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The definition of “normal” values for common laboratory tests often governs the 

diagnosis, treatment, and overall management of tested individuals. Some test results may 

depend on demographic traits of the tested population including age, race, and sex. Ideally, 

laboratory test results should be interpreted in reference to a population of“similar”

“healthy”individuals. In many settings, however, it is unclear exactly who these individual 

sare.How much population stratification and what criteria for healthy individuals are 

optimal? In particular, with the evolution of medicine into fully personalized or “precision” 

medicine and the availability of large-scale data sets, there may be interest in trying to match 

each person to an increasingly granular normal reference population. Is this precision 

feasible to obtain in reliable ways and will it improve practice?

There are limited systematic analyses of baseline variation across demographically diverse 

population strata (including race/ancestry, gender/sex, age, and socioeconomic strata of the 

population) for even widespread clinical laboratory tests. Even after decades of routine use, 

it may be that reference standards should be reconsidered for some populations.For example, 

he moglobin A1c (HbA1c)1 was recently found to systematically underestimate past 

glycemia in African American patients with the sickle cell trait.2 There is even less 

documentation of whether and how more granular stratification correlates with clinical 

outcomes. Answering these questions would require studies that assess the outcomes of 

individuals with laboratory measurements classified as normal with one system vs abnormal 

with another. Outcomes could include both natural history and treatment benefits and harms. 

With limited data, small laboratory studies, and incomplete capture of long-term outcomes, 

this has been difficult to achieve.

However, with the proliferation of large data sets emblematic of precision medicine,3 it is 

becoming feasible to study stratified variation and clinical outcomes at scale. Sample size 
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limitations are no longer a challenge. However, the task of defining a “normal” population 

becomes even more challenging. Who should define normality and using which criteria? 

When should standardized efforts be used across populations and in-strumentation?How can 

multiplicity across myriad population strata be overcome as the normal population becomes 

more precise and personalized?

It is essential to answer these questions for widely used clinical laboratory tests such as 

complete blood cell count and blood chemistries before delving into more rare tests. Such 

tests are a routine entry point for invasive and expensive follow-up tests and procedures, yet 

remain poorly characterized across strata. Data sets sufficiently capacious to study stratified 

variation at scale include select research cohorts, electronic health records, and insurance 

claims data sets. Although some data sets may be queried with relative ease (eg, electronic 

health records at an investigator’s institution or public claimsdata), how generalizable 

findings are to other clinical settings is unclear.4

Challenges of Precision Medicine and Big Data

Defining Normality

The first challenge to ensuring precise application of clinical laboratory testing is defining a 

“healthy” population to estimate the normal range of variation across popu lation strata. A 

set of criteria for normality (eg, absence of chronic disease) may appear reasonable but 

substantial differences can result from 2 sets of equally reasonable criteria. More 

specifically, the Clinical and Laboratory Standards Institute (CLSI) guidelines state that 120 

“reference individuals”should beusedto establish reference intervals for labora tory analytes.
5 In practice, researchers and testing laboratories may use fewer than 120 individuals, often 

justified as sufficient to verify, rather than establish, an existing reference range. Anecdotal 

reports from some laboratories of major hospitals suggest that only 20 individuals may often 

be used for this purpose.

Furthermore, as the guideline states, health “is a relative condition lacking a universal 

definition.” The way in which healthy individuals are defined is not standardized and the 

characteristics of the tested population may vary considerably between laboratories. To 

illustrate the potential effect of this, the US Centers for Disease Control and Prevention’s 

National Health and Nutrition Examination Survey (NHANES)6 2013–2014 survey data 

were examined using 3 competing definitions of normality: (1) based on the absence of 

common disease conditions (eg, diabetes, coronary heart disease, cancer) (62% of the 

NHANES population sample); (2) based on an overall excellent self-rating of health (16% of 

the population sample); and (3) including only individuals aged 18 to 40 years (35% of the 

population sample).

