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Transcriptome profiling can provide information of great value in clinical decision-making, yet RNA 
from readily available formalin-fixed paraffin-embedded (FFPE) tissue is often too degraded for 
quality sequencing. To assess the clinical utility of FFPE-derived RNA, we performed ribo-deplete 
RNA extractions on > 3200 FFPE slide samples; 25 of these had direct FFPE vs. fresh frozen (FF) 
replicates, 57 were sequenced in 2 different labs, 87 underwent multiple library analyses, and 16 had 
direct microdissected vs. macrodissected replicates. Poly-A versus ribo-depletion RNA extraction 
methods were compared using transcriptomes of TCGA cohort and 3116 FFPE samples. Compared to 
FF, FFPE transcripts coding for nuclear/cytoplasmic proteins involved in DNA packaging, replication, 
and protein synthesis were detected at lower rates and zinc finger family transcripts were of poorer 
quality. The greatest difference in extraction methods was in histone transcripts which typically 
lack poly-A tails. Encouragingly, the overall sequencing success rate was 81%. Exome coverage was 
highly concordant in direct FFPE and FF replicates, with 98% agreement in coding exon coverage 
and a median correlation of whole transcriptome profiles of 0.95. We provide strong rationale for 
clinical use of FFPE-derived RNA based on the robustness, reproducibility, and consistency of whole 
transcriptome profiling.

Abbreviations
FF	� Fresh frozen
FFPE	� Formalin-fixed paraffin-embedded
TCGA​	� The Cancer Genome Atlas
RNA-Seq	� RNA-sequencing
TPM	� Transcript per million
TIN	� Transcript integrity number
TB	� Transcript bias
OCT	� Optimal cutting temperature
NC	� Non-coding
NMD	� Nonsense mediated decay
miRNA	� MicroRNA
poly-A	� Poly-adenylated
FDA	� Food and Drug Administration

Tumor genomic and transcriptomic data typically from targeted panels or microarrays are widely used in clinical 
cancer diagnosis, prognosis, and therapy recommendations. Numerous studies have shown the utility of RNA 
sequencing (RNA-Seq) for advancing precision medicine and informing clinical decisions1–4. RNA-Seq data is 
used for gene expression5 and allele-specific expression profiling6, fusion detection7, variant calling8 and selec-
tion of immunotherapy9. However, often only formalin-fixed paraffin-embedded (FFPE) tissues are available 
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for analysis in clinical settings and RNA extracted from such samples can be highly degraded6,10. Despite this, 
FFPE RNA is routinely used for analysis in several FDA-approved tests11–13.

To improve data reliability of FFPE-derived RNA, others such as Hoover et al. have developed improved 
methods for extracting high-quality FFPE-RNA by integrating a new micro-homogenizing (mH) tool14. In 
library prep, Zhao et al.15 demonstrated that compared to mRNA-Seq and microarray, Ribo-Zero-Seq provides 
equivalent mRNA coverage uniformity, genome-based aligned reads, and high-quality transcript quantification; 
while having the ability to recover non-polyadenylated and short-transcript RNAs. The ribosomal RNA deple-
tion approach has been widely accepted as the preferred method of RNA isolation for degraded or low-input 
samples16–18. Another improvement comprising use of an “RNA Direct” workflow including targeted capture 
using the Agilent Strand-Specific RNA Library Prep kit has also been described19.

As a contribution to the ongoing improvement in utility of FFPE-RNA, herein we describe our assessment 
of the reproducibility, quality, and robustness of clinical FFPE-derived RNA at every step of the extraction and 
sequencing process (Fig. 1A,B, Supplementary Fig. S1) and provide evidence and rationale for the utility of whole 
transcriptome profiling of FFPE-derived samples (Fig. 1C).

