has created a strong frequency-dependent 

heuristic that dominates the field (Fitzgerald et al., 2006; Luber and Deng, 2016), even 

though some studies report findings that do not adhere to this rule-of-thumb (e.g., 

Eisenegger et al., 2008).

Over the past several years, there has also been a strong movement toward network 

neuroscience wherein the brain is seen as a connectome of interacting regions that 

synchronize activity to achieve cognition (Bassett and Sporns, 2017). In particular, extensive 

neuroimaging research has led to characterization of the brain as a set of large-scale, 

intrinsically organized networks that interact dynamically to control behavior (Power et al., 

2011; Raichle, 2011). For example, when performing a task, the default mode network 

(DMN), composed of the medial prefrontal cortex, hippocampus, and posterior parietal 

cortex, tends to become deactivated, while the central executive network (CEN) of lateral 

frontal and parietal regions becomes activated. In addition, using task-free intrinsic 

connectivity analyses, Seeley et al. (2007) demonstrated the existence of two dissociable 

networks, independent from the DMN: the salience network and the executive control 

networks, which correlated with emotional and cognitive functions, thereby providing 

further evidence that multiple brain networks can be dissociated that relate to aspects of 

human behavior. Such findings have led to the dominant view that communication both 

between and within such brain networks allows for the dynamic control of behavior. This 

shift in characterization from individual brain regions to integrated networks implies that 

focal neuromodulation by techniques, such as rTMS, may also affect distal brain areas 

through intra-network connections, as well as interactions between networks.
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Consistent with this network perspective, proximal rTMS-induced changes in neural activity 

have been associated with changes in anatomically or functionally interconnected distal 

cerebral regions (D. E. Bohning et al., 1998; Hampson and Hoffman, 2010; Navarro de Lara 

et al., 2015). For example, by measuring the effects of rTMS applied over the left 

sensorimotor cortex (M1/S1) on blood-oxygen-level-dependent (BOLD) signals, Bestmann 

et al. (2003) demonstrated that supra-threshold rTMS increased BOLD signal in the 

stimulated area and supplementary motor area (SMA), while decreasing signals in the 

contralateral M1/S1. While these remote effects could be explained by afferent feedback due 

to the peripheral muscular response evoked by the stimulation, the authors demonstrated that 

this explanation was insufficient by testing the effect of sub-threshold rTMS. Indeed, while 

this intensity did not induce any muscular response, changes in BOLD were still observed. 

Interestingly, these changes were not observed in the stimulated area, but in SMA, bilateral 

premotor cortex, and the contralateral M1/S1, probably due to a propagation of the electric 

signal via anatomically connected fibers or through functional connectivity between these 

sites.

Since such pioneering studies, there has been a steady growth in the number of studies 

testing “connectivity-based rTMS,” which propose to indirectly target distal brain areas 

through their connections with accessible, proximal cortical areas. For example, by 

stimulating parietal regions with strong baseline resting-state functional connectivity 

(RSFC) to a hippocampal target, Wang et al. (2014) showed that rTMS was able to modify 

the connectivity between these structures. Similar promising results were found when rTMS 

was applied over the premotor cortex to modulate the insula (Addicott et al., 2019). 

Interestingly, this study found that both 1 Hz and 10 Hz rTMS induced increased functional 

connectivity, despite the fact that these two frequencies of rTMS have previously been 

associated with opposing effects on the activity of the proximal stimulated region (inhibitory 

for 1 Hz versus excitatory for 10 Hz). This intriguing result has also been found in other 

studies investigating the downstream effects of rTMS. For example, by applying 1 Hz and 20 

Hz rTMS over the left posterior inferior parietal lobule, a structure belonging to the default 

mode network, Eldaief et al. (2011) found that 1 Hz rTMS (conventionally inhibitory) 

increased RSFC between the stimulated node and the hippocampal formation, while 20 Hz 

rTMS (conventionally excitatory) was associated with decreased connectivity between these 

nodes. These results suggest that the effect of rTMS on the activity of the stimulated region 

may not directly correspond to the direction of downstream, distal effects on connectivity. 

As such, the goals of this pre-registered, systematic review (PROSPERO 

#CRD42019119982) are to systematically investigate the effect of rTMS frequency on 

changes in RSFC and to characterize the parameter space used in these studies.

The importance of understanding these relationships is underscored by the emerging view 

that rTMS efficacy to treat major depressive disorder is strongly predicted by connectivity 

between the stimulated site —the dorsolateral prefrontal cortex (DLPFC)— and the 

subgenual anterior cingulate cortex (Fox et al., 2012a,b; Weigand et al., 2018). These studies 

confirm the importance of studying the effects of rTMS on functional connectivity to 

optimize targeting approaches, and consequently, the efficacy of rTMS-based interventions. 

