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Abstract

Advancing a new drug to market requires substantial investments in time as well as financial 

resources. Crucial bioactivities for drug candidates, including their efficacy, pharmacokinetics 

(PK), and adverse effects, need to be investigated during drug development. With advancements in 

chemical synthesis and biological screening technologies over the past decade, large amount of 

biological data points for millions of small molecules have been generated and are stored in 

various databases. These accumulated data, combined with new machine learning (ML) 

approaches, such as deep learning, have shown great potential to provide insights into relevant 

chemical structures to predict in vitro, in vivo, and clinical outcomes, thereby advancing drug 

discovery and development in the big data era.
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Introduction

The development of new drugs is a lengthy and expensive venture. To advance through 

phases of preclinical and clinical development, drug candidates are extensively tested for 

their efficacy, PK, and adverse effects [1]. Over the past decades, innovations in 

combinatorial chemistry, robotics, and high-throughput screening (HTS) have accelerated 

the rapid screening of thousands to millions of compounds against specific drug targets 

[2,3]. For example, in 2006, Brandish et al. used a cell-based HTS to evaluate a library 

containing >1 million compounds for their ability to cross cell membranes and inhibit D-

amino acid oxidase, an approach that took <12 weeks to complete [4]. Novel testing 
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approaches, such as 3D culture techniques, were integrated into HTS to construct a natural 

extracellular microenvironment [5]. More recent advances in microsystems technology and 

cell culture techniques accelerated the development of organ-on-chip microdevices to better 

understanding the drug effects on various functional units of organs [5–10]. In addition to 

HTS and novel testing approaches, the advent of pharmacogenomics, made possible by the 

completion of the Human Genome Project (HGP), has spurred major advances in new drug 

development, including precision medicines and targets for diseases [11]. For example, 

CRISPR/Cas gene editing can be used to determine the genes and proteins that cause or 

prevent disease by deliberately activating or inhibiting genes, thus showing potential to 

identify targets for potential drugs [12]. Furthermore, recent advancements in portable 

electronic technology made it possible to track physiological signals of patients, such as 

body temperature, body movements, blood pressure, metabolites, functional proteins, and 

oligonucleotides [13–16]. All these research efforts have generated enormous amounts of 

data for drugs and drug candidates and moved modern drug discovery into an era of ‘big 

data’.

The term ‘big data’ refers to massive data, which have large, varied and complex data 

structures, with associated difficulties of storing, analyzing, and visualizing them using 

traditional computational approaches [17–21]. Being mostly used in the information 

technology field, big data is now expanding in all science and engineering domains, 

including drug discovery [22,23]. There are ‘ten Vs’ characteristics that are intrinsic for big 

data in drug discovery [24–26] (Figure 1): include volume, velocity, variety, veracity, 

validity, vocabulary, venue, visualization, volatility, and value [27,28] (Box 1). Compilation 

of large amounts of data generated daily and shared through public databases, such as 

Enamine REAL Database [29], ChEMBL [30], PubChem [31], and so on, represent the 

volume and velocity of available data. Currently, most data depository portals (e.g., 

PubChem) gather data from diverse sources, which define the variety of data. Given the 

inconsistency in data quality, veracity reflects the degree of uncertainty inherent to data from 

different sources and requires novel technologies for data curation and management. The 

features vocabulary and venue always come along with the data variety. Data from different 

sources can be described using different formats, texts, or terms. The data vocabulary (i.e., 

terminology) needs to be normalized when obtained from the original data venue (i.e., 

platform). Furthermore, due to the high diversity of testing protocols, the available data 

needs be evaluated before acceptance, inchoate the importance of data validity. Given the 

complexity of big data, the visualization of various large data sets is also in high demand. 

Data management is also an important component for drug discovery and development and 

determines the duration of data usefulness. Thus, the volatility feature of big data requires an 

appropriate and efficient data management and data-sharing strategy. The value of data can 

be defined as the potential of data usefulness to reduce the cost of drug discovery and 

development. Given that the data-driven studies are normally predictive models of drug 

bioactivities, the value of data is strongly dependent on the other nine Vs.

When assessing the current landscape of accumulated big data that can be utilized for drug 

discovery, a variety of classification approaches can be observed. These include: (i) 

comprehensive databases of chemical collections, including drugs, drug derivatives (e.g., 

drug metabolites), lead compounds, and drug candidates; (ii) collections of drug targets, 
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including receptor genomics and proteomics data; (iii) databases storing biological data 

obtained from assay screening, metabolism, and efficacy studies; and (iv) databases that 

assess liabilities and toxicities for drugs and chemicals. Together, these databases offer a 

wealth of information and big data sources for drug discovery and development.

The application of ML approaches in drug discovery and development, particularly during 

early stages, has proved valuable. For example, models based on quantitative structure–

activity relationship (QSAR) approaches have been used to quickly predict large numbers of 

new compounds for various endpoints, including not only simple physicochemical 

properties, such as logP and solubility [32], but also various biological activities, such as 

ligand-bin cling activities [33], drug efficacy [34], and adverse effects [35]. These QSAR 

models were developed using classic ML algorithms, such as random forest [36], support 

vector machines (SVMs) [37], and k-nearest neighbors [38], and the molecular descriptors 

[39] describing the chemical structures. With increasing data size and computational power, 

a new generation of artificial intelligence, such as deep learning algorithms, was also 

successfully applied for drug bioactivity modeling. For example, two early studies used 

~400 000 compounds [40] and −8000 compounds [41], respectively, as the training sets for 

neural network developments. In a later study, Eli Lilly used deep learning to model 

historical commercial data from 24 data sets comprising >1 million compounds [42]. All of 

these efforts showed potential to be used to prioritize drug candidates with desired 

therapeutic activities and to exclude unsuitable compounds with adverse effects in a virtual 

screen during drug discovery [43]. For example, Sprague et al. used several QSAR models to 

prioritize 148 novel chemopreventive compounds from >23 000 natural products [44]. 

