
Bioinformatics Application
with Kubeflow for Batch Processing

in Clouds

David Yu Yuan(B) and Tony Wildish

Technology and Science Integration, European Bioinformatics Institute,
European Molecular Biology Laboratory, Hinxton, UK

davidyuan@ebi.ac.uk

https://www.ebi.ac.uk/

Abstract. Bioinformatics pipelines make extensive use of HPC batch
processing. The rapid growth of data volumes and computational com-
plexity, especially for modern applications such as machine learning
algorithms, imposes significant challenges to local HPC facilities. Many
attempts have been made to burst HPC batch processing into clouds
with virtual machines. They all suffer from some common issues, for
example: very high overhead, slow to scale up and slow to scale down,
and nearly impossible to be cloud-agnostic.

We have successfully deployed and run several pipelines on Kuber-
netes in OpenStack, Google Cloud Platform and Amazon Web Services.
In particular, we use Kubeflow on top of Kubernetes for more sophisti-
cated job scheduling, workflow management, and first class support for
machine learning. We choose Kubeflow/Kubernetes to avoid the over-
head of provisioning of virtual machines, to achieve rapid scaling with
containers, and to be truly cloud-agnostic in all cloud environments.

Kubeflow on Kubernetes also creates some new challenges in deploy-
ment, data access, performance monitoring, etc. We will discuss the
details of these challenges and provide our solutions. We will demon-
strate how our solutions work across all three very different clouds for
both classical pipelines and new ones for machine learning.

Keywords: Kubernetes · Kubeflow · Workflow · Container
orchestration · Deployment · Clouds · Data management · Monitoring ·
OpenStack · Google Cloud Platform · Amazon Web Services

1 Introduction

Bioinformatics pipelines make extensive use of HPC batch processing farms. The
data size is growing exponentially in Terabyte to Petabyte range. The compu-
tational complexity is also growing rapidly with job duration reaching weeks to
months. HPC facilities can no longer satisfy these rapidly growing requirements.
With the modern applications of machine learning algorithms, GPUs become

c© The Author(s) 2020
H. Jagode et al. (Eds.): ISC High Performance 2020 Workshops, LNCS 12321, pp. 355–367, 2020.
https://doi.org/10.1007/978-3-030-59851-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59851-8_24&domain=pdf
http://orcid.org/0000-0003-1075-1628
http://orcid.org/0000-0003-4297-4738
https://doi.org/10.1007/978-3-030-59851-8_24


356 D. Y. Yuan and T. Wildish

critical for batch processing, but long wait times for GPU batch queues are
common. With rapidly changing GPU models, high unit price and long procure-
ment cycles, it is impossible to run some pipelines simply due to the lack of
specific GPU models on premises.

HPC-in-the-cloud solutions provide VM-based workflow management. Open
source tools like Cluster-in-the-Cloud are more portable, but also need lots of
maintenance. In general, batch clusters are complex to configure for general
users, and don’t take good advantage of cloud-native capability. We tried imple-
mentations on different clouds: Google Cloud Platform, Microsoft Azure and
Oracle Cloud. The solutions are very cloud-specific, and thus unportable.

Container and its orchestration engine Kubernetes is the obvious choice to
overcome issues with VM-based batch solutions in clouds. The basic Kuber-
netes job framework is insufficient for Bioinformatics pipelines. It is more of a
framework for frameworks. Kubeflow [1] is a comprehensive and cloud-agnostic
workflow engine on Kubernetes. It is designed for machine learning workflows
but generic enough to run any workflow on Kubernetes in a simple, portable and
scalable fashion.

In this article, we are to deploy Kubernetes and Kubeflow to run two
pipelines: one for classic pipeline and the other for machine learning, targeting
three clouds: a private cloud based on OpenStack (OSK), and two public clouds
of Google Cloud Platform (GCP) and Amazon Web Services (AWS). Although
Kubernetes has become the de facto standard on almost all major clouds, there
are also some new challenges in data access, performance monitoring, and GPU
etc. We will discuss the details of these challenges and our solutions. We will
demonstrate how our solutions work across all three very different clouds for
both classical pipelines and new ones for machine learning.