Results
Sequencing success and read composition analysis.  In examining a large cohort of FFPE patient 
samples for RNA sequencing we found that 86% of extracted RNA was successfully prepared for library prep and 
94% of those samples had a sufficient amount of non-ribosomal RNA, resulting in an overall RNA sequencing 
success rate of 81%. The generated FFPE cohort RNA-Seq data resulted in an exonic and intronic mapping rates 
(Fig. 2A) that are consistent, around 35%, with previously published studies20,21 of FFPE-derived RNA-Seq with 
RNA isolation by rRNA depletion. Exon regions and ncRNAs had the highest coverage (Fig. 2B). When looking 
at strand bias, we observed that on average 94% of sequenced exomic bases map to a strand concordant with the 
annotated genomic strand of the mapped gene when no other genes or genomic features were annotated on the 
other strand. RNA that maps to genomic features in the “Repeats” categories (see Supplementary Methods: Read 
and base composition analysis) shows higher percentages of anti-sense bases (Fig. 2C), consistent with anti-
sense regulation of transcripts. Furthermore, exon bias correlated negatively with TIN (Supplementary Fig. S2A) 
and positively with GC content (Supplementary Fig. S2B). The strand bias close to 50% for enhancers in Fig. 2C 
shows that enhancers are transcribed on both strands (the enhancers do not have strand annotations so we refer 
to the forward strand as “sense” for this analysis). In-depth profiling of stranded RNA coverage in enhancers also 
supports dual-strand transcription and shows that on average bias switches from the positive strand upstream of 
enhancers to the negative strand downstream of these sites (Supplementary Fig. S3).

RNA‑Seq replicability.  The majority of samples with poor replicability exhibited poor RNA transcript 
quality when assessed by two separate CLIA-certified labs (Fig. 1C), particularly for the TIN metric22,23 (Fig. 1B). 
Extraction replicates (Supplementary Fig. S4A) with high TIN showed consistent expression quantification with 
correlation greater than 0.95 (Supplementary Figs. S2B–D, 5A). We found that GC content, fragment size, and 
exome coverage also affected replicate correlations (Supplementary Fig. 5B–E). When considering other artifacts 
that might result in differences in assessment between the two labs, we found that there was no bias in template 
length and exome coverage between them (Supplementary Fig. S6A,B). However, we observed that one of the 
labs had higher concentration but lower yield and better ribo-depletion quality (Supplementary Fig. S6C,E). The 
differences in ribo-depletion could account for some of the differences in transcript quality we observed among 
the extraction replicates (Supplementary Fig. S7). Library replicates showed high reproducibility (Supplemen-
tary Fig. S8) and replicates from the same extraction often exhibited high correlations even when corresponding 
extraction replicate pairs had low correlations (Supplementary Fig. S9), demonstrating sequencing consistency 
and robustness for the same material. This was also supported by comparison of various quality metrics between 
corresponding library replicates (Supplementary Figs. S10 and 11). In addition, we did not find that correla-
tions of transcriptional profiles in extraction replicate pairs differed significantly if the genes in the analysis are 
restricted to COSMIC24 cancer genes vs. whole transcriptome (Wilcoxon test p = 0.69; Supplementary Fig. S12). 
We also examined differences between microdissected and macrodissected replicate samples (n pairs = 16) com-
prising various cancer types (Supplementary Fig. S13A). We found that, while the correlations of transcriptional 
profiles varied, each replicate sample is most similar to its counterpart (Supplementary Fig.  S13B), with the 
median correlation calculated to be 0.982. In comparisons of gene expression differences in direct replicate pairs, 
we observed a trend of the most extreme differences increasing from library replicates to microdissection rep-
licates (Fig. 1D). Furthermore, this variance decreases with higher replicate correlation (Fig. 1E). These trends 
persist whether the whole transcriptome is analyzed or analysis is restricted to COSMIC cancer genes.