Furthermore, Lipinski Rule of five [45], which was treated as a golden rule of identifying 

drug bioavailability, has been integrated into most predictive software [46–48]. These 

prediction tools are being used to virtually screen drug candidates and remove those being 

predicted to be nonbioavailable. By removing unsuitable compounds even before chemical 

synthesis, the computational models can greatly reduce the cost of drug discovery.

In the current big data scenario, merely having access to big data is not a guarantee of 

obtaining informative predictive models [1]. Given the multiple Vs characteristics of big 

data, successful ML methods require crucial support and improvement in data mining, 

curation, and management technologies [27,49]. It is necessary to develop novel approaches 

that systematically address the high volume, multidimensional, and high-sparse data sources 

needed to prechct drug efficacy and adverse effects in animals and/or humans [28,50]. Here, 

we summarize and explore current big data resources available for drug discovery and 

development. We highlight recent studies using classic ML and new deep learning 

technologies. We also address key challenges and important considerations for modern 

computational-aided drug discovery (CADD) in the current big data era.

Big data for drug discovery and development

Compared with applications in IT fields, such as social network analysis, data sets used for 

drug discovery research are relatively small [22]. However, with the developments of 

combinatorial chemistry synthesis, HTS techniques, and genomics/genetics knowledge, the 

databases for drugs and drug candidates have grown rapidly and new modeling approaches 
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are needed to handle these larger data sets [28]. Current publicly available databases relevant 

to drug discovery and development are summarized in Table 1. Based on their application 

and relevance during different stages of drug discovery and development, these databases 

can be classified into seven categories: (i) comprehensive databases of chemical collections 

(e.g., Enamine REAL Database [29], PubChem [31], and ChEMBL [30]); (ii) chemical 

databases designed specifically for drug/drug-like compounds (e.g., DrugBank [51], AICD 

[52], and e-Drug3D [53]); (iii) collections of drug targets, including genomics and 

proteomics data (e.g., BindingDB [54], Supertarget [55], and Ligand Expo [56]); (iv) 

databases storing biological data obtained from assay screening, metabolism, and efficacy 

studies (e.g., HMDB [57], TTD [58], WOMBAT [59], and PKPB_DB [60]); (v) drug 

liabilities and toxicities (e.g., DrugMatrix [61], SIDER [62,63], and LTKB Benchmark 

Dataset [64]); and (vi) clinical databases [e.g., ClinicalTrials.gov [65], EORTC Clinical 

Trials Database (www.eortc.org/clinical-trials-database/), and PharmaGKB [66]]. These 

databases provide multidimensional data relating to drug candidates, such as chemical 

structure, physicochemical properties, and in vitro, in vivo, and clinical data. The number 

and size of the databases for drug-like compounds has expanded significantly, although 

some do not primarily focus on drug discovery and development. For example, PubChem 

[67] is a public repository for chemical structures and their biological properties. The 

number of PubChem compounds increased from 19 million in 2008 [68] to >1.1 million in 

2019 [31]. During the same period, the number of bioassays deposited in PubChem 

increased from 1197 in 2008 to over 1.1 million in 2019, resulting in over five terabytes of 

data (Figure 2) [31,68]. Current statistics from PubChem inchoate that the repository 

contains 102.4 million compounds tested against 1.1 million bioassays (https://

pubchem.ncbi.nlm.nih.gov, accessed 30 January 2020). The tremendous amount of 

PubChem bioassay data, with a total size of over five terabytes, constitutes a publicly 

accessible big data resource for all PubChem compounds, including most drugs and drug 

candidates, with a variety of target response information. Similar to PubChem, ChEMBL is 

a database containing protein binding, functional, ‘absorption, distribution, metabolism, and 

excretion’ (ADME), and toxicity data for numerous compounds [69]. Compared with 

PubChem, which is primarily updated directly by screening centers and other biological 

data-generating projects, ChEMBL contains a large amount of manually curated data from 

the published literature. Currently, the ChEMBL database comprises >1.8 million 

compounds tested against >12 000 targets, resulting in activity data for 15 million 

compound–target pairs (www.ebi.ac.uk/chembl/, accessed 30 January 2020). Several other 

data sources are specifically designed for drugs and drug candidates. For example, e-

Drug3D monitors the current content of the US Pharmacopeia of Small Drugs (molecular 

weight ≤ 2000) from data released by the US Food and Drug Administration (FDA) [53]. It 

offers a public tool to explore FDA-approved drugs and active metabolites and can be used 

in a range of endeavors, including drug repurposing, drug design, privileged structure 

analyses, and SAR studies. The latest release (updated in June 2019) of e-Drug3D contains 

1930 small-molecule drugs approved between 1939 and 2019 by FDA. The increasing 

availability of public data aims to reduce costs via increased outsourcing and engagement in 

precompetitive activities. These public data can have a significant impact on academic 

institutes, not-for-profit organizations, and industrial drug discovery by encouraging the 
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development of new computational tools and predictive algorithms within the pubhc domain, 

benefiting the whole research community [70–72].

During the early exploration stage of drug discovery, genomics and proteomics data are 

widely used for drug-target identification. The Binchng Database (BindingDB) is a public, 

web-accessible resource of drug–target binding data, including data of measured binchng 

affinities [54]. The targets included in BindingDB are proteins/enzymes that are considered 

as drug targets. BindingDB currently contains 1 756,093 binchng data, for 7371 protein 

targets and 780 240 small molecules (www.binchngclb.org/bincl/inclex.jsp, accessed 29 

October 2019). During the drug development stage, databases storing biological data 

obtained from assay screening, metabolism information, and efficacy are widely used. The 

Human Metabolome Database (HMDB) is a freely available electronic database containing 

detailed information about small-molecule metabolites foundin the human body [73]. It 

currently contains 114 162 metabolite entries, including both water-soluble and lipid-soluble 

metabolites. WOMBAT is a bioactivity database for lead and drug discovery [59]. It 

currently contains 331 872 entries, representing 1966 unique targets, with bioactivity 

annotations. By contrast, DrugMatrix [61] focuses on the toxicogenomics data from ~600 

drugs. The current DrugMatrix database contains large-scale rat gene expression data under 

drug treatment, mostly targeting several major organs (e.g., hver). Clinical data provide 

further drug adverse effect information. For example, AACT is a publicly available 

relational database that contains all information (protocol and result data elements) 

regarding every study registered in ClinicalTrials.gov [65]. It contains ~324 429 research 

studies in all 50 US states and in 209 countries. PharmGKB (/www.pharmgkb.org/) is a 

pharmacogenomics knowledge resource that encompasses clinical information of drug 

molecules, and contains 733 drugs with corresponding clinical information.