Given the large variability that exists between studies regarding the stimulated site, the type 

of analysis performed to investigate rTMS-induced functional connectivity changes, and the 
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brain regions showing significant changes, the results in this review are aggregated as 

“within-” or “out-of-network” changes according to the resting-state functional network of 

the stimulated site. This approach allows for further characterization of distal effects in 

relation to the proximal stimulation target based on a widely used parcellation of seven 

resting-state functional networks (Yeo et al., 2011). The goals of this review are therefore to 

identify systematic commonalities among studies that are testing whole-brain rTMS effects, 

and provide prospective recommendations on practices that can best advance understanding 

and improve the application of this important technique.

2. Methods

The present review focuses on studies addressing the effects of rTMS on RSFC. The article 

search protocol was registered on the international prospective register for systematic review 

(#42019119982), accessible online at http://www.crd.york.ac.uk/PROSPERO/

display_record.php?ID=CRD42019119982.

A computer-based search of PubMed and Science Direct was carried out by one author (LB) 

in December 2018, using the following keywords in the title and abstract fields: “Repetitive 

transcranial magnetic stimulation” or “rTMS” and “resting-state connectivity” or “resting-

state.” A total of 302 articles were collected after the database searches. After removing the 

duplicates, 113 articles underwent thorough title, abstract and full-text screening for 

inclusion in the review according to the inclusion and exclusion criteria listed in Table 1. 

The final review sample consisted of 33 articles.1

For each of the 33 included articles, information was extracted on the study design and 

population characteristics, including the number of subjects and whether they were patients 

or healthy participants. Regarding the stimulation parameters, the following information was 

extracted and documented: targeted brain regions, targeting method, type of control 

comparison (if any), stimulation intensity and frequency, burst and ITI duration, number of 

TMS pulses per session, number of sessions. Regarding resting-state acquisition, the number 

of volumes, the subjects’ instructions and the timing of the acquisition related to rTMS were 

extracted; the type of analysis (seed-based or data driven) was extracted as well as the 

corresponding outcomes. Two investigators (LB, GA) performed data extraction separately 

and results were compared. Across the extracted data, 855 cells were in agreement with the 

remaining 3 cells resolved through discussion. As such, this demonstrates high inter-rater 

reliability between the two investigators.

To assess whether and how rTMS modulated resting-state functional connectivity, the 

changes observed before and after the active stimulation condition were extracted by two 

investigators (LB and JP) who performed this work together. When a control condition was 

used, RSFC changes associated with sham were also extracted, as well as the comparison 

between active and sham stimulation, when reported. The direction (increase or decrease) of 

the connectivity changes was extracted as well as the coordinates of all brain regions where 

1While all included studies met the pre-registered inclusion criteria, some did not report the effects of rTMS on RSFC, but rather 
reported effects on clinical response. As such, these articles appear greyed-out in the following tables.
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significant changes were observed. Results that were labeled as ‘exploratory’ were not 

included in this review. To reduce the large between-study variability and to simplify the 

presentation of the results, results were labeled according to resting-state functional brain 

network. To do so, the 7-network parcellation defined by Yeo et al. (2011) was used 

(networks included: dorsal attention (DA), default mode (DM), fronto limbic (FL), limbic 

(L), somato motor (SM), ventral attention (VA) and visual (V)). Each set of result 

coordinates was fed into a custom MATLAB script that converted them into the 

corresponding brain network. When the coordinates were not found to belong to any of these 

7 networks, often because they were subcortical structures, they were labeled as “other.” The 

same process was then performed for all rTMS targets, therefore defining the “stimulated 

network.” rTMS-induced effects reported in the following sections are presented as: “in-

network changes” when the changes were observed in brain regions belonging to the same 

network as the stimulated region; or “out-of-network changes” when the changes were found 

in any of the remaining networks.

3. Results

3.1. Descriptive statistics

As shown in Fig. 1, across the 33 studies there was considerable variability in the subject 

populations, TMS targets and stimulation parameters (See Table S1 for detailed description). 

Within these studies, 35.3% investigated healthy volunteers, while the remaining 65% were 

distributed over a variety of psychiatric and neurological disorders. The most common of 

these was major depressive disorder (23.5%), followed by neurological diseases (20.6%) 

which included writer’s cramp dystonia, Parkinson’s disease, multiple system atrophy, 

essential tremor and stroke. Other psychiatric disorders (11.8%) including schizophrenia, 

eating disorders, obsessive compulsive disorders, alcohol abuse disorders comprised the 

third most common patient group. The remaining category (8.8%) includes other pathologies 

such as disorder of consciousness, mal de debarquement syndrome, and tinnitus. Across all 

studies, the average sample size was 25.2 ± 12.7 recruited subjects.