The 3 definitions are all defensible but lead to significant variation in the inferred normal 

range of HbA1c, defined as lower than the 95th percentile (eFigure A in the Supplement). 

For example, 12%, 16%, and 27%, respectively, of all individuals would be flagged as 

“abnormal” using the 3 methods of defining reference ranges, based on being out of the 

reference range of at least 1 demographic stratum. Furthermore, using very stringent 

definitions for normality can lead to the paradox of “normal” becoming a rarity. For 
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example, only 5% of the NHANES population sample have none of these disease conditions, 

self-rate their health as excellent, and are aged 18 to 40 years.

Multiplicity

Multiplicity across population strata causes further problems. When the distribution of an 

analyte (such as HbA1c) is examined over many subpopulations, even when there is no 

difference across the subpopulations, many differences are likely to be detected if there is 

not a correction for the number of comparisons performed. Dealing with multiplicity is 

standard in some research communities, such as human genetics, but the issue is equally 

important in laboratory analyte comparisons in which setting reference thresholds may be 

much less coordinated. It is especially risky when only specific comparisons of strata are 

published (eg, based on having achieved statistical significance). The extent of such selective 

reporting biases in information on reference ranges is unknown.

A simple simulation illustrates how daunting this problem might be. Assuming there are no 

differences in the true analyte distributions across 5 race × 10 age × 2 gender × 3 

socioeconomic = 300 population strata, if 120 individuals are repeatedly sampled (eg, from 

the same subpopulation) the phantom appearance of statistically significant differences will 

almost always be produced (many of which might seem to also have clinical relevance) even 

when none exist (eFigure B in the Supplement). The problem is exacerbated if the reference 

intervals are derived from fewer than the standard 120 individuals. The risk of erroneous 

inferences about reference ranges is multiplied by the number of analytes that could be 

tested.

Potential Solutions

The challenges involved in computing reference intervals while over coming multiplicity can 

lead to suboptimal use of a test across a broad and diverse population, reducing both 

sensitivity and specificity and, eventually, clinicalutility. Fortunately, the same large-scale 

data sets that present challenges to computing reference intervals (eg, electronic health 

records, insurance claims data) may also contain solutions. First, if longitudinal outcomes 

data can be reliably linked at the individual level, the clinical importance of differences in 

reference intervals may be testable. Second, shared large-scale databases may enable 

systematic analyses across data sets and laboratories while explicitly accounting for the scale 

of multiple testing. Third, definitions of “normal” ranges can be tailored based on patient 

attributes and delivered to physicians at the point of care. Fourth, and perhaps most 

emblematic of the precision medicine movement, computationally derived genetic ancestry 

(now routinetodeterminewithgenotypingarraysorsequencing)pairedwith laboratory testing 

data should allow moving beyond the often “administratively assigned” and problematic 

conflation of race and ancestry ubiquitous in health care data.7

Achieving these goals will likely benefit from the efforts of multiple groups including 

researchers, laboratories, health care institutions, journals, and funders. Researchers and 

laboratories can start by broadly sharing estimated reference intervals across demographic 

strata and documenting design choices such as outlier procedures and inclusion criteria, 

allowing other researchers to reproduce their calculations.Health care institutions could 
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make consented patient data available to compute reference ranges for their populations. 

Tailored reference ranges may be possible to provide at the point of care. Journals and 

funders could enforce (eg, as precondition for publication or funding)or incentivize 

requirements that promote data sharing and explicit descriptions of selection criteria and 

analytic methods.Testing laboratories could share consented records that enable researchers 

to reevaluate claims about clinical utility across population groups. As several countries 

around the world embark on establishing large-scale research biobanks, it will be crucial to 

compute precise reference ranges and rigorously test when and how this level of precision 

improves care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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However, with the proliferation of large data sets emblematic of precision medicine, it is 

becoming feasible to study stratified variation and clinical outcomes at scale.
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