Challenges Multiple Vs in big data studies

Data-driven studies for CADD are required to solve challenges from the multiple Vs 

features, as described earlier. Most notably, these include a need for efficient handling of 

data sets generated from various sources (variety) at a rapid speed (veracity), and shared by 

different platforms (venue) with a specific time length of usefulness (volatility). The data 

sets from the public domain can be described using different terminologies (vocabulary), 

with certain qualities (veracity) and validity. The data volume used for drug discovery can be 

expansive because of the huge amount of data generated along with the long-term 

development procedure. The databases in Table 1, which are all relevant to drug discovery, 

can also be classified based on the associated stage of drug discovery: early exploration and 

discovery, hit identification, lead identification, lead optimization, and clinical studies 

(Figure 3). During early stages of discovery, various properties of drug candidates, such as 

physicochemical properties (data in the first category), protein-binding information (data in 

the second category), target information (genomic data in the third category), and adverse 

effect information (data in the fourth category) are generated. The high data variety makes it 

difficult to manage and incorporate heterogeneous data. In the meantime, these data are 

shared by different venues, which provide key information in different terminologies 

(vocabulary). For example, chemical identifiers chffer among different data platforms (e.g., 

CID for PubChem, and CAS for DrugBank and ChemIDplus, etc.) and drug structures are 
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coded in different format (e.g., SMILES, InChi key, etc.) [74]. These features (venue, 

vocabulary, and variety) highlight the urgent need to develop universal criteria for data 

harmonization [75–78]. When moving from early stages of discovery to clinical trials, the 

data volume changes, that is, the size of data sets becomes considerably smaller because of 

limited data availability during the late stages of drug discovery. Most of the databases in the 

second, third, and fourth categories in Figure 3 comprises thousands to tens of thousands of 

compounds and serve to address specific needs, such as data regarding the ability of drug 

candidates to bind targets with specificity and strong affinity. Given that the clinical studies 

required for FDA approval of a new drug typically need progression through five testing 

phases (phase 0–IV), there is an enormous opportunity to enter accumulated data in clinical 

databases for individual drugs (Figure 3). Clinical databases often comprise thousands to 

hundreds of thousands data entries because one drug candidate typically undergoes extensive 

investigation and generates a large amount of data [79]. When comparing clinical databases 

to those that collect general information about chemicals, including property data (e.g., log 

P, solubility and etc.) and general biological activities (e.g., P450 inhibitions, cytotoxicity 

and etc.), have the largest size and always contain >1 million compounds (Figure 3). Given 

that the data are being collected from numerous sources, the variety and velocity of these 

databases are also the highest. These big data sources provide useful information for early 

drug discovery stages, but the multiple Vs features also bring new challenges.

Accelerated by the developments of novel testing technologies, data for drug discovery grow 

rapidly beyond our ability to use them [22]. Furthermore, a lack of quality control [80] is a 

common issue for public data sources. The ‘trash in, trash out’ principle [81] was introduced 

for all modeling studies to highlight the importance of quality control. When looking at 

available data for known drugs, there have been many testing results available for modeling 

purposes. For example, 1930 FDA-approved small-molecule drugs (molecular weight 

<2000) in e-Drug3D databases [18] were used to search against both ChEMBL [7] and 

PubChem [8] for their assay-testing results by using an in-house data-profiling tool [82]. 

There were 1114 ChEMBL assays with testing results for at least 25 of these drug molecules 

(Figure 4A). All these drugs were also tested against thousands of PubChem assays, and 299 

assays had at least 25 active responses among these drug molecules (Figure 4B). There are 

>2 million data points in the response profile for ChEMBL and >500 000 data points in the 

PubChem response profile. Compared with PubChem, which is primarily shared directly by 

screening centers and data generation projects [68], ChEMBL contains a large amount of 

manually curated data from the published literature [30]. Currently, there is a significant 

overlap between ChEMBL and PubChem data because PubChem automatically acquires 

data from ChEMBL [83]. Studies have compared the data obtained from these two resources 

[84,85], with many responses in these profiles shown in gray as missing data (96% of the 

ChEMBL response profile in Figure 4A and 87% of the PubChem response profile in Figure 

4B), because these drug compounds were not tested against all assays. In addition to the 

comparison of bioassay data in ChEMBL and PubChem, other tools and studies reported 

previously to compare the chemical space of these two databases [84] have the potential to 

handle the challenges arising from the data variety. Furthermore, the ratio of active 

responses in the PubChem data (e.g., 27% of all data in Figure 4B) is also biased. For 

example, acyclovir (CAS 59277-89-3) had 13 active and 204 inactive responses in these 
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PubChem assays. Given the nature of HTS techniques, general HTS data normally comprise 

fewer actives than inactives [86,87], especially for screening active hits against specific drug 

targets. In an early review of pharmacological data based on 4.8 million unique compounds, 

only ~5.7% of these compounds were found to show one (or more) active biological 

response [88], inchoating that most of the testing results were inactives. Notably, some drugs 

show high active responses in available data. For example, disulfiram (CAS 97-77-8) is used 

to deter alcohol consumption in patients with alcoholism. In PubChem, disulfiram has 163 

active responses and 57 inactive results across multiple assays. Furthermore, clotrimazole 

(CAS 23593-75-1), an antifungal medicine, has 163 active responses and 42 inactive results 

across the assays in PubChem. Niclosamide (CAS 50-65-7) is used to treat tapeworm 

infestations, and has 157 active responses and 35 inactive results.

