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Abstract

Microglia are the resident immune cells of the center nervous system and participate in various 

neurological diseases. Here we determined the function of microglia in epileptogenesis using 

microglial ablation approaches. Three different microglia-specific genetic tools were used, 

CX3CR1CreER/+:R26iDTA/+, CX3CR1CreER/+:R26iDTR/+, and CX3CR1CreER/+:Csf1rFlox/Flox mice. 

We found that microglial depletion led to worse kainic acid (KA)-induced status epilepticus, 

higher mortality rate, and increased neuronal degeneration in the hippocampus. In KA-induced 

chronic spontaneous recurrent seizures, microglial depletion increased seizure frequency, interictal 

spiking, and seizure duration. Therefore, microglia depletion aggravates the severity of KA-

induced acute and chronic seizures. Interestingly, microglial repopulation reversed the effects of 

depletion upon KA-induced status epilepticus. Our results demonstrate a beneficial role of 

microglia in suppressing both acute and chronic seizures, suggesting that microglia are a potential 

therapeutic target for the management of epilepsy.
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Introduction

Epilepsy is a chronic seizure disorder affecting more than 65 million people worldwide 

(Bhandare et al., 2017; Devinsky et al., 2013; Eyo et al., 2017; Moshe et al., 2015). This 

disorder is more likely to occur in young children and geriatric patients, and increase their 

risk for sudden death 15–20 fold (Ficker et al., 1998; Nilsson et al., 1999). Despite there 

being a variety of available antiepileptic drugs (AEDs), approximately one-third of patients 

are refractory to these treatments (Kwan and Brodie, 2000; Perucca et al., 2007). Thus, a 

deeper understanding of the pathogenic events and molecular changes that occur during the 

course of epileptogenesis is needed to develop more efficacious treatments of these patients.

Accumulating evidence indicates that the neuroinflammation is common to both 

experimental animal and clinical human epilepsies (Jimenez-Pacheco et al., 2016; Leal et al., 

2017; Strauss and Elisevich, 2016; Vezzani et al., 2011a; Vezzani et al., 2011b). As the 

resident immune cells of the central nervous system (CNS), microglia are critical regulators 

of brain homeostasis and immune reactions (Wolf et al., 2017; Wu et al., 2015; Zhao et al., 

2018a). Microglia can be rapidly activated following various CNS insults (e.g., infection, 

ischemia, epilepsy) (Avignone et al., 2008; Brown and Neher, 2010; Eyo et al., 2014; Qin et 

al., 2019) and can produce numerous pro-inflammatory cytokines and chemokines, such as 

interleukin (IL) 1 beta, tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and 

BDNF (Fu et al., 2014; Gu et al., 2016; Zhou et al., 2019). These pro-inflammatory factors 

can increase neuronal activity and decrease seizure threshold (Galic et al., 2012; Vezzani et 

al., 2011a; Vezzani et al., 2013), which is favorable to chronic neuronal network 

hyperexcitability and development of spontaneous recurrent seizures (SRS) (Hu et al., 2014; 

Kan et al., 2012; Zhao et al., 2018b). Activated microglia can also induce neuronal atrophy 

in epileptic brains (Pitkanen and Sutula, 2002; Tian et al., 2017). Furthermore, anti-

inflammatory drugs and inhibition of inflammatory microglia exhibit significant 

anticonvulsant effects (Vezzani et al., 2010). For example, minocycline, an inhibitor of 

microglial activation, has been reported to exert an anticonvulsant and neuroprotective in 

various animal models of seizures (Abraham et al., 2012; Heo et al., 2006; Wang et al., 

2015). Thus, pro-inflammatory microglia could be an etiological driver of epileptogenesis.

However, microglia may also have beneficial function in epilepsy. Recent studies have 

shown that preconditioning microglia with lipopolysaccharide (LPS) can produce protective 

effects in rodent seizure models that can then be reversed by local microglia depletion 

(Mirrione et al., 2010). Other studies indicate that microglia are neuroprotective in viral 

encephalitis-induced epilepsy, since microglial depletion with PLX-5622, a specific inhibitor 

of the CSF1 receptor, accelerated the occurrence of seizures and exacerbated hippocampal 

damage (Waltl et al., 2018). Additionally, PLX-5622 induced microglia depletion within a 

Theiler’s murine encephalomyelitis virus (TMEV) induced seizure model resulted in fatal 

viral encephalitis and exacerbated demyelination and axonal damage (Sanchez et al., 2019). 

