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Abstract
Background Preliminary experience suggests that deep
learning algorithms are nearly as good as humans in
detecting common, displaced, and relatively obvious
fractures (such as, distal radius or hip fractures).
However, it is not known whether this also is true
for subtle or relatively nondisplaced fractures that are
often difficult to see on radiographs, such as scaphoid
fractures.
Questions/purposes (1) What is the diagnostic accuracy,
sensitivity, and specificity of a deep learning algorithm

in detecting radiographically visible and occult scaph-
oid fractures using four radiographic imaging views?
(2) Does adding patient demographic (age and sex)
information improve the diagnostic performance of
the deep learning algorithm? (3) Are orthopaedic sur-
geons better at diagnostic accuracy, sensitivity, and
specificity compared with deep learning? (4) What is the
interobserver reliability among five human observers
and between human consensus and deep learning
algorithm?
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Methods We retrospectively searched the picture archiv-
ing and communication system (PACS) to identify 300
patients with a radiographic scaphoid series, until we had
150 fractures (127 visible on radiographs and 23 only
visible on MRI) and 150 non-fractures with a corre-
sponding CT or MRI as the reference standard for fracture
diagnosis. At our institution, MRIs are usually ordered for
patients with scaphoid tenderness and normal radiographs,
and a CT with radiographically visible scaphoid fracture.
We used a deep learning algorithm (a convolutional neural
network [CNN]) for automated fracture detection on
radiographs. Deep learning, an advanced subset of artificial
intelligence, combines artificial neuronal layers to
resemble a neuron cell. CNNs—essentially deep learning
algorithms resembling interconnected neurons in the hu-
man brain—are most commonly used for image analysis.
Area under the receiver operating characteristic curve
(AUC) was used to evaluate the algorithm’s diagnostic
performance. An AUC of 1.0 would indicate perfect pre-
diction, whereas 0.5 would indicate that a prediction is no
better than a flip of a coin. The probability of a scaphoid
fracture generated by the CNN, sex, and age were included
in a multivariable logistic regression to determine whether
this would improve the algorithm’s diagnostic perfor-
mance. Diagnostic performance characteristics (accuracy,
sensitivity, and specificity) and reliability (kappa statistic)
were calculated for the CNN and for the five orthopaedic
surgeon observers in our study.
Results The algorithm had an AUC of 0.77 (95% CI 0.66
to 0.85), 72% accuracy (95% CI 60% to 84%), 84% sen-
sitivity (95%CI 0.74 to 0.94), and 60% specificity (95%CI
0.46 to 0.74). Adding age and sex did not improve di-
agnostic performance (AUC 0.81 [95% CI 0.73 to 0.89]).
Orthopaedic surgeons had better specificity (0.93 [95% CI
0.93 to 0.99]; p < 0.01), while accuracy (84% [95%CI 81%
to 88%]) and sensitivity (0.76 [95% CI 0.70 to 0.82]; p =
0.29) did not differ between the algorithm and human
observers. Although the CNN was less specific in di-
agnosing relatively obvious fractures, it detected five of six
occult scaphoid fractures that were missed by all human
observers. The interobserver reliability among the five
surgeons was substantial (Fleiss’ kappa = 0.74 [95% CI
0.66 to 0.83]), but the reliability between the algorithm and
human observers was only fair (Cohen’s kappa = 0.34
[95% CI 0.17 to 0.50]).
Conclusions Initial experience with our deep learning al-
gorithm suggests that it has trouble identifying scaphoid
fractures that are obvious to human observers. Thirteen
false positive suggestions were made by the CNN, which
were correctly detected by the five surgeons. Research with
larger datasets—preferably also including information
from physical examination—or further algorithm re-
finement is merited.
Level of Evidence Level III, diagnostic study.

Introduction

Deep learning gained great appeal when Google’s
DeepMind computer defeated the world’s number one Go
player [1]. Deep learning, an advanced subset of artificial
intelligence, combines artificial neuronal layers to
resemble a neuron cell. Essentially, these algorithms—
highly complex mathematical models—derive rules and
patterns from data to estimate the probability of a diagnosis
or outcome without human intervention. These algorithms
can be applied to imaging tasks such as skin cancer de-
tection on photographs or detection of critical findings in
head CT scans [2, 5].