Besides veracity of data, the feature validity also determines data quality. Numerous testing 

approaches have been developed to evaluate drug candidates. However, hundreds and/or 

thousands of different protocols exist for the same testing purpose [89–92]. Thus, there is a 

need to understand the applicability of each protocol and the resulting data. For example, 

numerous protocols only use a single concentration (i.e., high concentration) of compounds 

for screening purposes, inchoating a potential flaw of the resulting classifications [93]. To 

address this issue, the National Center for Advancing Translational Sciences (NCATS) 

proposed quantitative HTS (qHTS), which utilizes multiple concentration testing to test drug 

molecules, generated more data for testing the same compounds [94]. Considered together 

with the feature veracity, it is important to manage and incorporate available big data 

meaningfully for drug discovery and development. For example, drug repurposing uses the 

preclinical, PK, pharmacodynamic (PD), and toxicity data of existing drugs, greatly 

reducing development costs [95]. Thus, computational modeling studies for drug 

repurposing are highly dependent on the data volatility. Finally, given the high velocity and 

variety, the visualization of big data in drug discovery also requires new tools [96–100].

For effective ML studies, steps can be taken to resolve issues induced by the multiple Vs 

features. For example, a common solution to fill the missing information of target 

compounds has been the development of ML models, such as QSAR models, for individual 

biological targets based on existing data. The resulting models are then used to predict 

compounds that were not tested in the relevant ‘training’ assays [101–104]. This strategy is 

applicable for physicochemical properties (e.g., logP) and/or target binding that utilize 

simple biological mechanisms (e.g., the binding target is rigid and specific). Recently, a new 

concept termed ‘read-across’, was developed based on a similar strategy [105,106]. Read-

across is a method that fills in the missing data of target compounds based on similarities 

(largely structural) to the nearest neighbors among the compounds that have been tested. 

Read-across is becoming increasing used in the identification of chemical toxicity liabilities, 

including the prediction of adverse effects for drugs and in the evaluation of personal care 

products [78,107,108]. Currently, the European Chemical Agency (ECHA) (https://

echa.europa.eu/home) is accepting read-across dossiers for chemical evaluation decision-

making, and read-across strategy papers have been recently published [105,109]. However, 

using computational models (e.g., QSAR) or a read-across strategy to fill missing data can 

introduce extra uncertainty because of unanticipated prediction errors [103]. To deal with the 

biased nature of HTS data, more weighting should be given to active results, rather than 
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inactive results, during modeling procedures [82]. ML modeling studies typically need the 

biased data sets to first be balanced by using various methods, such as down sampling [110–

112]. Furthermore, the challenge of velocity can introduce potential experimental errors in 

public databases. This issue becomes crucial when data were gathered from different sources 

(i.e., the variety is high) because of unstandardized protocols, including data analysis, 

quality controls, and different experimentalists. Data sets with experimental errors will 

decrease the quality of the resulting computational models [113]. Although there is no 

universal solution to remove experimental errors, which are difficult to define in public data, 

researchers have proposed possible solutions to reduce potential experimental errors in the 

data set [114–116]. Cortes-Ciriano et al. [115] simulated experimental errors in QSAR 

modeling sets, and then compared the influence of different QSAR approaches on predictive 

accuracy. This study provided a practical reference for making a better decision about which 

modeling approach to use depending on the quality of modeling sets. Roy et al. [116] 

studied the relationship between systematic errors in the predictions and the applicability 

domain (AD) of QSAR modeling. They also exposed the flaw of using normal correlation 

coefficients to describe model predictivity. Zhao et al. [114] proposed a possible solution for 

identifying large experimental errors in the data sets, and investigated methods, including 

removing suspected data from the modeling set and applying AD for improving models, 

developed on questionable modeling sets.

Application of ML approaches for drug discovery and development using 

big data sources

Big data generated during drug discovery and shared via public databases have potentially 

significant value, which is the last of the ten Vs features, by reducing drug attrition during 

the development pipeline. Traditional ML applications, such as QSAR modeling, can be 

used to prioritize drug candidates with desired therapeutic activities and exclude unsuitable 

compounds with predicted adverse effects. Recently, remarkable improvements in 

computational power coupled with improvements in artificial intelligence (Al) technology, 

including the development of various deep learning algorithms [117–119], positioned 

CADD studies to progress to a new stage and capitalize on the rich infrastructure of big data 

studies [120].

AI, which is sometimes presented as machine intelligence, refers to the ability of computers 

to learn from existing data [121]. ML is a subfield of AI, and refers to methods that endow 

computers with learning ability, as defined by Arthur Samuel in 1959 [122]. QSAR is one of 

the classic applications of ML approaches in drug discovery. Since the QSAR approach was 

first developed by Hansch and Fujita in 1964 [123], it has remained an efficient method to 

find a statistically significant correlation between chemical structures and their properties 

and activities. During the early stages of QSAR application in drug discovery, QSAR 

modeling was limited to small data sets (e.g., <10 compounds) and based on simple linear 

regression methods [124]. Over the past few decades, QSAR has reached several milestones, 

including the development of novel chemical descriptors, including topological descriptors 

[125] and molecular fingerprints [126,127], and the application of new nonlinear modeling 

algorithms, such as random forest [36], SVMs [37], and k-nearest neighbors [38]. In the 

Zhao et al. Page 8

Drug Discov Today. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



same period, model validation was emphasized and treated as a crucial component of 

modeling procedures [128]. In addition, the applicability domain, which defines the 

limitation of the applicability of a model, became standard practice for model development 

[129–132]. The application of QSAR modeling in drug discovery has created big value by 

saving resources through the virtual screening of drug candidates [133–135]. Drug 

candidates with desired biological activities (e.g., therapeutic activities) and fewer adverse 

effects can be prioritized before chemical synthesis. By applying QSAR models, the hit rates 

could be improved significantly by testing prioritized compounds selected from validated 

models [44,136–138].