These results indicate that microglia may have beneficial functions in seizures and epilepsy. 

However, the definitive role of microglia in acute and chronic seizures remains unclear. 

Consequently, we investigated the effects of microglial depletion via three different genetic 

methods within KA induced status epilepticus and spontaneous chronic seizures in mice. 

Our results show that microglial depletion worsened acute seizures and neuronal 
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degeneration as well as increased the frequency of spontaneous recurrent seizures (SRS) and 

duration chronically.

Results

Microglia depletion and re-population.

The chemokine receptor CX3CR1 is primarily expressed on microglia in the CNS (Jung et 

al., 2000). As such, genetic modulation of microglia using CX3CR1-Cre lines has become a 

common method to investigate microglial function (Zhao et al., 2019). To begin our 

investigation, we depleted CX3CR1+ cells including microglia using two genetic mouse 

models. First, we inducibly expressed diphtheria toxin A (DTA) in CX3CR1+ cells using 

CX3CR1CreER/+: R26iDTA/+ mice, henceforth designated iDTA mice. Second, we inducibly 

knocked out colony-stimulating factor 1 receptor (Csf1r), which is critical for microglia 

survival using CX3CR1CreER/+:Csf1rFlox/Flox mice, henceforth designated Csf1r mice. 

Tamoxifen (TM) dosing was scheduled for every 3 days to induce DTA expression or Csf1r 

knockout in CX3CR1-expressing microglia and thus their depletion (Figure 1a). In iDTA 

mice, approximately 83%, 92%, and 90% Iba-1+ microglial cells, were depleted at 6d, 9d, 

and 12d after tamoxifen treatment, respectively (Figure 1b–d). Interestingly, re-population of 

Iba-1+ microglial cells occurred between days 12 and 18 even though tamoxifen treatment 

was continued (Figure 1b–d) and did not exhibit obvious regional heterogeneity. Compared 

to other brain regions, the hippocampus neither the last nor first region where microglia are 

fully repopulated. The similar depletion efficiency and re-population phenomenon was also 

observed in Csf1r mice (Figure 1e–g). To further investigate the identity of these repopulated 

cells in the brain, we stained for CD11b, a general marker of myeloid cells, and P2Y12, a 

specific marker of microglia. In both iDTA and Csf1r mice, CD11b and P2Y12 was 

completely co-expressed at each time point (Figure 2), suggesting that the repopulated cells 

were likely derived from residual microglia and not from infiltrated monocytes.

Microglia depletion increases acute seizure severity after KA-induced status epilepticus.

Next, we investigated the role of microglia in KA-induced status epilepticus (SE) using 

iDTA mice and Csf1r mice. We chose 9d after tamoxifen treatment since this was the time 

point that displayed maximal microglia depletion. Intracerebroventricular (ICV) KA 

injection was performed to induce SE and seizure scores were evaluated using a modified 

Racine scale (Figure 3a). Our results showed that CX3CR1+ cells depletion in iDTA mice 

significantly increased acute seizure severity (Figure 3b). In addition, depletion of CX3CR1+ 

cells significantly increased the mortality rate induced by ICV KA (Figure 3c). Consistently, 

we found that microglia depletion in Csf1r mice also worsened seizure severity and 

increased mortality (Figure 3d–e).