Using different data set sizes, initial experience with
fracture detection on radiographs suggests that deep
learning algorithms are (nearly) as good as humans at
detecting certain common fractures such as distal radius,
proximal humerus, and hip fractures [11]. However, many
of those fractures are displaced and relatively obvious on
radiographs.

It is known that scaphoid fractures can have long-term
consequences if not properly diagnosed. A previous study
applied five deep learning algorithms to detect wrist, hand
(including scaphoid), and ankle fractures; however, they
did not report their algorithm’s performance for scaphoid
fractures specifically [13]. As such, it is not yet clear
whether deep learning algorithms will be useful for the
detection of relatively subtle and often radiographically
invisible nondisplaced femoral neck or scaphoid fractures
that are often overlooked by humans, particularly non-
specialists [9].

Therefore, we asked: (1) What is the diagnostic ac-
curacy, sensitivity, and specificity of a deep learning
algorithm in detecting radiographically visible and oc-
cult scaphoid fractures using four radiographic imaging
views? (2) Does adding patient demographic (age and
sex) information improve the diagnostic performance of
the deep learning algorithm? (3) Are orthopaedic sur-
geons better at diagnostic accuracy, sensitivity, and
specificity compared with deep learning? (4) What is the
interobserver reliability among five human observers
and between human consensus and deep learning
algorithm?

Patients and Methods

Data Set and Pre-processing

Our institutional review board approved this retrospective
study. Our institution still uses a paper medical record,
which makes it difficult to search for patients with specific
diagnoses and tests. The picture archiving and communi-
cation system (PACS) is electronic and easier to search.We
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used two strategies to identify at least 300 scaphoid series
of radiographs.

The first strategy was based on the fact that clinicians in
our institution usually order an MRI in patients with sus-
pected scaphoid fractures and normal radiographs and a CT
with radiographically visible scaphoid fracture. This
strategy identified MRI and CT of the scaphoid and then
sought corresponding radiographs of scaphoid fractures.
We searched the PACS database using the terms “MR
scaph”, “CT hand”, “CT wrist”, and “CT extr” and iden-
tified 326 patients: 150 that were excluded because the
radiographs were incomplete or distorted by cast or splint
materials and 176 with adequate radiographic scaphoid
series including 13 MRI-confirmed fractures, 59 CT-
confirmed fractures, and 104MRI-confirmed nonfractures.

In the second strategy, we searched PACS for “Xr
scaph” and searched them one by one for a corresponding
MRI or CT image and an adequate series of radiographs not
distorted by plaster. We found 124 additional patients in-
cluding 10 with MRI-confirmed fractures, 68 with CT-
confirmed fractures, 46 MRI-confirmed nonfractures, and
17 CT-confirmed nonfractures. Two observers (DWGL,
AEJB) used this strategy to identify patients until we had
150 radiographs of scaphoids with a fracture (127 visible
on radiographs and 23 only visible on MRI) and 150
without a fracture, numbers chosen before starting the
search and based on typical training strategies. Age and sex
demographics were provided by PACS. The mean age at
diagnosis was 36 years (SD 16), and 62% (185 of 300) of
patients were male. We randomly divided the dataset into a
train, a validation, and a test group (180:20:100), each di-
vided 50:50 by presence of a fracture. The radiographically
invisible fractures were randomly and evenly distributed
between the three groups. Tomatch the predefined image size
of the deep learning framework (Fig. 1), we manually crop-
ped and resized all Digital Imaging and Communications in
Medicine (DICOM) files into a 350 x 300 pixels rectangle
capturing the scaphoid (see Appendix 1; Supplemental
Digital Content 1, http://links.lww.com/CORR/A353). By
automatically rotating, zooming, changing height/width, and
horizontal/vertical flipping, all preformatted images were 10-
fold augmented with the intent to increase robustness of the
algorithm.

Algorithm: Convolutional Neural Network

Convolutional neural networks (CNNs) are complex
algorithms resembling interconnected neurons in the hu-
man brain. CNNs are a form of deep learning commonly
used to analyze images. In deep learning, the computer
analyzes both features that are recognizable to humans (for
example, the eyes or the nose) and features that are not
recognizable to humans (such as edges or transitions). A

CNN learns by developing and testing algorithms again
and again (in iterations) until it has optimized its ability to
identify the feature assigned: in this case, fracture of the
scaphoid. When approaching a new image recognition
task, it can be helpful to start with a CNN that is already
trained to identify features in images. We used an open-
source pretrained CNN (Visual Geometry Group, Oxford,
United Kingdom [18]) trained on more than 1 million non-
medical images with 1000 object categories [16] (see
Appendix 2; Supplemental Digital Content 2, http://links.
lww.com/CORR/A354).