FFPE versus FF/OCT matched samples.  In analysis of 25 cases with paired FF/FFPE samples, we found 
that RNA fragments from FFPE samples tend to be shorter, have higher GC bias (Supplementary Fig. S14A,B), 
and exhibit lower transcript integrity (Supplementary Fig. S14D,E), which suggested that lower quality RNA is 
extracted from FFPE. Despite poorer FFPE-derived RNA quality overall, similar transcriptome coverage was 
observed (Supplementary Fig. S15A). Interestingly, we observed a better mapping rate in FFPE samples (Sup-
plementary Fig. S15B), which could be a direct result of a smaller fragment size in FFPE-derived RNA, as well 
as higher fraction of reads coming from ribosomal RNA detected in FFPE samples (Supplementary Fig. S15C). 
Transcriptional profile correlations of FFPE and FF/OCT replicates varied more than extraction replicates, but 
less than biologically distinct tumors (Fig. 1C; Supplementary Figs. S16 and S17). The observed median correla-
tion of matched pairs was 0.954, much higher than previously reported correlations in expression quantification 
between FFPE and FF/OCT samples25–27. We found that higher correlation between replicate pairs corresponds 
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to pairs with higher TIN, lower GC content, and longer template length, especially in the FFPE cohort (Sup-
plementary Figs. S18 and 19). This is an important finding as it suggests that a sample’s RNA quality, which may 
easily be quantifiable using several metrics post-sequencing, is crucial to generating clinically-relevant gene 
expression data. Having well-calibrated RNA quality thresholds ensures robust and reliable gene expression 
quantification.

The consistency of coverage of individual transcripts shows moderate systematic differences between FFPE 
and FF/OCT replicates. In comparison to their FF/OCT counterparts, some FFPE replicates have many more 
genes with low TIN (Fig. 3A,B; Supplementary Fig. S20). Per-gene TIN curves in FF/OCT samples consistently 
follow a smooth unimodal distribution with most genes expressing transcripts with high integrity RNA. Many 
of the FFPE samples show a bimodal distribution with fewer genes expressing transcripts with high integrity 
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Figure 1.   Overview of the study flow scheme, data sets, and sequencing robustness. (A) A schematic of the 
different datasets analyzed in the study is shown. We collected and analyzed replicate sets at each step in the 
sample collection and sequencing process. (B) A schematic representation of post-sequencing transcript 
quality metrics shows we utilize transcript integrity number (TIN) and 3′ transcript bias metrics that capture 
the consistency and uniformity of coverage for a given transcript. (C) Pairwise correlations of transcriptional 
profiles of replicate pairs are shown, with each replicate type separated by dashed horizontal lines. The 
correlations of matched replicates are individual points, broken into high TIN and low TIN groups, based on 
transcript integrity check as described in Supplementary Methods. Densities on the bottom of the plot indicate 
various background distributions of correlations. (D) Expression difference analysis per each replicate group is 
presented. The y-axis quantifies the greatest differences in the gene expression quantifications per replicate pair, 
with types of replicates indicated along the x-axis. This plot shows that the library replicates are the most similar 
in expression quantification, while FFPE vs. FF/OCT replicates are least similar. (E) Expression differences from 
(D) were plotted against correlations of transcriptional profiles in replicate pairs, demonstrating anti-correlation 
relationships between the two metrics and showing their relationship to the replicate type. For both (D) and (E), 
only high-TIN pairs are plotted and only COSMIC cancer genes were used for analysis.
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RNA and more genes expressing transcripts with poor quality RNA in comparison to FF/OCT. Shorter average 
fragment length and higher GC content correlated with transcripts with low TIN values (Fig. 3A–C). Genes 
encoding zinc finger proteins tended to be amongst low TIN genes in FFPE samples, suggesting that shorter 
RNA transcripts cause multiple mapping issues for highly homologous genes (p = 8.12e−09).