While, the chemokine receptor CX3CR1 is predominantly expressed by microglia in the 

CNS, it can also found on subsets of monocytes, macrophages, natural killer cells, and 

dendritic cells (Jung et al., 2000). Consequently, to further evaluate if our iDTA and CSF1R 

results are microglia specific, we also evaluated KA-induced SE with CX3CR1CreER/+: 

R26iDTR/+ mice, henceforth designated iDTR mice. By taking advantage of the significantly 

slower turnover rate that microglia have compared to other CX3CR1+ myeloid cells, we 
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could selectively express diphtheria toxin receptor (DTR) within microglia in a manner 

similar to previously described methods (Mo et al., 2019; Peng et al., 2016). We could then 

selectively deplete microglia via administration of diphtheria toxin (Figure 3f). We 

determined that approximately 90% of microglia were depleted 1d and 2d after the last DT 

injection and then rapidly re-populated by 7d (Figure 3g). In the light of this observed time 

course, KA was administered via ICV 1d after the last DT injection. We again determined 

seizure severity and mortality in iDTR mice, which were higher than non-depleted control 

mice (Figure 3h–j). These results from iDTR mice are consistent with those obtained from 

iDTA and Csf1r mice, suggesting specific microglia ablation aggravates the severity of acute 

seizures.

Microglia depletion increases KA-induced neuronal loss.

To test the effect of microglia depletion on neuronal degeneration after KA-induced SE, 

Fluoro-Jade-C (FJC) staining, which labels dying neurons, was performed on mice 

sacrificed at 1d and 3d after KA injection. We found that the number of FJC-positive 

neurons in the hippocampus was significantly increased in both iDTA and Csf1r mice when 

compared to their respective non-depleted controls (Figure 4a–e). In addition, FJC-positive 

neurons were detected in both ipsilateral and contralateral hippocampus in mice with 

microglia depletion (iDTA or Csf1r mice), while these dying neurons were only found in the 

ipsilateral hippocampus of WT mice. Curiously though, FJC-positive neurons were only 

present in the CA3 region of WT and Csf1r mice, but they were observed in both the CA1 

and CA3 regions of iDTA mice (Figure 4b, d). When using iDTR mice to specifically ablate 

microglia, we also found increased FJC-positive neurons in both ipsilateral and contralateral 

hippocampus (Figure 4g–h). Moreover, iDTR results were consistent with iDTA in that FJC-

positive neurons were present in both CA1 and CA3 regions. Taken together, our results 

indicate that microglia depletion worsens acute seizure and neuronal degeneration following 

KA-induced SE.

Microglia depletion aggravates chronic spontaneous seizure.

To further study the effect of microglia depletion, we next examined its influence on the 

development of spontaneous recurrent seizures (SRS). However, previous studies including 

ours have shown that ICV KA cannot induce reliable SRS (Tian et al., 2017), the 

characteristics of epilepsy in clinics. To this end, we used hippocampal KA injection which 

is known to induce chronic spontaneous seizures 28 days after insults (Dugladze et al., 2007; 

Klement et al., 2019). We performed EEG recordings for chronic seizure measurements. In 

iDTA and Csf1r mice, tamoxifen was injected 20d after intra-hippocampal KA, and EEG 

recordings were performed between days 28–31 (when microglia are mostly depleted) after 

KA (Figure 5a). We found that microglia depletion resulted in increased seizure frequency 

and duration, as well as, interictal spiking when compared to respective controls (Figure 5b–

e). Similarly, EEG recordings in iDTR mice found that microglia only depletion also 

increased chronic seizures (Figure 5g–h). These results demonstrate that the depletion of 

microglia promotes KA-induced SRS.
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Re-populated microglia reverse the effects on SE induced by microglial depletion.

Since microglia depletion worsened SE, we wanted to determine what effects re-populated 

microglia would have on SE. Thus, tamoxifen was administered to iDTA mice and Csf1r 

mice to deplete microglia, and then tamoxifen administration was ceased to allow microglia 

re-population prior to KA-induced SE (Figure 6a). Microglia were fully replenished in the 

brain 10d after the last tamoxifen injection in both iDTA and Csf1r mice (Figure 6b–c). 

Accordingly, ICV KA-induced SE was induced at this time point. We found that iDTA and 

Csf1r mice with re-populated microglia showed no significant difference in seizure scores 

when compared to their respective controls (Figure 6d–e). Thus, the detrimental effects of 

microglial depletion on the seizure induction was reversed when microglia were re-

populated. Therefore, the results suggest that microglia are beneficial in finely control the 

KA-induced seizure severity.