Across the studies, rTMS was applied most frequently over the frontal cortex (58%), while 

the motor and premotor areas were also frequently chosen as the stimulation target (28%). 

The remaining 14% of studies targeted other cortical lobes or the cerebellum. The 

corresponding stimulated network are presented in Fig. 1c. Moreover, a wide variety of TMS 

targeting methods were used. These included positioning according to neuroanatomical 

coordinates (25%), scalp measurement (16.67%), hot spot targeting (as defined by the 

optimal location on the scalp that evokes a maximum activation of the contralateral targeted 

muscle, 16.67%), anatomical MRI (11.11%), functional MRI (11.11%), and resting-state 

connectivity (11.11%). As expected, given the FDA clearance for this frequency of 

stimulation, 10 Hz rTMS was the most commonly used stimulation frequency (41.4%), 

followed by 1 Hz (24.4%), 20 Hz (12.2%), and then 5 Hz (4.9%). Relatively few studies 

investigated the effects of patterned protocols like intermittent and continuous theta burst 

stimulation (iTBS, cTBS: 9.8% and 2.4%, respectively) and inhibitory and excitatory 

quadripulse stimulation (iQPS, eQPS: 2.4% for both). Stimulation was applied either above 

threshold (42.5%), below threshold (40%), or at threshold (15%), with the remaining 2.5% 
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of studies not reporting stimulation intensity. While 42% of the studies investigated the acute 

effect of a single session of rTMS, the majority of the studies investigated the effect of 

multiple sessions of rTMS, generally by comparing RSFC before and after the full course of 

rTMS.

In a similar manner, there was also considerable variability in the resting-state MRI 

acquisition parameters and the analyses performed to infer connectivity effects. For 

example, the number of volumes acquired within the resting-state scans varied between 100 

and 1248 (mean = 353, standard deviation = 289). During these scans, subjects were asked 

to keep their eyes open in 36% of the studies and closed in 41% of the studies, while the 

remaining 23% did not provide this information. To analyze the acquired data, 86% of 

studies used seed-based analysis techniques, while the remaining 14% used data-driven 

approaches (See Supplementary Table S2 for detailed descriptions).

3.2. Quantitative analysis

The primary aim of this review is to assess whether rTMS is capable of modulating RSFC. 

Active and/or sham stimulation may be reported in these studies, and in some cases the 

difference between active and sham stimulation is reported. All of these instances are 

considered here. A central question in this evaluation is to determine whether rTMS-induced 

changes adhere to the same frequency-dependent inhibitory and facilitatory patterns 

commonly reported in studies testing behavioral outcomes and neuronal responses in the 

brain region proximal to the stimulating coil. In a second step, this review will examine 

whether rTMS changes affect only the stimulated network or spread out to other brain 

networks.

Across the 22 studies reporting the effects of active rTMS, 16 (72%) were associated with 

significant changes in connectivity. Among the 20 studies using a control condition, only 12 

reported the subsequent effects on connectivity, and only three of those (25%) were 

associated with significant connectivity changes. For these three studies the control 

condition used a sham coil, flipped the coil or lowered the stimulation intensity. Among the 

eight studies that did not report significant connectivity changes, five of them flipped the 

coil, while the others used a sham coil, a control site, a sham coil over a control site or 

flipped the coil over the control site. While flipping the coil appears not to induce significant 

connectivity changes, variability in the approaches prevents drawing conclusions regarding 

the optimal sham condition.

A chi-square test showed a significant difference between the proportion of reported 

significant effects for active and sham rTMS (χ2 = 7.17, p = 0.007). These results provide 

preliminary confirmation that active rTMS modified resting-state connectivity, above and 

beyond sham rTMS. This result is confirmed by the 12 studies reporting the direct 

comparison between the effects of active and sham rTMS. Indeed, eight of the twelve (66%) 

reported stronger changes with active rTMS. To further understand the frequency-

dependency of these effects, the following sections organize the findings according to 

conventional inhibitory protocols (1Hz, cTBS, iQPS) and excitatory protocols (5Hz, 10Hz, 

20Hz, iTBS and eQPS).
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3.2.1. Effects of stimulation frequency

3.2.1.1. Effects of conventional “inhibitory” protocols (1Hz, cTBS, iQPS): As shown in 

Table 2, across the 10 studies that reported results from conventional inhibitory protocols, 7 

were associated with increases in connectivity due to active stimulation (see “direction” 

column), one was associated with decreased connectivity, and one reported change in both 

directions. The remaining study failed to reveal any changes after active rTMS. This 

suggests that contrary to proximal effects, these conventionally inhibitory protocols mostly 

increased neural function as measured by RSFC. In addition, two studies reported the effects 

of a sham control condition; one of which found no changes in connectivity, while the other 

found decreased connectivity. Two further studies reported active versus sham, with one 

finding no difference and the other finding higher RSFC to active stimulation.