2 Method

Docker and Kubernetes have become the de facto standard for container and
container orchestration. All major cloud providers and operating systems provide
first class support for them. In our previous investigation, we have confirmed that
Bioinformatics pipelines can be migrated from HPC into public clouds with ease.
In addition, the resulting Kubernetes clusters are almost identical in Google,
Amazon and Microsoft [2]. Together, Docker and Kubernetes become universal
platforms for Infrastructure-as-a-Service (IaaS) for Bioinformatics pipelines and
other workloads.

Kubernetes has a job framework built into its APIs [3]. However, it is in its
infancy and incapable to support complex pipelines for Bioinformatics. Google,
together with many other major cloud vendors, have just started a new workflow
engine, Kubeflow, on Kubernetes to make ML simple, portable and scalable.
Kubeflow shows promise as a platform to manage the workflows of Bioinformatics
pipelines with efficiency, scalability and portability. In this section, we will focus
on the challenges, temporary and long term, and our solutions to address them.



Bioinformatics Application with Kubeflow for Batch Processing in Clouds 357

2.1 Deployment

We have Kubernetes clusters for HPC on three clouds: OSK, GCP and AWS.
We run Rancher Kubernetes Engine (RKE) [4] on OSK. Public clouds have
their Kubernetes engines built in: GKE on GCP and EKS on AWS. Kubernetes
provides a good solution for computing. It is relatively weak on integration with
storage and network.

We then deployed Kubeflow for batch processing. There are two categories
of deployment for Kubeflow:

1. Cloud-agnostic: the deployment scripts are maintained by the open source
community or third party, for example the first two scripts in the table [5].
They require the Kubernetes cluster created first.

2. Cloud-specific: the deployment scripts are maintained by cloud providers such
as GCP, AWS, IBM and OpenShift. Microsoft is using the community main-
tained script at present.

We have been using both cloud-agnostic and cloud-specific scripts. The cloud-
agnostic script is completely portable. We are able to deploy Kubeflow on Open-
Stack, GCP and AWS without modification. This would reduce our operational
cost in production and the implementation of the hybrid cloud strategy. The
cloud-specific script provides tight integration with the underlying cloud infras-
tructure. The benefit to end users is minimal at this point. Therefore, we have
chosen the cloud-agnostic script (kfctl istio dex.v1.0.0.yaml) [6] for all of our
three clouds. It provides a consistent mechanism for authentication and autho-
rization [7] as shown in Fig. 1.

Fig. 1. Multi-user, auth-enabled Kubeflow was modified from Kubeflow documenta-
tion (https://www.kubeflow.org/docs/started/k8s/kfctl-istio-dex/) under CC BY 4.0
license.

https://www.kubeflow.org/docs/started/k8s/kfctl-istio-dex/


358 D. Y. Yuan and T. Wildish

Storage. Cloud providers only support a very small subset of Volume Plug-
ins, with few overlaps. They all support ReadWriteOnce mode. About 60% of
them support ReadOnlyMany. Only 30% of them support the ReadWriteMany
model [8]. Bioinformatics pipelines almost always assume local access to POSIX-
like file systems for both read and write, so we use an NFS persistent volume as
a workaround to make our pipelines cloud-agnostic.

NFS has many limitations in security, performance, scalability and, to a cer-
tain extent, data integrity. We only use it to pass a small amount of intermediate
data between tasks in the same pipeline. For temporary files within a task, we use
the default Storage Classes to create Persistent Volumes. The Volume Plugins
for the default Storage Classes always support ReadWriteOnce. The Persistent
Volume Claims (PVCs) always use the default Storage Classes if omitted. This
makes the PVC manifest syntactically identical in all the clouds to create tem-
porary storage for reading and writing within a task. We mount emptyDir in a
pod for caching. If cache is small, we set emptyDir.medium field to “Memory”
for fast access as the tmpfs mounted is a RAM-backed filesystem.