Besides QSAR, there are many other ML applications in drug discovery and development 

[141]. For example, generative models were applied for cle novo drug design by applying 

the statistical framework to chemical pattern-matching studies [22,142–144]. These 

generative models can produce synthetically accessible molecules with desired properties 

and activities [145,146]. The advantages of these models include quick decision-making and 

providing an infinite virtual chemical space [147]. In another study, a multiple kernel 

learning algorithm was developed for drug-target interaction prediction [148] and allowed 

the integration of multiple heterogeneous information sources. A ML model developed for 

predicting blood–brain barrier (BBB) permeability combined public bioassay data with 

chemical information [101] for better predictivity. Similarly, another model developed for 

predicting the sensitivity of cancer cell to drugs integrated both genomic and chemical 

information [149]. ML applications were also used in drug repurposing studies, as discussed 

in a previous review [95]. Furthermore, ML was also applied to emerging ‘omics (genomics, 

transcriptomics, proteomics, and metabolomics) data, which could be used to expand our 

understanding of the complexities of human disease, to generate novel biomarkers for 

personalized medicine [150–152]. Thus, the application of ML modeling for various data, 

including public databases, can drive CADD to create big value in the big data era.

The advancement of computational power and the increasing availability of biological data 

stimulated the applications of new ML techniques, such as artificial neural network (ANN) 

modeling, to address the multiple Vs challenges brought by big data in drug discovery. Since 

the first reported application of the neural network modeling in drug discovery in 1989 

[153], various neural network approaches have been developed and applied to drug 

discovery [154,155]. Deep learning, based on ANN, was originally presented during the 

1980s [156]. However, it did not show significant advantages over other ML approaches 

during its infancy because the data used for model development were limited [157,158]. 

With increasing data size and computational power, deep learning has been applied to the 

life sciences and demonstrated its ability to contribute to drug discovery and development 

[156,159]. Deep learning applications in virtual screening were highlighted in the QSAR 

ML challenge supported by Merck in 2012, and the winning team used an ensemble of 

different ML methods including deep neural networks (DNN) and showed significantly 

better performance than other ML approaches in their following study [160]. The deep 

learning models in this study were based on a set of traditional molecular descriptors, such 

as atom pairs (AP) [161] and donor–acceptor pair (DP) [162]. Later in 2014, the National 

Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health 

(NIH) launched the Tox21 Challenge, in which participants were asked to model ~12 000 
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chemicals, including many drugs, for 12 different toxic effects [163]. In this competition, 

DeepTox, a computational toxicity model based on deep learning, exhibited the highest 

performance of all computational methods [164]. The chemical descriptors used in the 

DeepTox model were derived from a large number of molecular descriptors calculated using 

computational tools, including off-the-shelf software and JCompoundMapper [164]. 

Furthermore, there are other studies reporting the application of deep learning to the 

prediction of chemical properties, with the deep learning models showing improvements 

compared with classic ML models. Lusci et al. [165] reported deep learning models for the 

prediction of aqueous solubility for drug-like molecules. In this study, chemical structures 

were transformed into graphs and recursive neural network approaches were apphed for 

modeling. In another study, Xu et al. presented deep learning models using chemical 2D 

structure graphs as the input data for both liver toxicity [166] and acute oral toxicity [41]. 

Another study explored the performance of geometric deep learning methods in drug 

discovery, where deep learning methods were able to identify more useful chemical features 

compared with ML approaches [167]. Research has also compared model performance 

among multiple ML and deep learning approaches. For example, Lane et al. compared 

various ML models to identify hits for Mycobacterium tuberculosis [168]. These authors 

showed that SVM and DNN outperformed other ML algorithms on prediction accuracy. 

Overall, deep learning algorithms were the most efficacious in combining all the descriptors 

using all the metrics for training and cross-validation. However, in another study, Russo et 
al. [169] compared various ML and deep learning techniques for predicting estrogen 

receptor (ER) binchng agents. In this work, random forest outperformed the other 

algorithms, including deep learning, inchoating that there is no general advantage of deep 

learning to handle the modeling of all data sets.

Deep learning has been applied to other drug discovery studies, such as cle novo drug design 

[143,170]. For example, Gomez-Bombarelli et al. [171] reported exploring chemical space 

based on continuous encodings of molecules using DNN approaches. Another deep learning 

application for generating focused molecular libraries with the desired bioactivity was 

proposed [172]. In this study, recurrent neural networks (RNNs) were trained as generative 

models for drug molecular structures. Recently, another deep learning application, ReLeaSE 

[173], was reported for generating cle novo compounds with desired drug-related properties. 

ReLeaSE integrated two DNNs (generative and predictive) that were trained separately but 

were used jointly to generate novel targeted chemical libraries. These deep learning 

applications benefited from developments in ML applications of natural language processing 

and machine translation, with deep learning applications in cle novo drug design recently 

reviewed elsewhere [174]. Deep learning applications have also been developed that focus 

on using heterogeneous data. For example, a deep learning model was reported that could be 

used to prechct interactions between drugs and their biological targets based on 15 524 

drug–target pairs from the DrugBank database, and using traditional molecular fingerprints 

[Extended Connectivity Fingerprints (ECFP)] [175]. Xie et al. [176] reported a deep learning 

study for the prediction of drug–target interactions using transcriptome data in the L1000 

database from the Library of Integrated Network-Based Cellular Signatures program [44]. 

Reusing previous data by deep learning approaches is important for drug repurposing [95]. 

Donner et al. also used the L1000 database to develop a new method for measuring the 
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compound functional similarity based on gene expression data for drug repurposing [177]. 