3.2.1.2. Effects of conventional “excitatory” protocols: Twenty-five studies using 

conventionally excitatory protocols were identified (Table 3), 17 of which reported results 

for active rTMS. Among these 17 studies, nine showed increased connectivity (53%), 3 were 

associated with decreased functional connectivity (18%) and the five other studies (29%) did 

not report any changes after active stimulation. Although more variable, this result shows 

that excitatory protocol mainly increased RSFC. Ten studies reported the effects of sham 

stimulation, and while eight of them did not observe significant changes, the remaining two 

reported a decreased connectivity. Two other studies (Yuan et al., 2017; Siddiqi et al., 2018) 

combined 1 and 10 Hz stimulation within the same protocol but did not report any results for 

active or sham stimulation, therefore they are not presented in these tables.

3.2.2. Network changes—To better understand the nature of rTMS effects across 

distributed brain networks, it is useful to consider the location of rTMS-induced changes 

relative to the stimulated network across these studies (see the “location” columns of Tables 

2 and 3, and Supplementary Table S3 for the correspondence between the rTMS targets, 

their coordinates and the corresponding networks). Across the 21 studies that reported 

significant changes in RSFC associated with active rTMS, effects were most often found 

outside of the stimulated network (N = 17, 81%), while nine studies (43%) found effects 

within the stimulated network. Effects were reported both within and outside of the 

stimulated network in five of these studies (24%). As illustrated visually on Fig. 2, 

modulatory effects were observed across nearly all pairs of nodes, with a relatively greater 

proportion of studies targeting the somato-motor network leading to change across all other 

networks. While, as mentioned earlier the fronto limbic is the most targeted network, the 

majority of these studies (nine out of 14) did not provide information about the effects of 

rTMS on RSFC independently of the clinical response, therefore they are not represented in 

the figure. By categorizing the results according to periodic (1, 5, 10 and 20 Hz) and 

patterned (cTBS, iQPS, iTBS and eQPS) stimulation protocols, this figure suggests that 

while conventionally excitatory periodic protocols (5, 10, 20Hz) tend to produce increases in 

RSFC changes, patterned protocols more frequently lead to decreases in RSFC.

3.3. Sources of variability in the reviewed literature

The aims of this review are to understand the influence of rTMS on RSFC, and as such, a 

diverse set of articles were included that each included preand post-TMS measures of 
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connectivity. These articles consisted of studies with differing aims, populations, and study 

parameters. As such, the following section provides an overview of the variability in this 

literature, with an eye on how this variability may influence RSFC effects.

3.3.1. Study population—As illustrated in Fig. 1, about a third of the reviewed studies 

applied rTMS in healthy subjects while the remaining studies applied rTMS for clinical 

purposes. Because the of this variability, it is useful to consider further how connectivity 

effects may have depended on the population under consideration. Across the 22 studies 

where rTMS was applied in clinical populations, nine (41%) also reported differences with 

healthy control subjects (See Supplementary Table S4). All of these studies reported 

significant differences between the clinical and healthy control populations. Interestingly the 

four studies investigating psychiatric disorders found increased RSFC in patients, while the 

four studies investigating neurological disorders found that patients displayed reduced RSFC 

compared to controls. The remaining study revealed reduced RSFC in patients with 

consciousness disorders. These differences indicate that rTMS effects on RSFC might 

depend on the nature of the clinical populations under consideration. Indeed, as highlighted 

by Huang et al. (2017), the effects of non-invasive brain stimulation are “fragile” and highly 

variable, they depend on neuroplasticity which can be highly affected by clinical disorders. 

Furthermore, as demonstrated by Silvanto and Pascual-Leone (2008) the state of the brain at 

the time of stimulation is also a crucial factor that can dramatically change the effects of 

rTMS. It is therefore possible that the pattern of findings observed in this review are 

influenced by the populations under consideration in the accumulated studies. Despite this, 

the one study reviewed here that did directly contrast RSFC changes after applying rTMS in 

both patients and controls did not find any difference between the two groups (Jansen et al., 

2015).

3.3.2. Clinical improvement—Another factor that could influence the aggregated 

results in this review concerns the response to treatment in those studies that tested rTMS in 

clinical populations. This is particularly true because both rTMS and clinical response are 

associated with biochemical and plasticity changes that may share overlapping mechanisms. 