Networking. The integration between the internal and external networks of
a Kubernetes cluster is another difficulty for users. We use three options to
integrate the internal networks created by Kubeflow with the outside world:
port-forward, load balancer and Ingress.

Kubeflow creates Istio ingress gateway service with NodePort by default, for
example:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

istio-ingressgateway NodePort 10.43.184.114 <none> 15020:30024/TCP,80:31380/TCP,443:31390/TCP,31400:31400/TCP,

15029:30610/TCP,15030:30412/TCP,15031:32070/TCP,15032:32526/TCP,15443:30403/TCP 12d

We use port-forward for quick access on a Kubernetes client. This does not
require any change on the networking.

kubectl port-forward svc/istio-ingressgateway -n istio-system 8080:80 &

open http://localhost:8080

For public clouds, load balancers can be configured easily to expose Kubeflow.
As Istio ingress gateway services on both ports 80 and 443, it is important to
enable SSL with a signed certificate and redirect requests from port 80 to port
443 for security reasons.

kubectl patch service -n istio-system istio-ingressgateway \

-p ‘{"spec": {"type": "LoadBalancer"}}’

Once the service type is changed to LoadBalancer, an external IP will be
assigned to the service to access Kubeflow on GCP. A host name is generated
on AWS as well.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

istio-ingressgateway LoadBalancer 10.32.7.82 35.190.144.146 15020:31092/TCP,80:31380/TCP,443:31390/TCP,31400:31400/TCP,

15029:31624/TCP,15030:31175/TCP,15031:30963/TCP,15032:30674/TCP,15443:30189/TCP 6d11h



Bioinformatics Application with Kubeflow for Batch Processing in Clouds 359

There is no load balancer configured for RKE in our private OSK cloud at
present. We assign a floating IP to the Kubernetes cluster. We then configure
the ingress control to access Kubeflow via the floating IP.

2.2 Data Access

The pipelines usually have very little control over the storage for input and out-
put. Most of Bioinformatics pipelines assume local access to POSIX-like file sys-
tems for simplicity. Kubeflow and its orchestrator Kubernetes naturally assume
that pipelines use cloud-native storage as the data sources. Persistent Volumes
need to be mounted as temporary storage for input and output.

We use commands (e.g., curl, wget, scp etc.) or any special clients, such as
Globus or Aspera to download or upload files in the pipelines. This approach
has its obvious drawbacks. This biggest issue is scalability. Data files have to
be moved in batch mode and then processed. They often require large amounts
of storage from Terabytes to Petabytes. As we have discussed before, the only
Persistent Volume for multiple clouds is NFS. Accessing input and output data
becomes moving many files into and out of NFS server for seemingly local access
is very inefficient. It is impractical to move Terabytes to Petabytes of data to
persistent volumes before computing.

POSIX-like File System for Bioinformatics Applications. We use One-
data [9] to fill the functionality gap. Onedata presents a globally federated
POSIX VFS built out of local storage in Ceph, S3, NFS, Lustre, and other
storage backends. There are several limitations:

1. Onedata does not support Kubernetes. There is no storage provisioner for
Onedata.

2. There is only n-1 version compatibility between its client and server. Short
release cycle essentially eliminates backward compatibility in practice.

3. Both client and server require root privilege.

The only viable option to bypass all the limitations above is to create Docker
images with both OneClient and a Bioinformatics application. There are two
options to create such merged Docker images:

1. Starting with onedata/oneclient : <version tag> as the base image, install a
Bioinformatics application. Sometimes, it is necessary to use the multi-staged
build.

2. Building an image on a Docker server supporting conda, install OneClient
with exactly the version as OneProvider.

To merge Samtools, we simply installed it into a given OneClient image which
is fairly standard. To merge the latest version of Freebayes with OneClient, we
use a two-staged build. The binaries of bamleftalign and freebayes are built from



360 D. Y. Yuan and T. Wildish

the source in a Python image first. They are then copied into OneClient image.
A Dockerfile is available in the repository [10].