In this study, drugs with similar therapeutic and biological targets but dissimilar structures 

were identified to reveal previously unreported functions of compounds. Furthermore, multi-

task learning based on DNN allows multiple related tasks to be modeled simultaneously. The 

multi-task learning approached demonstrated that DNN can reduce overfitting, solve issues 

of biased data, and identify variables from related tasks. Thus, multitask learning has a 

somewhat better performance compared with traditional models for some specific data sets 

[41,178–180]. However, there have also been arguments that ML models still can achieve 

better results compared with deep learning [42,169]. Given the complexity of biological 

systems and the multiple Vs features of big data for drug discovery, it remains chfficult to 

qualify a ML anchor deep learning method as universally superior to other approaches [42].

Concluding remarks and perspectives

In current era of big data, developments in computational tools and the rapid growth of 

public data sources have advanced the CADD. ML and deep learning approaches have been 

applied to the data generated along various stages of drug discovery and development and 

affirmed the value of big data by reducing the drug attrition. The challenges brought by the 

multiple Vs feature of big data require the development of appropriate computational 

approaches and algorithms. In addition to the progress in ML applications in drug discovery 

described earlier, the multiple Vs features, such as volume, velocity, variety, vocabulary, and 

volatility, require better database management data curation, and web portal design. The 

variety, veracity, validity, and venue features also require further refinements of experimental 

protocols, better quality controls, and more transparent data reporting. However, some clear 

limitations remain. For example, projects dealing with intellectual property (IP)-sensitive 

structures have no data-sharing authority [181]. Given the speed at which big data in drug 

discovery grow (velocity), it is difficult to update available CADD software with the newly 

generated data and recently developed algorithms and models as quickly. Most available 

prediction tools remain based on traditional QSAR approaches and have not changed for 

years. Although being used widely, the applications of data-driven ML modeling in drug 

discovery, especially deep learning, are still in the preliminary stage. In addition, 

applications of CADD tools in the industry is still questioned by the research community.

Regardless of the issues described earlier, when coupled with improvements in computer 

hardware and experimental screening techniques, ML modeling will continue to be crucial 

in illustrating the value of big data for drug discovery. New modeling algorithms and 

approaches will be key to addressing the multiple Vs challenges associated with big data.
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Highlights

• Drug discovery has been advanced to a big data era with a large amount of 

public data sources available.

• Ten V features (volume, velocity, variety, veracity, validity, vocabulary, venue, 
visualization, volatility, and value) bring new challenges to machine learning 

modeling.

• Recent progress of machine learning to deep learning and the development of 

new algorithms answers the big data challenges.
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Box 1.

Ten Vs features of big data in drug discovery

Volume: size of data.

Velocity: speed of new data generation.

Variety: various formats of data.

Veracity: quality of data.

Validity: authenticity of data.

Vocabulary: terminology of data.

Venue: platform of data generation.

Visualization: view of data.

Volatility: duration of data usefulness.

Value: potential of data usefulness to reduce the cost of drug discovery and development.
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Figure 1. 
Ten Vs scheme of ‘big data’ to assist the drug discovery and development.
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Figure 2. 
The number of compounds and bioassays increase in PubChem within 12 years.
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Figure 3. 
Size of available databases at different stages of drug discovery and development. The 

definition of the size of these databases was based primarily on the number of molecules 

stored in the database. The sizes of BindingDB, Supertarget, Binding MOAD, PDBbind-CN, 

AACT database, PharmaGKB and Approved drugs were defined by the data entries provided 

by the databases.
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Figure 4. 
Biological data profiles of 1930 US Food and Drug Administration (FDA)-approved drugs 

represented by data from ChEMBL and PubChem. (a) Data obtained from 1114 ChEMBL 

assays, which have at least 25 testing results (red spots) among these compounds; (b) Data 

obtained from 299 PubChem assays, which have at least 25 active responses (red spots) 

among these compounds. The gray spots indicate missing data (no data or ‘inconclusive’ 

results) and the blue spots indicate inactives. The ‘active’, ‘inactive’, and ‘inconclusive’ 

results for a specific assay were defined individually in PubChem, which could be found 

using its AID. For example, for PubChem AID 928, the active compounds have a 

PUBCHEM_ACTIVITY_SCORE between 40 and 100, inconclusive compounds have a 

PUBCHEM_ACTIVITY_SCORE between 1 and 39, and all inactive compounds have a 

PUBCHEM_ACTIVITY_SCORE of 0.
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Table 1.

Current publicly available databases that can be used for drug discovery and development

Database Description Size (as of 29 October 
2019)

Link Refs

Chemical collections

Enamine REAL 
Database

Tool used to find new hit molecules 
using large-scale virtual screening 
and for searching analogs to hit 
molecules

>700 million 
compounds that comply 
with ‘rule of 5’ and 
Verber criteria

https://enamine.net/hit-finding/
compound-collections/real-database

[29]

ZINC Contains compound information 
including 2D/3D structure, 
purchasability, target, and biology-
related information

>230 million 
compounds in 3D 
formats and >750 
million compounds for 
analog-searching

http://zinc.docking.org/ [182]

PubChem Contains chemical molecule (mostly 
small molecule) information, 
including chemical structures, 
identifiers, chemical and physical 
properties, biological activities, 
safety and toxicity data

97 million compounds, 
236 million substances, 
268 million bioactivities

https://pubchem.ncbi.nlm.nih.gov/ [31]

ChemSpider Free chemical structure database 
providing fast access to >67 million 
structures, properties, and associated 
information

>78 million compound 
structures

www.chemspider.com/ [183]

SCUBIDOO Freely accessible database that 
currently holds 21 million virtual 
products originating from small 
library of building blocks and 
collection of robust organic reactions

21 million virtual 
products

http://kolblab.org/scubidoo/index.php [184]

ChEMBL Manually curated database of 
bioactive molecules with drug-like 
properties; brings together chemical, 
bioactivity, and genomic data to aid 
translation of genomic information 
into effective new drugs.