A test group of 100 images was randomly selected for
use in the tests to determine the algorithm performance.
We evaluated the model using the following perfor-
mance metrics: area under the receiving operating
characteristic (AUC) curve, accuracy, sensitivity, and
specificity. We set the diagnostic cutoff point at a value
that maximized sensitivity, at the cost of a slightly de-
creased specificity [3, 8, 9].

Codes were written in Python Version 3.6.8 (Python
Software Foundation, Wilmington, DE, USA) with the
packages scikit-learn (0.20.3) and TensorFlow (1.13.1).

Human Observers

We compared the performance metrics of the model with
five surgeons (RLJ, JND, MMAJ, NK, JWW). Three or-
thopaedic trauma surgeons (16, 3, and 2 years after com-
pletion of residency training) and two upper limb surgeons
(25 and 2 years after completion residency training) each
reviewed the same 100 patients as the model. In our hos-
pital, upper limb surgeons deliver care for the entire upper
extremity. The surgeons were not aware of the total number
of fracture and nonfracture patients in the test set. All
fractures were presented as uncropped Digital Imaging and
Communications in Medicine (DICOM) files, which we
loaded into Horos (version 3.3.4, Annapolis, MD, USA).
Surgeons were asked to identify the presence or absence
of a scaphoid fracture on four radiographic views. Again,
we calculated the accuracy, sensitivity, and specificity for
each surgeon as well as the mean among surgeons for each
measure to compare with the CNN.

Statistical Analysis

Continuous variables were presented with mean and SD
and categorical variables with frequencies and percentages.

Accuracy is defined as the proportion of correctly
detected cases among all cases. The AUC reflects the
probability that a binary classifier will rank a randomly
chosen positive instance higher than a randomly chosen
negative one [6]. An AUC of 1.0 corresponds to perfect
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classification, whereas 0.5 indicates a prediction equal to
chance. Sensitivity corresponds to the proportion of correctly
identified fractures among all actual fractures, while speci-
ficity refers to the proportion of correctly identified non-
fractures among all nonfractures. We calculated 95%
confidence intervals using a Z-score of 1.96. Overlapping
95%CIs indicate no significant difference. AMcNemar’s test
was used to compare sensitivity and specificity between the
algorithm andhuman observers. The probability of a scaphoid
fracture generated by the CNN, sex, and age were included
in amultivariable logistic regression to determinewhether this
would improve the algorithm’s diagnostic performance.

Kappa, which is a chance-corrected measure, corre-
sponds to the agreement among observers. We used
Fleiss’ kappa to determine interobserver reliability among
surgeons for evaluating the presence or absence of
scaphoid fractures. We used Cohen’s kappa to calculate
reliability between the CNN and majority vote of human
observers. According to Landis and Koch [10], a kappa
between 0.21 and 0.40 reflects fair agreement, a kappa
between 0.41 and 0.60 indicates moderate agreement, a
kappa between 0.61 and 0.80 reflects substantial agree-
ment, while a kappa above 0.80 indicates almost perfect
agreement .

Fig. 1 A-D A radiographic scaphoid fracture series for patients with a clinical suspicion for
scaphoid fracture at our hospital. The following four projections were fed into the deep
learning framework: (A) posterior-anterior ulnar deviation; (B) uptilt (that is, an elongated
view with tube angle adjusted over 30°); (C) lateral; and (D) 45° oblique projections. The
white boxes illustrate the cropped and resized radiographs (350 x 300 pixels) that are fed
into the deep learning framework (VGG 16).
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We performed statistical analyses using Stata 15.0
(StataCorp LP, College Station, TX, USA) and RStudio
(Boston, MA, USA) with the packages CalibrationCurves,
ggplot2, grid, and precrec.

There were no missing data.

Results

Performance of CNN

For detection of scaphoid fractures among suspected
scaphoid fractures, the CNN reported an AUC of 0.77
(95%CI 0.66 to 0.85) (Fig. 2). The CNN correctly detected
72 of 100 patients (accuracy 72% [95% CI 60% to 84%]).
Eight of 50 confirmed scaphoid fractures were not identi-
fied (sensitivity 0.84 [95% CI 0.74 to 0.94]), while 20 of 50
patients without a fracture were incorrectly diagnosed as
having a fracture of the scaphoid (specificity 0.60 [95% CI
0.46 to 0.74]).