The second option of installing OneClient can be tricky. OneClient requires
specific versions of libraries. Its installer does not do a good job to ensure that
the prerequisite is met correctly.

The utility oneclient is called to mount a POSIX VFS in the container. The
Bioinformatics tools will access remote files as if from a local file system as input
for just-in-time data ingestion and as output for transparent write-through.

S3-Like Cloud Storage. S3 has firmly established its dominance as a popular
cloud storage. We first tried Tensorflow API to download and upload files in
S3 buckets as we were using Tensorflow/Keras in our machine learning pipeline,
but switched to AWS CLI for S3 based on the Python library Boto 3 for better
performance, scalability and resource consumption.

Neither AWS CLI nor Boto 3 provides official Docker images. We have created
a custom image. A default Persistent Volume is used as a cache for input and
output. We do not accumulate the files on the temporary storage. We download
them only when they are needed, and upload them as soon as they are generated.
In the pipelines, we use Kubeflow sidecar or a separate component for file transfer
in parallel.

As shown in a sidecar snippet in [11], we extend the custom AWS CLI image
with some simple shell scripts (image=‘davidyuyuan/aws:1000g’). We then use
Kubeflow sidecar API to call our scripts for cloud storage. Both the sidecar and
separate components are useful depending on whether we want to transfer files
just for a single operation or shared by multiple parallel operations. They enable
the classic pipelines to access cloud storage a little easier.

2.3 Monitoring

Logging and telemetry are weak in clouds, including major public clouds. Most
of the existing solutions are designed for virtual machines instead of containers
(Docker), still less for container orchestration (e.g., Kubernetes) and much less
for workloads (e.g., Kubeflow and pipelines on it). Our attempt to establish
a cloud-agnostic solution or HPC batch processing via container orchestration
adds one more challenge.

We have identified a single tool for both logging and telemetry for both
VMs and Kubernetes including Kubeflow and Bioinformatics pipelines on all
three clouds. Elasticsearch [12] has been known to the Open Source community
for a long time. It is undeniably complex to create a traditional deployment of
Elasticsearch with high availability, performance and scalability. We are using
the SaaS solution and also investigating the feasibility to run Elasticsearch on
Kubernetes [13]. Our goal is to let Kubernetes handle high availability, perfor-
mance and scalability for a simple deployment. The details of the investigation
is beyond the scope of this article. We will focus on how we make use of the
SaaS solution for the pipelines on Kubeflow.



Bioinformatics Application with Kubeflow for Batch Processing in Clouds 361

Fig. 2. Deployment architecture of an Elasticsearch instance.

At minimum, Elasticsearch consists of Kibana, Elasticsearch, Logstash or
Beats. As shown in Fig. 2, our SaaS instance contains the components on
the server side: Elasticsearch and Kibana. We use Beats (Filebeat and Met-
ricbeat) on the client side for logging and telemetry. Beats is simple to use with
lower overhead compared with Logstash. DaemonSet is used to run containers
(e.g., docker.elastic.co/beats/metricbeat:7.6.0) in Kubernetes clusters,
instead of classic OS-specific installation packages for VMs.

Fig. 3. Monitoring multiple Kubernetes clusters with Elasticsearch.

This allows us to monitor clusters in different clouds in a single pane of glass,
for example public GCP and private OSK in Fig. 3. Together with Filebeat con-
tainer (docker.elastic.co/beats/filebeat:7.6.0), we are able to monitor
both logging and telemetry of Kubernetes including Kubeflow and Bioinformat-
ics pipelines in all three clouds.

2.4 Using GPUs with Kubeflow

Machine Learning (ML) has wide applications in Bioinformatics, for example,
genomic sequence assembly, literature analysis and image processing. Some ML



362 D. Y. Yuan and T. Wildish

pipelines take weeks to complete a training cycle, exceeding the time-limit of
HPC queues. The training cycles need to be repeated many times for hyperpa-
rameter tuning.