We found again that FFPE versus FF/OCT replicate samples are most similar to their corresponding replicate 
pair (Fig. 3D). Transcriptional profiles between matched samples were highly correlated (Fig. 1C; Supplementary 
Figs. S16 and 17), with a median correlation of 0.982. Though FFPE vs. FF/OCT replicates exhibited slightly 
lower correlations than FFPE extraction replicates, the differences are systematic rather than random and thus 
potentially removable by normalization. Focused analysis of clinically-significant tumor markers28 (n = 31) dem-
onstrated similar expression levels in FFPE and FF/OCT samples. In fact, all of the genes were within absolute 
magnitude of 2 log expression levels (Fig. 4A), indicating consistency of quantification of cancer drivers between 
FFPE and FF/OCT samples. The expression differences between matched FFPE and FF/OCT samples show 
enrichment for cellular localization gene sets (Fig. 4B). Transcripts coding for nuclear and cytoplasmic proteins, 
specifically those involved in DNA packaging, replication, and protein synthesis, were higher in FF/OCT samples 
in comparison to FFPE samples (linear model fit using weighted least squares for each gene29).

FFPE ribo‑depletion vs. FF poly‑A selection.  To understand systemic differences between FFPE ribo-
deplete-extracted RNA and gold standard FF poly-A selected RNA, we compared our large set of clinical FFPE 
transcriptional profiles (n = 3116), comprising a wide variety of cancer types (Supplementary Fig.  S21), and 
assessed comparability to TCGA FF samples. While 113 of TCGA tumors were ribo-depleted and preserved 
in FFPE, the majority of TCGA samples (n = 10,379) were poly-A selected and preserved FF. We used the same 
bioinformatics pipeline, post-sequencing QC, and transcript quantification tools for both datasets. We observed 
that while TIN is higher in TCGA FF samples (Supplementary Fig. S22A), our FFPE samples show better cov-
erage across most transcripts (Supplementary Fig. S22B). A subset of transcripts in the clinical FFPE cohort 
exhibited lower TIN than those in TCGA (Supplementary Fig. S22C). This set of transcripts was also found to 
be enriched for genes coding for zinc finger proteins (p = 2.92e−18), consistent with our findings in direct FFPE 
versus FF replicates. We found that TCGA samples exhibit strong 3′ transcript bias (Fig. 5Ai) for longer tran-
scripts, an expected artifact of poly-A RNA isolation. In contrast, FFPE samples show slight 5′ bias (Fig. 5Aii) 
and much less dependence on transcript length, suggesting ribo-depletion is better at capturing transcripts with 
degraded 3′ tails. Accordingly, TCGA transcripts systematically exhibited 3′ bias compared to FFPE transcripts 
(Fig. 5Aiii).

As a part of the FFPE versus FF TCGA comparison, we developed a computational mapping methodology 
to project TCGA gene expression data into the same space as clinical FFPE cohort in order to correct for batch 
effects introduced by combining two such different datasets (Fig. 5Bi–ii). Upon applying this projection, we found 
the variable driving most RNA-Seq differences was cancer type (Fig. 5C) and not the sample cohort, FFPE or FF 
(Fig. 5D). When analysis was restricted to COSMIC cancer genes as opposed to the 3000 most varying genes, a 
projection of clinical FFPE and TCGA FF cohorts into 2-D space showed even less confounding by sample cohort 
variable, suggesting that not only our mapping methodology is well suited for biomedical oncology research 
and/or applications of mixed FF and FFPE cohorts, but also that relative expression quantifications of cancer-
related genes are highly consistent across FF and FFPE samples. We also found that our mapping methodology 
performs better in removing platform effects than the commonly used ComBat30,31 method, while preserving 
interpretability of gene-level quantifications (Wilcoxon test p <  = 2.2e−16; Supplementary Fig. S23).