Performance of CNN Combined with
Patient Demographics

Combining age and sex with the generated probabilities of
the CNN did not improve the AUC (0.81; 95% CI 0.73 to
0.89). The output of this model was converted into a for-
mula for calculating the probability of a fracture (see
Appendix 3; Supplemental Digital Content 3, http://links.
lww.com/CORR/A355).

Performance of CNN Compared with
Human Observers

Specificity favored the human observers (five orthopaedic
surgeons 0.93 [95% CI 0.87 to 0.99] versus CNN 0.60
[95% CI 0.46 to 0.74]; p < 0.01). Accuracy for dis-
tinguishing between scaphoid fractures and nonfractures
was comparable between human observers and the CNN
(five orthopaedic surgeons 84% [95% CI 81% to 88%]
versus CNN 72% [95% CI 60 to 84]) (Table 1). Sensitivity
was also comparable between the CNN and human
observers (five orthopaedic surgeons: 0.76 [95% CI 0.70 to
0.82]) versus CNN: 0.84 [95% CI 0.74 to 0.94]; p = 0.29).

Six scaphoid fractures were missed by all surgeons and
therefore considered occult fractures. The CNN detected
five of six occult scaphoid fractures. In addition, five hu-
man observers detected three fractures that were missed by
the CNN. Two fractures, diagnosed by four of five human
observers, were also missed by the CNN. In contrast,
thirteen false positive suggestion of the CNN, were cor-
rectly detected by the surgeons.

The Interobserver Reliability of Human Observers

Interobserver agreement between five surgeons was higher
than between human consensus and the algorithm (0.74
[95% CI 0.66 to 0.83] versus 0.34 [95% CI 0.17 to 0.50])
(Table 2).

Discussion

In medicine, deep learning has primarily been applied to
image analysis. In a research setting, use of deep transfer
learning showed promising performance for fracture de-
tection and classification for relatively straightforward
clinical scenarios [11]. It is not yet clear that deep learning
will be useful for radiographic fracture detection in sce-
narios where fractures are often overlooked by human
observers. Using a relatively small data set of 300 patients,
our deep learning algorithm demonstrated a moderate
better overall performance for detection of radiographi-
cally visible and occult fractures (AUC 0.77 [95% CI 0.66
to 0.85]) and human observers had notably better speci-
ficity. The algorithm might have performed better if pro-
vided with more data.

This study has several limitations. First, we selected our
patients from readily available and searchable radiology
reports and intentionally introduced a spectrum bias by
collecting 150 MRI- or CT-confirmed fractures and 150
confirmed nonfractures. Although this was needed to suf-
ficiently train the algorithm, readers should keep in mind
that our data set does not represent the true prevalence of

Fig. 2 This figure depicts the receiver operating curve for the
CNN at the optimal diagnostic cutoff point (0.37).
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radiographic scaphoid fracture appearance. Second, we
were only able to include 300 patients because we could
only search a 9-year period starting in January 2010. Three
hundred radiographs is a relatively small sample size for
deep learning, but more than adequate for logistic re-
gression. A larger data set might improve the diagnostic
performance of the CNN. We cannot be certain because, to
this point, there is no consensus on a priori sample size in
deep learning. It depends on the specific image-analysis
task, the quality of the data set, the programming techni-
ques used, and type of deep learning algorithm applied
[14]. Third, the ground truth labels (that is, the reference
standard diagnosis of scaphoid fracture or not) are based on
radiologist interpretations of CT or MRI images, which
have limited reliability and untestable accuracy. Given the
small number of MRIs with diagnosed fracture and CT
with diagnosed nonfractures, we believe any misdiagnoses
would have little influence on the model. Fourth, radio-
graphs were manually cropped and resized by one in-
vestigator (DWGL), which might introduce bias. However,
given that cropping was assisted by an easy-to-use program
scripted in Python, we feel it is very likely that another
investigator would resize the images similarly. But, one
should keep in mind that cropped radiographs may not
reflect a clinical scenario, as other potentially relevant
findings in a real-size radiograph were not assessable (such
as, concomitant fractures or scapholunate dissociation).
Furthermore, irrelevant regions in a radiograph were re-
moved and therefore not evaluated by the model. A more
in-depth deep learning framework, accounting for the en-
tire wrist radiograph, merits further study. For now, the

memory capacity of graphics processing units limits the
usable image size. Fifth, among the five human observers,
two surgeon raters treated some of the patients in the study,
which might have influenced their diagnoses. We feel this
would have negligible influence on our findings. Sixth,
although incorporating injury details, signs, and symptoms
would have been of interest to incorporate in a logistic
regression model as it typical for a clinical prediction rule,
they were not commonly reported in a patient’s medical
record. CNNs only evaluate images, but the probabilities
generated can be included in clinical prediction rules.