Kubeflow runs on Kubernetes clusters with or without GPU. We position our
OpenStack private cloud for pipeline development and CPU-only training. The
same pipelines can be deployed as-is onto Kubeflow on GCP and AWS, where
Kubernetes clusters may include GPUs. This allows us to bypass the timeout
issue with HPC queues, to avoid long GPU procurement cycles, to acquire larger
capacities, and to minimise the cost in public clouds.

Kubeflow includes Jupyter Notebooks by default, where they can be cre-
ated with or without GPU support, depending on the initial image. In addition,
Kubeflow pipeline DSL provides very handy APIs to consume GPU or TPU in
a Python package:

kfp.dsl.ContainerOp.apply(gcp.use_tpu())
kfp.dsl.ContainerOp.set_gpu_limit()

GCP and AWS provide different GPU models. They both support GPU in
passthrough mode for bare metal performance. However, GCP provides separate
node pools for CPUs and GPUs as well as multiple GPU pools for different GPU
models in the same Kubernetes cluster. This allows us to create an ideal platform
to run ML pipelines on Kubeflow.

3 Result

We have successfully run two types of pipelines on Kubeflow/Kubernetes on
GCP, AWS and our private OSK. Our goal is to enhance and to prove the capa-
bility of the platform for Bioinformatics. We want to make it suitable for large
scale Bioinformatics research for both classic pipelines and new ML pipelines for
both high throughput and high performance workloads.

1. Classic Bioinformatics pipelines - variant calling on 1000 Genomes Project [14]
representing high throughput workload

2. Machine Learning pipelines - image classification on cardiomyocytes from
Image Data Repository [15] representing high performance workload

3.1 Classic Bioinformatics Pipelines

We have created a brand new pipeline, consisting of two classical tools for
genomics: Samtools and Freebayes. Freebayes are to be run in parallel, one set of
pods per chromosome. The output VCFs from Freebayes are cached on a shared
disk, and then uploaded to an S3 bucket as soon as they arrive at the staging
area (Fig. 4).

The data sources and the methods to access them are completely unchanged
when we run the pipeline on GCP, AWS or the private OSK clouds:



Bioinformatics Application with Kubeflow for Batch Processing in Clouds 363

Fig. 4. Example of a simplified classic bioinformatic workflow.

1. Human reference genome is downloaded from an FTP server at EBI [16]. It
then gets preprocessed by Samtools to generate fasta files and their indices.

2. Queries or a list of file names of the 1046 genomes is stored in an S3 bucket. It
gets downloaded by a sidecar as discussed above. Freebayes is to loop through
the list for each genome for each region in batches in parallel.

3. The actual alignments of the 1046 genomes are accessed with Onedata for
just-in-time data ingestion from a storage volume at EBI. We have discussed
details on how to integrate Onedata with Kubernetes above.

A complete run of 1046 genomes on all 26 regions takes several weeks. We
usually scale down to three fastest regions (‘GL000207.1’, ‘MT’, ‘Y’) for a 40-
hour-run (Fig. 5). The exit handler gets invoked by Kubeflow where we have

Fig. 5. Pods for the pipeline scale up and down efficiently as needed.



364 D. Y. Yuan and T. Wildish

only implemented a simple logic to list all the VCFs uploaded to the S3 bucket
(onExit - list-results).

One point worth noting is that Kubeflow uses Python as the programming
language for pipelines. It provides developers much needed lexicon to construct
DAG with simple expressions and function calls in an extremely condensed and
elegant style [17].

3.2 Machine Learning Pipelines

Kubeflow is designed to provide the first class support for Machine Learning. As
shown in the diagram in Kubeflow overview [1], tools and services needed for
ML have been integrated into the platform, where it is running on Kubernetes
clusters on public and private clouds.

A set of the most popular ML tools, such as Jupyter, TensorFlow, PyTorch,
MPI, XGBoost, MXNet, etc., are included. We used Jupyter and TensorFlow for
our ML pipeline. The Kubeflow applications and scaffolding integrates the ML
tools with the underlying Kubernetes cluster supported by various clouds, in our
case: GCP, AWS and OpenStack on premises. There are also other components
providing service mesh, programming model, instrumentation, influencing, etc.
to make the platform fully operational for both experimental and production
phases.