>1.9 million 
compounds, 1.1 million 
pieces of assay 
information

www.ebi.ac.uk/chembl/ [30]

TCM-Mesh Integration of a database and a data-
mining system for network 
pharmacology analysis of all respects 
of traditional Chinese medicine, 
including herbs, herbal ingredients, 
targets, related diseases, adverse 
effect, and toxicity

383 840 compounds, 
6235 herbs

http://
mesh.tcm.microbioinformatics.org/

[185]

Super Natural II Contains natural compounds, 
including information about 
corresponding 2D structures, 
physicochemical properties, predicted 
toxicity class and potential vendors

325 508 natural 
compounds

http://bioinf-applied.charite.de/
supernatural_new/index.php

[186]

BIAdb Comprehensive database of 
benzylisoquinoline alkaloids, 
containing information about ~846 
unique benzylisoquinoline alkaloids

~846 unique 
benzylisoquinoline 
alkaloids

https://webs.iiitd.edu.in/raghava/
biadb/index.html

[187]

Drug/drug-like compounds

AICD Anti-Inflammatory Compounds 
Database (AICD) deposits 
compounds with potential anti-
inflammation activities

79 781 small molecules http://956023.ichengyun.net/AICD/
index.php

[52]

Drug Bank Unique bioinformatics and 
cheminformatics resource that 
combines detailed drug data with 

13 441 drug entries www.drugbank.ca/ [51]
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Database Description Size (as of 29 October 
2019)

Link Refs

comprehensive drug target 
information

ReFRAME Screening library of 12 000 
molecules assembled by combining 
three databases (Clarivate Integrity, 
GVK Excelra GoStar, and Citeline 
Pharmaprojects) to facilitate drug 
repurposing

12 000 molecules https://reframedb.org/ [188]

SuperDRUG2 Contains approved/marketed drugs 
with regulatory details, chemical 
structures (2D and 3D), dosage, 
biological targets, physicochemical 
properties, external identifiers, 
adverse effects, and PK data

>4600 active 
pharmaceutical 
ingredients

http://cheminfo.charite.de/superdrug2/ [189]

Drugs@FDA 
database

Information about drugs from FDA ~23 391 drug 
application records

www.fda.gov/drugs/drug-approvals-
and-databases/drugsfda-data-files

e-Drug3D Contains 1930 molecular structures 
approved by FDA between 1939 and 
2019 with a molecular weight <2000

1930 drugs https://chemoinfo.ipmc.cnrs.fr/
MOLDB/index.php

[53]

Drug targets, including genomics and proteomics data

BindingDB Public, web-accessible database of 
measured binding affinities, focusing 
chiefly on interactions of proteins 
considered to be candidate drug 
targets with ligands that are small, 
drug-like molecules

1 756 093 binding data, 
for 7371 protein targets 
and 780 240 small 
molecules

/www.bindingdb.org/bind/index.jsp [54]

Supertarget It is an extensive web resource for 
analysing drug-target interactions.

332 828 drug-target 
interactions

http://insilico.charite.de/supertarget/
index.php?site=home

[55]

Ligand Expo Provides chemical and structural 
information about small molecules 
within structure entries of Protein 
Data Bank.

30 440 entries of ligand http://ligand-expo.rutgers.edu/
index.html

[56]

PDBeChem Consistent and enriched library of 
ligands, small molecules, and 
monomers referenced as residues and 
hetgroups in PDB entries

>29 922 ligands www.ebi.ac.uk/pdbe-srv/pdbechem/ [190]

PDBbind-CN Provides essential linkage between 
energetic and structural information 
of biomolecular complexes, which is 
helpful for various computational and 
statistical studies on molecular 
recognition in biological systems

19 588 biomolecular 
complexes

www.pdbbind-cn.org/ [191]

STITCH Database integrating information 
about interactions from metabolic 
pathways, crystal structures, binding 
experiments, and drug–target 
relationships

Interactions between 
300 000 small molecules 
and 2.6 million proteins 
from 1133 organisms

http://stitch.embl.de/ [192]

BioGRID The Biological General Repository 
for Interaction Datasets is an open-
access database on protein, genetic, 
and chemical interactions for humans 
and all major model organisms

1 753 686 protein and 
genetic interactions, 28 
093 chemical 
associations and 874 796 
post-translational 
modifications from 
major model organisms

https://thebiogrid.org/ [193]

Binding MOAD Created from a subset of Protein Data 
Bank (PDB), containing every high-
quality example of ligand–protein 
binding.

36 047 protein–ligand 
structures, and 13 353 
binding data

http://bindingmoad.org/ [194]

GPCRdb Contains data from GPCRs, including 
crystal structures, sequence 
alignments, and receptor mutations; 

15 149 proteins, and 144 
917 ligands

www.gpcrdb.org [195]
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can be visualized in interactive 
diagrams; provides online analysis 
tools

Guide to 
Pharmacology

IUPHAR/BPS Guide to 
PHARMACOLOGY is an open-
access, expert-curated database of 
molecular interactions between 
ligands and their targets.

2937 targets, and 9859 
ligands

www.guidetopharmacology.org/ [196]

GLASS GPCR-Ligand Association (GLASS) 
database is a manually curated 
repository for experimentally 
validated GPCR–ligand interactions; 
along with relevant GPCR and 
chemical information, GPCR–ligand 
association data are extracted and 
integrated into GLASS from 
literature and public databases

~277 651 unique ligands 
and 3048 GPCRs

https://
zhanglab.ccmb.med.umich.edu/
GLASS/

Biological data from assay screening, metabolism, and efficacy studies

HMDB Freely available electronic database 
containing detailed information about 
small-molecule metabolites found in 
human body

114 162 metabolite 
entries

www.hmdb.ca/about [57]

SMPDB Small Molecule Pathway Database 
(SMPDB) is an interactive, visual 
database containing >30 000 small-
molecule pathways found in humans 
only

>30 000 small-molecule 
pathways

http://smpdb.ca/ [197]

TTD Therapeutic Target Database (TTD) 
is a database providing information 
about known and explored 
therapeutic protein and nucleic acid 
targets, targeted disease, pathway 
information and corresponding drugs 
directed at each of these targets