To further understand these relationships, it is useful to consider whether rTMS-induced 

RSFC changes were correlated with clinical improvement. As detailed in Supplementary 

Table S4 it appears that responders and non-responders (as defined by changes in clinical 

measures) showed different pattern of connectivity changes after rTMS. In particular, some 

studies observed opposite patterns for responders and non-responders (e.g., Dunlop et al., 

2016), or a change in RSFC for only the responders and not for the non-responders (e.g., 

Taylor et al., 2018). Furthermore, a number of studies also found correlation between RSFC 

changes and symptoms improvement pointing to important clinical links that will be 

essential to study further as these therapies continue to develop.

3.3.3. Treatment course—A final domain of these studies that deserves further 

consideration is the treatment course, and specifically how the sequence of sessions and 

visits may have affected rTMS effects on RSFC. Indeed, as recently suggested by Schluter et 

al., 2018), the distribution of rTMS sessions might be a crucial factor for rTMS efficacy. 

Table 4A summarizes the reviewed papers according to the number of visits and sessions per 
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visit. As can be seen in the Table, there are 13 studies reporting results from acute rTMS in 

which one rTMS session was given on a single visit (Table 4B). Once-daily rTMS, 

consisting of one rTMS session conducted on each of multiple visits was reported in 16 

studies (Table 4C), while seven studies

4. Discussion

This review, performed across a sample of 33 studies, demonstrates that rTMS reliably 

induces changes in resting-state functional connectivity, but that the direction of these 

changes is not totally consistent with the common frequency-dependent heuristic observed 

for proximal effects. In particular, the majority of studies using traditionally inhibitory 

stimulation protocols, such as 1 Hz, cTBS and iQPS, reported increases in RSFC rather than 

reductions. Furthermore, results revealed that rTMS-induced changes are not confined to the 

stimulated functional network, but instead spread to other brain networks, demonstrating the 

potential of polysynaptic effects that can greatly expand the range and potency of this 

approach. This review also highlighted heterogeneity across studies regarding stimulation 

parameters, study population, resting-state fMRI acquisition, functional connectivity 

analysis, and reporting procedures. Such heterogeneity invites the need for conventions to 

better characterize the network-level effects observed in these studies. As such, the 

remainder of this discussion addresses the possible mechanisms underlying distal RSFC 

effects, how these might differ from proximal CBF and spiking activity effects, and 

recommendations for frameworks that can continue to move this field forward in the future.

4.1. rTMS modulates resting-state functional connectivity

Across the studies reporting the effects of rTMS, 72% reported significant changes. When 

compared via Chi-Square, this ratio was significantly greater than for effects of sham or 

control stimulation across the literature. This result therefore indicates that rTMS applied 

over superficial brain structures reliably induces distal effects on RSFC, but also invites 

more internally controlled studies with proper sham, blinding, and other best practices for 

interventional neuroscience studies.

Various ideas have been proposed to explain the RSFC changes reported in these studies. For 

example, it has been suggested that rTMS effects propagate through anatomical connections 

between brain structures (Vink et al., 2018). Here, white matter tracts might facilitate the co-

activation of interconnected regions and therefore modulate the functional connectivity 

between these regions. Alternately, it has been shown that rTMS can entrain endogenous 

brain oscillations (Thut and Miniussi, 2009), therefore stimulating one brain region might 

enhance neural synchrony between functionally connected areas and thus alter their 

connectivity. Yet another theory relates to brain homeostasis, wherein activity of one brain 

region modulated by rTMS might induce a reorganization of highly connected regions to 

compensate for this change in an attempt to maintain global brain homeostasis (Watanabe et 

al., 2014). While this review did not examine changes in BOLD signal associated with 

rTMS, the distal cortical and subcortical BOLD changes observed in fMRI studies (e.g., 

Bestmann et al., 2003; Bestmann et al., 2004) could be directly related to the changes in 

connectivity demonstrated in the current review and warrants further study.
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4.2. rTMS effects on RSFC are not totally consistent with the proximal frequency-
dependent stimulation heuristic

Stimulation frequency constitutes a central experimental parameter in studies of rTMS. 

Numerous studies focused on the motor cortex have revealed that frequencies below about 5 

Hz, as well as cTBS and iQPS protocols, generally decrease the size of motor evoked 

potentials (e.g., Chen et al., 1997; Hamada et al., 2008; Huang et al., 2005; Romero et al., 

2002). Conversely, higher stimulation frequencies, iTBS and eQPS protocols have typically 

produced increases in MEP amplitudes. While these findings have led to a common 

frequency-dependent heuristic that is pervasive in the field (Fitzgerald et al., 2006; Luber 

and Deng, 2016), relatively little is known about the frequency-dependency of these effects 

outside of the motor cortex, with a number of studies challenging this rule-of-thumb. For 

example, when applied over the prefrontal cortex, 1Hz rTMS has been found to increase 

regional cerebral blood flow (e.g., Eisenegger et al., 2008; Nahas et al., 2001) while 20 Hz 

rTMS has been shown to decrease brain activity (e.g., George et al., 1999).