We have created a notebook for image classification. The images are whole
slides of cardiomyocytes published in 2018 [18]. The public data is stored in
the IDR hosted by EBI. We have decided to use our Kubeflow on GCP with
GPU support to speed up the model training for high performance. A notebook
server is created with an Docker image with Tensorflow 2.1.0 and GPU support
accordingly.

We use the latest OMERO 5.6.0 JSON API [19] to download the images.
There is a limit on the IDR server of maximum downloads of 1000 images, which
gives us 1978 images to work with, comparable to the original datasets of 2277
usable images. This is on the smaller side for CNN training and validation. The
image quality and annotation are good so it gives us satisfying results (Fig. 6).

The training and validation with GPU are surprisingly fast with 4s for each
epoch on the original images and 8 s for augmented images. With the per second
billing on both GCP and AWS together with dynamic resource allocation on
Kubeflow, the cost to run ML pipelines with GPUs is very low. This fully cloud-
native and cloud-agnostic approach provides advantages not only over HPC on
premises but also over HPC-in-the-cloud, where GPUs still have to be reserved
for the lifecycle of the job, whether they are used well or not.



Bioinformatics Application with Kubeflow for Batch Processing in Clouds 365

Fig. 6. Training and validation of a CNN model with cardiomyocytes images on Kube-
flow

4 Conclusion

We have successfully run pipelines on Kubernetes in OpenStack, Google Cloud
Platform and Amazon Web Services, in particular, on Kubeflow with more
sophisticated job scheduling, workflow management, and first class support to
machine learning. We choose Kubeflow/Kubernetes to avoid the overhead of
provisioning of virtual machines, to achieve rapid scaling with containers, and
to be truly cloud-agnostic in all three cloud environments.

We have chosen two very typical pipelines in Bioinformatics: one for genomic
sequence analysis and the other for image classification; one for classic tools and
the other for modern machine learning; one for high throughput and the other
for high performance; one for classic pipeline and the other for Jupyter note-
book. With the successful deployment of these two pipelines, we can conclude
confidently that Kubeflow can satisfy complex requirements by Bioinformatics.

Kubeflow and Kubernetes have also introduced interesting challenges. We
have systematically analysed and addressed various aspects in deployment, stor-
age and networking. We have identified and implemented methods to access data
for input and output in CLI and Python APIs. We have successfully proposed
and implemented a creative solution to combine the strength of Onedata and
Docker for the just-in-time data ingestion as well as transparent write-through.
For S3 storage, we have created a custom AWS CLI image and run the container
as either a sidecar or a separate operation for parallel operations to transfer



366 D. Y. Yuan and T. Wildish

objects. We also have integrated Elasticsearch for both logging and telemetry.
By adding GPU to the Kubernetes cluster, and then to Jupyter notebook server,
we are able to train a CNN model in seconds per epoch.

With the excellence in Kubeflow and Kubernetes frameworks and our solu-
tions to compensate for their limitations, we are able to run both high throughput
and high performance pipelines at scale. We are confident that it is feasible to
run Bioinformatics pipelines efficiently via container orchestration in all major
clouds with excellent portability. Jobs in different pipelines or between different
runs are now able to share cloud resources efficiently, much better than tradi-
tional HPC-in-the-cloud solutions.