Figure 2.   Read composition, coverage, and bias analysis. (A) Within the FFPE samples, read composition 
analysis reveals that most sequenced reads map to exon regions and genomic repeats. (B) Exons and ncRNA 
regions have the most read coverage. Mitochondrial features were not considered for this analysis. (C) Read bias 
within FFPE samples shows repeats regions have the highest percentages of antisense fragments.
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Prior to mapping TCGA RNA-Seq onto our clinical FFPE cohort, we compared expression levels of TCGA 
FFPE (n = 113) and TCGA FF (n = 10,266) samples to the clinical FFPE cohort separately. We found that TCGA 
FFPE expression is more consistent with clinical FFPE samples, with few highly differential outliers (Supple-
mentary Fig. S24). The majority of genes downregulated in the clinical FFPE samples in comparison to TCGA 
FFPE cohort encode for mitochondrial proteins (Fig. 6A, Supplementary Fig. S24B), which is expected given the 
use of different library preparation methodologies: RNAs coding for mitochondrial proteins have high sequence 
similarity to ribosomal RNA and are therefore often removed by ribo-depleting oligos. Since it is important 
to understand the prognostic and diagnostic utility of FFPE-derived RNA biomarkers, we assessed such util-
ity of several well-known molecular markers in breast carcinoma samples. We found that FFPE breast cohort 
stratification, based on expression quantifications of these markers, is consistent with TCGA FF breast samples 
(Supplementary Fig. S25), suggesting that FFPE-derived RNA markers retain their value for clinical assay use.

The differences between clinical FFPE and TCGA FF cohorts are compounded by differing RNA isolation 
methodologies. The genes that were most upregulated in the FFPE cohort include various histones (Fig. 6B), 
which are often not poly-adenylated32,33 and therefore are not captured by poly-A selection. This difference was 
observed before (Fig. 6A) and after (Fig. 6B) our mapping methodology was applied, highlighting that differ-
ences in RNA capture methods have a strong effect on downstream differential gene expression analysis. GSEA 
of tissue-specific differential expression (Supplementary Fig. S26) showed enrichment for nuclear cellular activity 
gene sets in FFPE samples and enrichment of cytoplasmic activity gene sets, such as mitochondrial organization 
and ribosomal functions, in TCGA samples (Fig. 6C).
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annotations are described by the color legend.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17597  | https://doi.org/10.1038/s41598-020-74483-1

www.nature.com/scientificreports/

Discussion
RNA-Seq data from FFPE-derived RNA has shown sufficient precision and sensitivity for biomarker discovery 
in breast cancer34 and has even been utilized for analysis of microRNA (miRNA) as a tumor classifier/target for 
therapeutic intervention35. But the use of RNA-Seq in clinical settings remains infrequent because of uncertainty 
concerning the quality of FFPE-derived RNA.

While others have addressed the issue of FFPE and FF comparison in smaller studies36,37 and have investi-
gated which protocols are best for preparation of RNA libraries20 or tools for read alignment on FFPE-derived 
samples38,39, our study concentrated on examining any intrinsic biases in the FFPE-derived gene expression data 
and assessing its utility in clinical applications. Our study also contains the largest, in number of samples, FFPE 
cohort published to date. We performed comprehensive analysis of various types of replicates at every stage of 
RNA sample fixation/storage, extraction, and sequencing and show that—when quality is controlled—gene 
expression quantification of FFPE-derived RNA is robust, consistent and reproducible. We introduce methodol-
ogy for evaluating sample RNA quality post-sequencing, and show that when this method is applied to samples, 
it produces high quality, high confidence results in replicate datasets.

We identified systematic trends and technical artifacts that affect gene expression profiling in FFPE samples. 
For example, we demonstrate that the sample fixation method accounts for the apparent increased expression 
of nuclear and cytoplasmic proteins in FF/OCT samples and the apparent increased expression of transmem-
brane and secreted proteins in FFPE samples. Similarly, some of the transcripts detected at higher rates in FF/
OCT samples are genes that encode for histone proteins, which have been shown to undergo critical chemical 
modifications in FFPE samples40. Further, while FF-derived RNA transcripts with a poly-A tails may be deemed 
more clinically relevant because they are destined for translation, some non-polyadenylated transcripts have 
been shown to be translated into peptides41 and are important in tumorigenesis or biomarkers in cancer42–44.