Discussion

Microglia participate in many important physiological processes such as modulating 

neurotransmission, promoting neuronal survival, clearing apoptotic neurons, and regulating 

synaptic function (Baalman et al., 2015; Eyo and Wu, 2019; Schafer et al., 2013; Shigemoto-

Mogami et al., 2014; Sipe et al., 2016; Wu, 2013). However, the role that microglia have in 

the pathologies of epilepsy is less studied (Eyo et al., 2017). To investigate this, we used 

three genetics-based microglia depletion methods to determine the importance of microglia 

in KA-induced seizures. We found that microglial depletion promoted both acute SE and 

chronic SRS. Microglia re-population then reversed the effect of microglial depletion on 

acute seizures. Consequently, our results suggest that microglia are overall protective and 

play a beneficial role in controlling KA-induced seizures and epilepsy.

It is increasingly suggested that microglia have opposing roles in seizures, being beneficial 

during the acute phase and deleterious during the chronic phase (Bhandare et al., 2017). 

However, contrary to some reports that showed preventing microglia activity during that 

chronic phase was beneficial (Bhandare et al., 2017; Wang et al., 2015), we found microglia 

depletion increased the frequency of SRS and seizure duration. It should be noted however, 

many of these studies utilize minocycline, an inhibitor of microglial activation, which can 

also positively influence neuronal, astrocytic, and oligodendrocyte activities (Huang et al., 

2010; Moller et al., 2016). More recently, a study using PLX-3397, a specific inhibitor of 

Csf1r, demonstrated anti-epileptic effects in acute and chronic seizure models (Srivastava et 

al., 2018). That study used only one-sixth of the dose for microglia depletion (Elmore et al., 

2014; Sosna et al., 2018), impacting microglial morphology and activation without reducing 

cell survival (Srivastava et al., 2018). This is in contrast to other studies using PLX-5622 to 

deplete microglia, which showed microglia have neuroprotective effects (Sanchez et al., 

2019; Waltl et al., 2018). These results suggest that while inhibition of microglial Csf1r may 

have an anti-seizure effect, microglia deletion leads to worse seizures.

A recent study using iDTR mice suggests increased inflammation after microglia ablation 

(Rubino et al., 2018). If this is the case, the observed effects upon seizure severity might not 

be directly attributable to the microglial protective function. However, there are several 

caveats to the published report (Rubino et al., 2018), such as administration scheme and 
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dosage of DT. Three daily i.p. doses of 1.0 μg DT were used, which could result in high 

concentrations of circulating DT. Although DT receptor is not expressed on native cells in 

mice, there could be chance for DT to enter into cells under high dose exposure (Yamaizumi 

et al., 1978). Therefore, DT could potentially do harm to even WT mice. In addition, our 

deletion model using Csf1r knockout was consistent with iDTA and iDTR results, 

suggesting the increased seizures may not be due to the elevated inflammation. Future 

studies are needed to definitively exclude the possibility that microglia ablation-associated 

inflammation might be partially responsible for aggravated seizures.

Memory and cognitive impairment are a common comorbidity of epilepsy, especially for 

epilepsy after viral encephalitis (Liu, 2019), which are associated with SRS and structural 

brain lesions (Helmstaedter and Witt, 2017). Hippocampus is the major structure involved in 

the learning, memory and affective behavior. Recurrent seizures can cause hippocampal 

damage, resulting in cognitive deficits (Vrinda et al., 2019). Our previous study indeed 

showed that KA-induced seizures lead to memory deficits in mice (Tian et al., 2017). Here 

we found that microglia depletion aggravated seizures and increased hippocampal neuronal 

loss in SE. Therefore, these microglia-depleted mice might exhibit worse memory loss 

compared with control mice after ICV KA, suggesting microglia could be beneficial for 

protecting cognitive function in KA-induced seizure. Further efforts will be made to 

investigate neuronal loss in chronic seizure and its effect on memory and cognitive function.

Another interesting aspect of our study was the re-population of microglia within each of 

our depletion methods. This is consistent with previous reports showing pharmacologically 

and genetically mediated microglial depletion can be reversed within a relatively short 

period (Elmore et al., 2014; Han et al., 2017; Varvel et al., 2012). Interestingly, in iDTA and 

Csf1r mice also show complete microglial repopulation even in the presence of tamoxifen. 