Contrary to this proximal heuristic, findings from this review suggest that both 

conventionally inhibitory and conventionally excitatory rTMS protocols tend to increase 

resting-state functional connectivity to distal brain areas. Indeed, increased RSFC was found 

in 70% of the studies using inhibitory protocols, and although more variable, 53% of the 

studies also demonstrated increased connectivity following excitatory stimulation. When 

contrasting the effect of conventionally excitatory periodic protocols (5–20 Hz) to the effects 

of patterned protocols (eQPS, iTBS), it was observed that while periodic excitatory 

protocols induced the expected increase in RSFC, patterned protocols failed to do so and 

instead led to inhibitory effects on distal regions. This conclusion extends the preliminary 

results obtained in (Philip et al., 2018a,b) who found that high frequency rTMS was 

associated with reduced functional connectivity in depressed patients to a larger selection of 

clinical studies, as well as non-clinical populations. Therefore, this finding suggests that 

distal RSFC may change independently from proximal blood flow or spiking activity and 

that the common frequency-dependent heuristic might not predict changes in connectivity. 

The mechanisms underlying the directionality of rTMS effects both on neural activity on 

RSFC remain largely unknown and depends on the intrinsic, dynamic relationships between 

the stimulated and connected regions as well as the direct and indirect connections between 

those brain regions (Fox et al., 2012a,b). As such, future studies should prioritize designs 

that rigorously characterize rTMS effects both on brain activation and on connectivity to 

better understand these results, by using functionally-targeted, within-subject, sham-

controlled designs.

4.3. RSFC changes were mainly found out of the stimulated network

The brain is often characterized as a dynamic system of interacting networks, which allows 

for complex human behavior. With the continued development of analytic techniques, this 

last decade has seen the proliferation of network-based neurobiological models for 

psychiatric disorders such as major depressive disorder (e.g., Kaiser et al., 2015) and 

posttraumatic stress disorder (Akiki et al., 2017; Beynel, Appelbaum, & Kimbrel, (in Press)) 

Therefore, understanding the effects of rTMS at a network level will likely be important for 

improving the efficacy of rTMS applications. In this review, rTMS-induced changes were 
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found mainly outside of the stimulated functional network (81% of the studies). This 

suggests that distal effects of stimulation extend beyond the stimulated network through 

network interactions. This result is consistent with analyses of BOLD changes during and 

after rTMS that have failed to reveal significant changes in brain regions located underneath 

the coil, but instead found changes in remote brain regions (Baudewig et al., 2001; D. 

Bohning et al., 1999; O’Shea et al., 2007) [though see (Best- mann et al., 2003; Pascual-

Leone et al., 1998) who have also reported BOLD changes underneath the coil]. While it is 

possible that the overall activity of the stimulated network may change without changing 

intrinsic patterns of connectivity, such interpretations cannot be definitively supported by 

these results. Indeed, none of the studies included in this review collected resting-state fMRI 

during rTMS application, and the majority of them assess the rTMS effects after a full 

treatment that lasted several weeks. Therefore, these RSFC changes could be due to a 

functional reorganization occurring after rTMS application. As these studies tended not to 

analyze whole-brain RSFC, but rather specific ROIs, future studies may wish to investigate 

whole-brain connectivity measured throughout treatment in order to reduce bias and provide 

a more comprehensive view of the mechanisms-of-action underlying distal connectivity 

changes. Moreover, in the large majority of the reviewed papers, rTMS effects were 

observed in specific brain regions. These brain regions were then converted here into brain 

networks by mapping the brain coordinates provided in the reports into the 7-network 

parcellation map defined by Yeo et al. (2011). As such, some approximation could have 

arisen from this process and future studies might want to explicitly state the activated 

network to validate this aggregated finding.

4.4. Challenges, limitations, and recommendations for future studies

While this review reveals some interesting preliminary results regarding rTMS-induced 

changes on RSFC, it has surveyed a relatively new field with highly disparate studies, and 

therefore these findings must be taken in the context of several important limitations that can 

be improved upon in future studies.