The results presented here comport with and represent a significant expansion on previous findings. Jovanovic 
et al.45 demonstrated that subtyping accuracy of FFPE and FF triple negative breast cancer (TNBC) samples 
increased with sequencing depth, and that samples with shorter archiving time (< 4 years) were subtyped more 
accurately, presumably due to reduced RNA degradation which is consistent with others investigators46. However, 
Jovanovic focused their analysis on genes that did not vary between platform type, tissue processing, and RNA 
isolation techniques, tacitly suggesting that certain transcripts were unreliable and should be excluded. Like 
Jovanovic, we noticed an inverse relationship between the archiving time and RNA quality of the samples. Here, 
we present evidence that focusing on driver genes does not increase quality substantially, but rather that quality 
metrics such as TIN and TB can be used to exclude poor quality samples and transcripts post-sequencing. Our 
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Figure 4.   Comparison of transcriptional profiles of FFPE—FF/OCT replicates. (A) A volcano plot of results 
for the linear model fit using weighted least squares for each gene performed on FFPE vs. FF/OCT expression is 
shown wherein the dashed line indicates an adjusted p-value = 0.05. Green points are genes that are differential 
for at least a log2 fold change of 2 and are significant after p-value adjustment. Genes for targeted clinical 
genomic tests (NCI tumor markers list) are shown in red. Several genes have been labeled to provide more 
insight into which genes are being represented. These labeled genes include those coding for the α subunit of 
glycoprotein hormones (CGA), beta-2-microglobulin (B2M), chorionic gonadotropin beta-subunit 2 (CGB2), 
fibrogen B beta chain (FGB), estrogen receptor 1 (ESR1), and kallikrein related peptidase 3 (KLK3). This scatter 
plot shows that none of these clinically important genes are differential between FFPE and FF/OCT replicates 
at statistically significant levels. (B) GSEA-based pathway enrichments of the differential expression analysis of 
FFPE vs. FF/OCT cohorts. All pathways listed here are up in FF samples. No statistically significant pathways 
were found up-regulated in FFPE samples.
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study suggests a quality threshold cutoff for TIN metric that can be used to identify samples with RNA quality too 
poor to perform reliable genomic analysis. Additionally, we provide a computational methodology to normalize 
out systemic differences in detected ribosomal RNA content in sequenced samples resulting from the differ-
ences in degree of sample degradation as well as differences in rRNA depletion among different FFPE samples.

Fortifying confidence in transcriptomic analysis of FFPE-derived RNA in clinical settings opens up a broad 
spectrum of possibilities to advance patient care and may lead to RNA sequencing becoming indispensable as a 
diagnostic and prognostic technology that may also reveal new targets for therapeutic intervention.

Methods
Patients samples, microdissection and preparation.  Tumor samples were obtained from patients 
across multiple clinical centers. These samples were analyzed as part of routine clinical care when the oncolo-
gists ordered a molecular diagnostic assay from NantOmics/NantHealth, Inc. These samples comprised a wide 
variety of solid tumor types (Supplementary Fig. S21). All methods were carried out in accordance with relevant 
guidelines and regulations and in the Declaration of Helsinki; informed consent was obtained from all subjects 
or, if subjects were under 18, from a parent and/or legal guardian; data were analyzed under approved company 
policies for handling de-identified patient information. This study underwent ethics review and was approved 
by an internal ethical review board at NantOmics/NantHealth, Inc.

From each FFPE tissue block, a single 4 µM and three 10 µM tissue sections were cut. The initial 4 μM sec-
tion was subjected to hematoxylin and eosin (H&E) staining and reviewed by a board-certified pathologist 
who identified and marked regions of malignancy. Using the marked-up image as a guide, areas of tissue were 
macrodissected to collect the desired regions.