Therefore, the repopulated microglia may come from insufficient ablation (without iDTA 

expression or Csf1r deficiency) due to the efficiency of CX3CR1 cre recombinase. Our 

results also suggest that the origin of repopulated cells was derived from residual microglia 

because those re-populated microglia are mostly expressing P2Y12 receptor. This is in line 

with a recent study showing repopulated microglia are from residual resident microglia 

(Huang et al., 2018), other than from nestin-positive microglia progenitors (Elmore et al., 

2014). Another study suggests a dual origin of re-populated microglia, local microglial 

proliferation combined with infiltration of BM-derived precursors (Lund et al., 2018). It is 

possible that different depletion methods could result in different routes of microglia re-

population. We further found that the microglia repopulation reversed the effect of 

microglial depletion on the seizures, strengthening the idea that microglia are beneficial in 

controlling seizures.

In summary, we effectively depleted microglia using three different genetic models and 

found that microglia depletion increases the severity of seizure and neuronal degeneration 

following acute seizures, which can be reserved by microglial re-population. Additionally, 

microglia depletion worsened chronic SRS. Taken together, our study demonstrated that 

microglia have important protective roles in both the acute and chronic phase of 

epileptogenesis.
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Methods

Animals:

Six to twelve weeks old male mice were used for all experiments in accordance with 

institutional guidelines as approved by the Mayo Clinic Institutional Animal Care and Use 

Committee. CX3CR1CreER/+:R26iDTA/+ and CX3CR1CreER/+:R26iDTR/+ mice were 

generated by crossing CX3CR1CreER/CreER mice [B6.129P2(Cg)-CX3CR1tm2.1(cre/ERT2)Litt/

WganJ; Jackson Labs, Bar Harbor, ME] with either R26iDTA/+ [B6.129P2-

Gt(ROSA)26Sortm1(DTA)Lky/J; Jackson Labs] or R26iDTR/+ [C57BL/6-

Gt(ROSA)26Sortm1(HBEGF)Awai/J; Jackson Labs]. CX3CR1CreER/+: Csf1rFlox/Flox mice were 

generated by crossing CX3CR1CreER/+: Csf1rFlox/Flox mice with Csf1rFlox/Flox mice (B6.Cg-

Csf1rtm1.2Jwp/J; Jackson Labs). Littermate, CX3CR1CreER/+ mice or Csf1rFlox/Flox mice 

treated with tamoxifen were used as respective controls. Experimenters were blind to 

genotypes.

Ablation induction:

For CX3CR1CreER/+: R26iDTA/+ and CX3CR1CreER/+: Csf1rFlox/Flox mice, two initial doses 

of tamoxifen (500 mg/kg, 20 mg/ml in corn oil) was administered orally in 48 h intervals, 

followed by an equal repeated dose every third day. For CX3CR1CreER/+: R26iDTR/+ mice, 

tamoxifen (150 mg/kg, 20 mg/ml in corn oil) was administered by i.p. injection in 48 h 

intervals. 3 days after the last tamoxifen treatment, two doses of diphtheria toxin (DT, 

50μg/kg) were given by i.p. injection in 48 h intervals. For specific microglia depletion, the 

interval between the last tamoxifen and the first DT was 4 weeks. Respective control mice 

were administered with corresponding dose of tamoxifen and DT.

Status epilepticus induction:

KA-induced SE was performed as previously described (Eyo et al., 2014; Tian et al., 2017). 

Briefly, animals were anesthetized with isoflurane and a 26-gauge, stainless steel guide 

cannula was implanted into the intracerebroventricular (ICV) space (−0.2 mm 

anteroposterior (AP), +1.0 mm mediolateral (ML), −2.0 mm dorsoventral (DV)). 24 h later 

kainic acid (KA; 0.15 μg in 5 μl of artificial CSF) was then administered. Seizure behavior 

was monitored using a modified Racine scale: (1) freezing behavior; (2) rigid posture with 

raised tail; (3) continuous head bobbing and forepaws shaking; (4) rearing, falling, and 

jumping; (5) continuous level 4; and (6) loss of posture and generalized convulsion activity 

(Avignone et al., 2008; Racine, 1972).