References

1. Kubeflow.org. https://www.kubeflow.org/docs/started/kubeflow-overview/
2. Yuan, D.: RSEConUK 2019, University of Birmingham, 17–19 September 2019,

Case Study of Porting a Bioinformatics Pipeline into Clouds. https://sched.co/
QSRc

3. Kubernetes, Concepts → Workloads → Controllers → Jobs - Run to Com-
pletion. https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-
completion/

4. Overview of RKE. https://rancher.com/docs/rke/latest/en/
5. Installing Kubeflow. https://www.kubeflow.org/docs/started/getting-started/
6. Cloud-agnostic Kubeflow deployment. https://raw.githubusercontent.com/

kubeflow/manifests/v1.0-branch/kfdef/kfctl istio dex.v1.0.0.yaml
7. Authentication with Istio + Dex. https://journal.arrikto.com/kubeflow-authenti

cation-with-istio-dex-5eafdfac4782
8. Storage volume. https://kubernetes.io/docs/concepts/storage/persistent-

volumes/#access-modes
9. Onedata. https://onedata.org/#/home

10. Two-staged build. https://gitlab.ebi.ac.uk/TSI/kubeflow/blob/master/pipelines/
1000g/freebayes/Dockerfile

11. Function samtools op. https://gitlab.ebi.ac.uk/TSI/kubeflow/-/blob/1.0.1/
pipelines/1000g/1000g.py

12. Elasticsearch. https://www.elastic.co/elasticsearch
13. Elastic Cloud on Kubernetes. https://www.elastic.co/downloads/elastic-cloud-

kubernetes
14. Data - 1000 Genomes Project. https://www.internationalgenome.org/data/
15. IDR: Image Data Repository. https://idr.openmicroscopy.org/webclient/?

show=project-402
16. Human Reference Genome, v37. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

technical/reference/human g1k v37.fasta.gz
17. Kubeflow pipeline APIs. https://kubeflow-pipelines.readthedocs.io/en/stable/

index.html
18. Nirschl, J.J., et al.: A deep-learning classifier identifies patients with clinical heart

failure using whole-slide images of H&E tissue. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5882098/

19. OMERO 5.6.0 JSON API. https://docs.openmicroscopy.org/omero/5.6.0/
developers/json-api.html

https://www.kubeflow.org/docs/started/kubeflow-overview/
https://sched.co/QSRc
https://sched.co/QSRc
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://rancher.com/docs/rke/latest/en/
https://www.kubeflow.org/docs/started/getting-started/
https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_istio_dex.v1.0.0.yaml
https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_istio_dex.v1.0.0.yaml
https://journal.arrikto.com/kubeflow-authentication-with-istio-dex-5eafdfac4782
https://journal.arrikto.com/kubeflow-authentication-with-istio-dex-5eafdfac4782
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://onedata.org/#/home
https://gitlab.ebi.ac.uk/TSI/kubeflow/blob/master/pipelines/1000g/freebayes/Dockerfile
https://gitlab.ebi.ac.uk/TSI/kubeflow/blob/master/pipelines/1000g/freebayes/Dockerfile
https://gitlab.ebi.ac.uk/TSI/kubeflow/-/blob/1.0.1/pipelines/1000g/1000g.py
https://gitlab.ebi.ac.uk/TSI/kubeflow/-/blob/1.0.1/pipelines/1000g/1000g.py
https://www.elastic.co/elasticsearch
https://www.elastic.co/downloads/elastic-cloud-kubernetes
https://www.elastic.co/downloads/elastic-cloud-kubernetes
https://www.internationalgenome.org/data/
https://idr.openmicroscopy.org/webclient/?show=project-402
https://idr.openmicroscopy.org/webclient/?show=project-402
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz
https://kubeflow-pipelines.readthedocs.io/en/stable/index.html
https://kubeflow-pipelines.readthedocs.io/en/stable/index.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882098/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882098/
https://docs.openmicroscopy.org/omero/5.6.0/developers/json-api.html
https://docs.openmicroscopy.org/omero/5.6.0/developers/json-api.html


Bioinformatics Application with Kubeflow for Batch Processing in Clouds 367

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Bioinformatics Application with Kubeflow for Batch Processing in Clouds
	1 Introduction
	2 Method
	2.1 Deployment
	2.2 Data Access
	2.3 Monitoring
	2.4 Using GPUs with Kubeflow

	3 Result
	3.1 Classic Bioinformatics Pipelines
	3.2 Machine Learning Pipelines

	4 Conclusion
	References