First, as shown in Fig. 1 and Supplementary Table S1, there is substantial heterogeneity 

across the surveyed studies regarding rTMS parameters (frequencies/patterns, stimulation 

intensity and targeting approach). While no recommendations can be provided regarding the 

optimal stimulation parameters, as this is dependent on the study goals, future studies should 

continue to innovate with stronger experimental designs. For example, as revealed in a 

recent meta-analysis, the use of individualized-fMRI targeting leads to increased effect sizes 

compared to more basic targeting approaches (Lysianne Beynel et al., 2019) and can provide 

value to future studies in this field. Furthermore, roughly two thirds of the studies lacked 

strong control conditions, preventing assessment of possible placebo effects and inducing a 

bias due to the rTMS-induced sensory differences. In particular, TMS-induced clicks 

produce strong activation in the auditory cortex, as measured by PET (Siebner et al., 1999), 

and can co-vary with activation of the stimulated area (Fox et al., 2012a,b). Applying rTMS 

over ‘task irrelevant’ brain areas, such as the vertex, is often proposed as a valid control 

condition and has been shown not to induce changes in functional connectivity (Jung et al., 

2016), suggesting that this may be a useful strategy for future studies. Further improvements 

in placebo blinding, such as somatosensory-matched electrical stimulation (L. Beynel et al., 
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2019a,b), can add further value, but also must be considered within the cost and feasibility 

of a given study. As the field continues to develop, consensus recommendations for the 

clinical application of rTMS have emerged (e.g., Ekhtiari et al., 2019) creating disciplinary 

norms that will guide the field towards greater rigor and reproducibility. Moreover, while 

this review focused on repetitive TMS, other studies have found that single pulse TMS has 

the ability to modify brain and behavior (Rose et al., 2016) creating an opportunity for future 

reviews to address how single pulse TMS influences network connectivity.

A second challenge that leads to limitations is the variability in resting-state data collection 

and analysis approaches. For example, some studies required subjects to keep their eyes 

closed, other to keep them open, and, in some cases, have participants maintain central 

fixation. These three acquisition conditions are known to induce dramatically different 

connectivity patterns in the DMN (Yan et al., 2009) and therefore rTMS studies looking to 

modulate DMN function may wish to adopt a consistent approach, and particularly to 

maintain central fixation, as it has been shown to produce the highest test-retest reliability 

(Patriat et al., 2013). RSFC analysis techniques also differ across this literature, with most 

studies adopting seed-based analysis, while others used data-driven analyses such as ICA. 

Among studies using seed-based analysis, it is also important to consider that the RSFC seed 

location was not always the stimulated site. In order to improve data quality, we recommend 

continued standardization across these parameters, as well as monitoring and removal of 

physiological artifacts from respiration and cardiac rhythm, which can be particularly 

problematic given that they may mask other desired low frequency modulatory signals.

A third challenge to consider is the need for a common system of aggregation to define brain 

networks. In this review, we opted to utilize the 7-network parcellation map (Yeo et al., 

2011). This choice was made because this atlas has been built upon functional connectivity 

obtained during resting state acquisition, which was highly relevant for this review. While 

this atlas is widely used, it represents only one of many ways to parcellate the brain into 

networks. Network parcellations based on the given study sample or individual participants 

may allow for more robust characterizations of network effects but also adds challenges to 

aggregation across this growing field. In light of these considerations, it will be important 

for the field to come to a consensus about the most suitable approach for network 

classification. This review only presented results from group averages that were provided by 

each of the study papers. Given the crucial role of brain state during the stimulation 

(Silvanto and Pascual-Leone, 2008), it will be important for future research to present data 

from individual subjects to provide better insight into which subjects respond to stimulation 

and why. This knowledge will continue to build towards the personalization of rTMS 

treatments that holds the greatest potential for therapeutic benefits.

Finally, it should be noted that individual and momentary features related to brain state and 

morphology have been shown to influence the effects of rTMS (Huang et al., 2017; Silvanto 

and Pascual-Leone, 2008). Such features constitute an additional source of noise in the 

aggregate results of this review as well as the individual studies included here. Nevertheless, 

the statistical significance of results in these studies as well as the overall patterns of results 

observed in this review suggest that group-level effects of rTMS were often able to emerge 

in spite of these confounding factors. In addition, results from this review could be 
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influenced by publication bias that was not assessed. However, as many of the included 

studies were interested in clinical outcomes rather than effects on RSFC, it is possible that 

publication bias may not have strongly influenced these results.