Laser microdissection of FFPE sections was performed on a subset of FFPE samples for comparison of direct 
microdissection vs. macrodissected replicates (n pairs = 16). The pathologist marked up an H&E image, then 
mirrored that mark-up onto the FFPE section to guide the laser microdissection.

Figure 5.   Mapping of the TCGA poly-A cohort to FFPE ribo-deplete samples. Comparison of transcript bias 
between the two cohorts reveals (Ai) strong 3′ bias in TCGA poly-A data (the biggest point density is leaning 
in the y = x direction, to the right of the x = 0 line) and (Aii) slight 5′ bias in FFPE ribo-deplete data (the biggest 
point density is leaning slightly to the left of the x = 0 line). In parts (Ai) and (Aii), the dashed red line shows 
the position on the x-axis where the transcript bias is 0. (Aiii) When graphed together, TCGA transcripts have 
a clear 3′ bias compared to the same transcripts in the FFPE cohort. (B) PCA projection of the first 2 principal 
components of combined FFPE and TCGA cohorts before (i) and after (ii) mapping of TCGA into FFPE RNA-
Seq space is represented. (C) Shown is a t-SNE projection of the FFPE and TCGA cohorts after the mapping 
method is applied to TCGA; samples are colored by the cancer type. (D) The same t-SNE projection as in (C) is 
shown, but now colored by sample cohort. FFPE samples are yellow, TCGA samples are blue. TCGA and FFPE 
cohorts mix across cancer type groupings.
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In‑house FFPE RNA extraction and sequencing.  The RNeasy FFPE Kit (Qiagen, Venlo, Netherlands) 
was used for extraction and extracted material quantified using a Qubit fluorometer (ThermoFisher Scientific, 
Waltham, MA, USA). Samples with total RNA quantities of greater than 600 ng were prepped in duplicate using 
a KAPA Stranded RNA-Seq Kit with RiboErase (Kapa Biosystems, Wilmington, MA, USA) and sequenced to a 

Figure 6.   Comparison of transcriptional profiles of the FFPE cohort compared to TCGA samples. Per-gene 
mean expression comparison between our FFPE and TCGA cohorts before (A) and after (B) the mapping of 
TCGA into FFPE RNA-Seq space is shown. (C) Pathway MSigDB enrichments for each of the cancer type, 
as well as FF/OCT samples, vs. TCGA of matched cancer type were computed using top differential genes; 
enrichment strength is based on FWER p-value.
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target depth of 200 M reads on the Illumina HiSeq platform (Illumina, San Diego, CA, USA). Duplicate preps 
were both sequenced if there was enough material to do separate technical library preparations for each, other-
wise 2× material from a single library prep was loaded to reach 200 M reads.

Computational pipeline for generation of sequencing data.  Bowtie47, RSEM, and custom software 
were used for alignment and transcript quantification. STAR​48 alignments were performed on a subset of clinical 
FFPE samples (n = 114). RefSeq49 (build 73) on hg19 was used to define transcripts for each pipeline. See meth-
ods for read and base composition analysis in Supplementary Methods. A subset of the data are available upon 
request (email corresponding author).

The Cancer Genome Atlas (TCGA) data.  We downloaded TCGA RNA-Seq FASTQ files from the GDC 
Legacy Data Archive (https​://porta​l.gdc.cance​r.gov/legac​y-archi​ve/) and applied the same bioinformatics pipe-
line for transcript quantification to these data as for the FFPE clinical cases. Data from our processing of TCGA 
data are available upon request (email corresponding author).

Transcript Integrity Number (TIN).  TIN was used to computationally assess RNA quality post-sequenc-
ing22. Descriptions of the derivation of TIN score and TIN-derived quality metrics are described in detail in 
Supplementary Methods.