2589 targets, and 31 614 
drugs

http://db.idrblab.net/ttd/ [58]

BioCyc Collection of 7615 pathway/genome 
databases; each database in BioCyc 
collection describes genome and 
metabolic pathways of a single 
organism

7615 pathway/genome 
databases

https://biocyc.org/ [198]

BiGG Metabolic reconstruction of human 
metabolism designed for systems 
biology simulation and metabolic 
flux balance modeling

2004 proteins, 2766 
metabolites, and 3311 
metabolic and transport 
reactions

http://bigg.ucsd.edu/ [199]

BRENDA Main collection of enzyme functional 
data available to scientific community

At least 40 000 different 
enzymes from >6900 
different organisms

www.brenda-enzymes.org/ [200]

Reactome Curated, peer-reviewed 
knowledgebase of biological 
pathways, including metabolic 
pathways, and protein trafficking and 
signaling pathways

>9600 proteins, 9800 
reactions, and 2000 
pathways for humans

https://reactome.org/ [201]

BioModels 
Database

Repository of computational models 
of biological processes; models 
described from literature are 
manually curated and enriched with 
cross-references

6753 patient-derived 
genome-scale metabolic 
models, 112 898 
metabolic models etc.

www.ebi.ac.uk/biomodels-main/ [202]

KEGG Database resource that integrates 
genomic, chemical, and systemic 
functional information

18 652 metabolites https://www.genome.jp/kegg/ [202]

CARLSBAD Database and knowledge inference 
system that integrates multiple 

932 852 CARLSBAD 
activities, 890 323 

http://carlsbad.health.unm.edu/
carlsbad/?mode=home

[203]
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bioactivity data sets to provide 
researchers with novel capabilities for 
mining and exploration of available 
structure activity relationships (SAR) 
throughout chemical biology space.

unique structure–target 
pairs, 3542 targets, 435 
343 unique structures

WOMBAT Contains 331 872 entries, 
representing 1966 unique targets, 
with bioactivity annotations

268 246 unique 
structures

http://dud.docking.org/wombat/ [59]

Open NCI 
Database

Maintained by the National Cancer 
Institute; contains small-molecule 
information such as names, biological 
activities, structures; useful resource 
for researchers working in cancer/
AIDS fields

>250 000 compounds https://cactus.nci.nih.goV/ncidb2.2/ [204,205]

NPACT Provides information on plant-
derived natural compound, including 
structure, properties (physical, 
elemental, and topological), cancer 
type, cell lines, inhibitory values 
(IC50, ED50, EC50, GI50), 
molecular targets, commercial 
suppliers, and drug likeness of 
compounds

1574 entries http://crdd.osdd.net/raghava/npact/ [206]

PKPB_DB Contains physiological parameter 
values for humans from early 
childhood through senescence; 
intended to be used in physiologically 
based (PB)PK modeling; also 
contains similar data for animals 
(primarily rodents)

N/A https://cfpub.epa.gov/ncea/risk/
recordisplay.cfm?deid=204443

[60]

Drug liabilities and toxicities

T3DB Unique bioinformatics resource that 
combines detailed toxin data with 
comprehensive toxin target 
information

3678 toxins www.t3db.ca/ [207,208]

DrugMatrix One of world’s largest toxicogenomic 
reference resources

~600 drug molecules 
and 10 000 genes

https://ntp.niehs.nih.gov/data/
drugmatrix/

[61]

ACToR Includes computational toxicology 
information about compounds, 
including HTS, chemical exposure, 
sustainable chemistry (chemical 
structures and physicochemical 
properties) and virtual tissue data

>500 000 chemicals https://actor.epa.gov/actor/
home.xhtml

[209]

SkinSensDB Contains curated data from published 
AOP-related skin sensitization assays

710 unique chemicals https://cwtung.kmu.edu.tw/
skinsensdb/

[210]

SIDER Contains information on marketed 
medicines and their recorded adverse 
drug reactions, including frequency, 
drug and adverse effect classifications

1430 drugs with 5868 
side effect information

http://sideeffects.embl.de/download/ [62,63]

LTKB Benchmark 
Dataset

Contains drugs with potential to 
cause drug-induced liver injury in 
humans; established using FDA-
approved prescription drug labels

287 prescription drugs www.fda.gov/science-research/liver-
toxicity-knowledge-base-ltkb/ltkb-
benchmark-dataset

[64]

CTD Comparative Toxicogenomics 
Database (CTD) is a premier public 
resource for literature-based, 
manually curated associations 
between chemicals, gene products, 
phenotypes, diseases, and 
environmental exposures

13 378 unique chemicals 
and related information

http://ctdbase.org/ [211]
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Clinical databases

ClinicalThals.gov Database of privately and publicly 
funded clinical studies conducted 
around the world

~324 429 research 
studies in all 50 US 
states and 209 countries

https://clinicaltrials.gov/ [65]

AACT database Publicly available relational database 
that contains all information 
(protocol and result data elements) 
about every study registered in 
ClinicalTrials.gov. Content is 
downloaded from ClinicalTrials.gov 
daily and loaded into AACT

~324 429 research 
studies in all 50 US 
states and 209 countries

https://aact.ctti-clinicaltrials.org/ [65]

EORTC Clinical 
Trials Database

Contains information about EORTC 
clinical trials and clinical trials from 
other organizations with EORTC 
participation

N/A www.eortc.org/clinical-trials/

Exposome-
Explorer

Contains detailed information on 
nature of biomarkers, populations and 
subjects where measured, samples 
analyzed, methods used for 
biomarker analyses, concentrations in 
biospecimens, correlations with 
external exposure measurements, and 
biological reproducibility over time

908 biomarkers http://exposome-explorer.iarc.fr/ [212]

PharmaGKB A pharmacogenomics knowledge 
resource that encompasses clinical 
information about drug molecules

733 drugs with their 
clinical information

www.pharmgkb.org/ [66]
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