5. Conclusions

This review supports some preliminary conclusions about the effects of rTMS on RSFC. In 

particular, it can be inferred from these findings that active rTMS does lead to preferential 

modulation of RSFC over sham stimulation. Importantly, it is observed that the pattern of 

distal RSFC effects does not adhere to the conventional inhibitory heuristic that is widely 

reported with proximal stimulation studies. Finally, based on an aggregation of effects across 

different canonical brain networks, it is found that rTMS-induced changes most frequently 

occur in brain networks other than the stimulated network. Overall, this literature 

demonstrates promise for modulating neural features beyond the proximal target region, but 

further research will be required to more reliably predict and leverage these distal effects for 

specific applications.
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Fig. 1. 
Study Characteristics of Reviewed Literature. a) Cumulative number of published articles 

across years. b) Proportion of patients and healthy volunteers. c) Distribution of stimulated 

networks with DM: default mode, FL: fronto limbic SM: somato motor, VA: ventral 

attention, O: others, and study-specific networks. d) Method of determining TMS targeting 

with aMRI: anatomical MRI, and fMRI functional MRI. e) rTMS frequencies for 

conventional single frequency and patterned protocols. f) Stimulation intensities relative to 

motor threshold (resting motor threshold: 90%; or active motor threshold: 7.5% of the 

included studies).
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Fig. 2. 
rTMS-induced changes in RSFC by resting-state functional networks for each type of 

stimulation protocol separated into conventional inhibitory/excitatory and periodic versus 

patterned pulse sequences (Periodic conventionally inhibitory: 1Hz, Periodic conventionally 

excitatory: 5,10, and 20Hz; Patterned conventionally inhibitory: cTBS and iQPS; Patterned 

conventionally excitatory: iTBS and eQPS). The starting point of each arrow indicates the 

stimulated network, and the head of each arrow represents a network where corresponding 

rTMS-induced changes were observed. The thickness of the arrow indicates the number of 

studies finding the same result (e.g., FL-DM is thicker as 4 studies were associated with 

changes between these networks). Blue arrows indicate increased RSFC after rTMS, and red 

arrows indicate decreased RSFC.
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Table 1

Inclusion and exclusion criteria for the article screening.

Study characteristics Inclusion criteria Exclusion criteria

Population Healthy volunteers; Patients (all diseases) None

Intervention rTMS applied over any region of the brain Single pulse TMS; Paired-pulse TMS

Resting-State Acquisition Acquired both before and after rTMS Only acquisition before or after rTMS

Study design Between, within, cross-over Study case
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Table 4A

Summary of rTMS treatment sessions and visits across the review sample.

Acute rTMS Once-daily rTMS with 
multiple visits

Multiple sessions per day Over 
multiple visits

Number of Visits 1 2–42 1–20

Number of Sessions per day 1 1 More than once a day

Number of studies reporting the effect of active 
rTMS

13 10 4

Number of studies with significant changes in RSFC 12 (92%) 6 (60%) 3 (75%)
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Table 4B

Effect of acute rTMS on RSFC (1 visit 1 session).

Study Name rTMS Decrease No effect Increase

Bharath et al. (2015) 1Hz X

Bharath et al. (2017) 1Hz X

Brabenec et al. (2019) 1Hz X

Ji et al. (2017) 1Hz X

Zhang et al. (2018) 1Hz X X

Li et al. (2017) 10Hz X

Schluter et al. (2018) 10Hz X

Schluter et al. (2018) 10Hz X

Brabenec et al. (2019) 10Hz X

Zhang et al. (2018) 10Hz X

Song et al. (2019) 20Hz X

Watanabe et al. (2014) eQPS X

Watanabe et al. (2014) iQPS X

→ 12 out of 13 studies (92%) reporting the effect of acute rTMS reported significant changes.
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Table 4C

Effects of once-daily rTMS with multiple visits on RSFC.

Study Name # visits rTMS Decrease No effect Increase

Roland et al. (2016) 10 or 20 1Hz X

Vercammen et al. (2010) 12 1Hz X

Chou et al. (2015) 10 5Hz X

Tik et al. (2017) 2 10Hz X

Lee et al. (2018) 10 10Hz X

Liston (2014) 25 10Hz X

Xue et al. (2017) 2 20Hz X

Liu et al. (2018) 5 20Hz X

Wang and Voss (2015) 5 20Hz X

Volz et al. (2016) 5 iTBS X

→ 6 out of 10 (60%) studies reporting the effect of once-daily rTMS reported significant changes.
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Table 4D

Effects of multiple rTMS sessions per visit, with one or more visits on RSFC.

Study Name # visits #sessions/day rTMS Decrease No effect Increase

Popa et al. (2013) 5 2 1Hz X

Ji et al. (2017) 1 3 cTBS X

Nettekoven et al. (2014) 4 3 iTBS X

Vidal-Pineiro et al. (2014) 1 2 iTBS X

→ 3 out of 4 studies (75%) reporting the effect of multiple sessions reported significant changes.
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