The AUC of the CNN for detection of scaphoid frac-
tures is not good enough to replace human observers or
more sophisticated imaging, but it does suggest the po-
tential to be used as a pre-screen or clinical prediction rule
for triage of suspected scaphoid fractures that might benefit
additional imaging. Displaced proximal humerus, distal
radius, and intertrochanteric hip fractures are relatively
easy to detect and not a good test of the potential utility of
artificial intelligence [3, 9, 17]. Subtle and invisible frac-
tures may be more of a challenge. Prior studies using deep
learning algorithms to detect radiographically subtle hip
and distal radius fractures had better performance than our
model [7, 9, 12, 17]. Larger data sets, use of other pre-
trained CNNs, varying degrees of algorithm refinement and
hyper-parameter tuning, as well as other anatomical frac-
ture locationsmay explain why these studies differ with our
findings. Also, we might not have had sufficient images to
train the upper layers of the pretrained CNN.

Adding sex and age did not improve diagnostic per-
formance. Future research might investigate whether

Table 1. A comparison of performance metrics between the CNN and the mean of five orthopaedic surgeons

Diagnostic performance
characteristic Orthopaedic surgeons CNNa p value

Accuracy (95% confidence interval) 84% (81% to 88%) 72% (60% to 84%) b

Sensitivity (95% CI) 0.76 (0.70 to 0.82) 0.84 (0.74 to 0.94) 0.29

Specificity (95% CI) 0.93 (0.87 to 0.99) 0.60 (0.46 to 0.74) < 0.01

aCNN = convolutional neural network at cutoff point 0.37.
bWe did not calculate a p value, since McNemar’s test is sensitive to the proportion of fractures as well as nonfractures.
Bold indicates statistical significance (p < 0.05).

Table 2. Contingency table comparing prediction of convolutional neural network to human consensus (agreement $ three
surgeons)

Fracture (n = 50) Non-fracture (n = 50)

Fracture (predicted) CNN 42 20

Human consensus 38 1

Non-fracture (predicted) CNN 8 30

Human consensus 12 49

CNN = convolutional neural network
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incorporating computer analysis of images improves per-
formance of clinical prediction rules that include de-
mographics, injury details, symptoms, and signs to better
triage the use of MRI as well as increase its diagnostic
performance by increasing the pretest odds of a fracture [4,
15]. The pretest odds could be increased with CNNs,
clinical prediction rules, or a combination of both.

Our deep learning algorithm was less specific than hu-
man observers but detected five of six occult fractures in
the test dataset. On the other hand, caution is warranted
because the CNN missed some radiographically visible
fractures.

The finding that reliability of fracture diagnosis was
substantial (0.74) for the five orthopaedic surgeons and only
fair (0.34) between the surgeons and the CNN we interpret
as a reflection of the difficulty the deep learning algorithm
has with detecting radiographically visible fractures. At the
diagnostic cutoff point—chosen to maximize sensitivity—
the algorithm’s specificity was considerably lower com-
pared with human observers. A different cutoff point may
have resulted in more or less the same reliability for
detecting scaphoid fractures. It may go without saying that
CNNs are known for being highly complex and, to date, not
intuitive for the end-user. It is therefore not possible to un-
derstand how a CNN reaches its suggestion.

In conclusion, using a relatively small dataset, a deep
learning algorithm was inferior to human observers at
identifying scaphoid fractures on radiographs. Further
study may help evaluate whether a larger dataset and al-
gorithm refinement can increase the performance of deep
learning for the diagnosis of scaphoid fractures, some of
which are radiographically invisible. In addition, in-
corporating predictions from a deep-learning algorithm
into clinical prediction rules that also account for de-
mographics, injury details, symptoms, and signs merits
further study.
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