TIN‑derived quality metrics.  We derived a per-sample quality score by taking the median of non-zero 
TINs within a single sample. A sample is defined as high quality if it had a TIN greater than 50. Specifically, for 
replicate pairs, the pair is high quality if both samples in the pair pass the TIN cutoff.

Additionally, we computed a per-transcript TIN score by averaging the number of reads per base within the 
transcript, as well as a per-gene TIN score by taking the median non-zero TIN score within each sample. Per-gene 
TIN was determined by taking the maximum TIN of the canonical transcript for that gene.

Transcript 3′ bias.  While TIN scoring is useful for analyzing non-uniform coverage, it is not sufficient to 
detect particular end biases that result from degradation. Here we introduce an additional measure of transcript 
uniformity—the Transcript Bias (TB) score—to specifically address 5′–3′ coverage bias. This measure is based 
on the difference between the observed distribution of reads and a uniform distribution with the same average 
coverage. Details of TB score calculation can be found in Supplementary Methods.

Differential gene expression using linear model fit.  To compute differential gene expression we uti-
lized the LIMMA50 R package to perform linear model fit using weighted least squares for each gene.

Gene expression divergence in replicate pairs analysis.  To quantify expression levels differences for 
each replicate pair and gene, we compared the average expression vs. expression difference plotted as Bland–Alt-
man plots (Supplementary Fig. S27 for extraction replicates; Supplementary Fig. S28 for microdissected repli-
cates; Supplementary Figs. S29 and S30 for FFPE vs. FF/OCT replicates) for the following sets of genes: whole 
transcriptome, COSMIC cancer genes, and, in some cases, genes targeted by clinical genomic tests (NCI tumor 
markers list). Variance cannot be defined using two replicates, thus we introduce the concept of per-gene diver-
gence as the absolute value of the difference in replicate pair expression and computed 99th %tile of divergence 
within the sample.

Correlation of RNA expression replicates.  We sought to calculate the correlation of expression profiles 
in replicates. To ensure the variance in RNA detection limits did not bias these analyses, we focused on genes 
with at least moderate levels of expression by filtering out genes with low expression using a cutoff of mean 
rescaled TPM > 1. This left us with expression profiles of 15,992 genes to calculate the Pearson correlation using 
log2 transformed rescaled TPMs with an offset of 1 TPM.

Pathway enrichment analysis for FFPE vs. FF/OCT replicates.  We analyzed the function of genes 
appearing as most differentially expressed between FFPE vs. FF/OCT by first identifying significantly differential 
genes in paired t-tests, then using Gene Set Enrichment Analysis (GSEA) queried against KEGG and GO cel-
lular component MSigDB51 gene sets. The top 10 enriched pathways for each gene set were studied further for 
functional significance.

Pathway enrichment analysis for FFPE vs. TCGA and FF/OCT vs. TCGA​.  We sought to function-
ally annotate genes that are differentially detected between the library preps used in FFPE vs. TCGA. First, we 
limited analysis to tissues with at least n = 30 samples in both datasets (Supplemental Fig. S26) to ensure that tis-
sue-specific expression did not bias analysis. Next, we extracted the top 150 most-differentially expressed genes 
(up- or down-regulated) by t-test. Next, we applied a hypergeometric test using the MSigDB pathway online tool 
with GO cellular component gene sets to find pathways that were enriched for said genes.

Other methods.  Transcript Integrity Number (TIN) score and TB score; enrichment analysis of genes with 
low transcript integrity in FFPE vs. FF/OCT replicates and FFPE vs. TCGA cohorts; normalization to overcome 
variations in rRNA depletion quality across the FFPE cohort; exomic feature annotations and other genomic 

https://portal.gdc.cancer.gov/legacy-archive/
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features considered; features coverage and read and base composition analysis; analysis of enhancers; per-tran-
script and per-HUGO-gene expression quantification from RNA-seq data; mapping of TCGA data into the 
FFPR RNA-seq space are described in Supplementary Methods.
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