Spontaneous recurrent seizure induction and EEG recording:

Animals were anesthetized with isoflurane and 70 ng of KA in 2 μl of aCSF was injected 

into the hippocampus (−1.6 mm anteroposterior (AP), +1.8 mm mediolateral (ML), −1.6 

mm dorsoventral (DV)). Electroencephalogram (EEG) electrodes and pre-amplifier 

(Pinnacle Technologies) were then implanted for cortical recording. Briefly, four bone 

screw/recoding electrodes were placed onto the dura through burr holes in the skull. Dental 

cement was used to permanently affix the electrodes and pre-amplifier to the skull. After 4 

weeks animals were connected to the recording system and EEG were recorded 
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continuously for 3 days. EEG data was analyzed with Matlab2018a. Seizure spells were 

defined as high-frequency>5Hz, high-voltage synchronized poly-spikes or paroxysmal sharp 

waves with amplitude >2-fold of background and lasting >6 s. Interictal spikes were defined 

as paroxysmal electrical sharp activities with amplitude >2-fold of background, frequency< 

5 Hz, duration < 100 ms.

Fluorescent immunostaining and analysis:

Mice were deeply anaesthetized with isoflurane (5% in O2) and transcardially perfused with 

20 ml PBS followed by 20 ml of cold 4% paraformaldehyde (PFA) in PBS containing 1.5% 

picric acid. Brains were then removed and post-fixed with the same 4% PFA solution for 4–6 

h at 4°C. The samples were then transferred to 30% sucrose in PBS overnight. Sample 

sections (14 μm in thickness) were prepared on gelatin-coated glass slide via cryosection. 

Sections were blocked with 5% goat serum and 0.3% Triton X-100 in TBS for 60 min, and 

then incubated overnight at 4°C with primary antibody for Iba1 (019–19741; 1:1,000; Wako 

Chemicals, Richmond, VA), CD11b (101202; 1:200; Biolegend, San Diego, CA), or P2Y12 

(66043A; 1:500; Anaspec, Fremont, CA). The sections were then washed with TBS and 

incubated with secondary antibodies (1:500 Alexa Fluor 594 and Alexa Fluor 488; Life 

Technologies, Carlsbad, CA) for 60 min at room temperature before mounting with 

Fluoromount-G (SouthernBiotech, Birmingham, AL). Fluorescent images were obtained 

with an EVOS florescent microscope (ThermoFisher Scientific, Waltham, MA). Cell 

numbers were quantified using ImageJ (National Institutes of Health, Bethesda, MD).

Fluoro-Jade C staining and analysis:

Fluoro-Jade C (FJC) was used to investigate neuronal degeneration. Briefly, previously 

collected tissue sections were brought to room temperature and air dried. Slides were next 

washed with PBS, incubated in a solution of 80% EtOH and 1% NaOH for 5 mins, then 

washed with 70% EtOH followed by ddiH2O. Slides were then immersed in 0.006% 

potassium permanganate solution for 15 mins, then again washed with ddiH2O. Slides were 

then placed in a solution of 0.001% FJC (Millipore-Sigma, Burlington, MA) in 0.1% acetic 

acid for 30 min. Finally, sections were dehydrated and cleared with xylenes, air dried, and 

mounted with a coverslip. FJC-positive cells were quantified using ImageJ (National 

Institutes of Health). Three sections per mouse were selected. The numbers of FJC+ neurons 

from 9 sections (3 sections per mouseⅹ3 mice) were averaged and the results were reported 

as the number of FJC+ neurons / hippocampus per brain section.

Statistical analysis:

Data is expressed as means ± SEM. Two-sided and unpaired Student’s t test were used to 

evaluate differences. P<0.05 was considered statistically significant.
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Highlights

• Three microglia-specific genetic tools were used, CX3CR1CreER/+:R26iDTA/+, 

CX3CR1CreER/+:R26iDTR/+, and CX3CR1CreER/+:Csf1rFlox/Flox mice to study 

microglia depletion in epilepsy.

• Microglial depletion worsened KA-induced status epilepticus, higher 

mortality rate, and increased neuronal degeneration.

• Microglial depletion increased seizure frequency, interictal spiking, and 

seizure duration in KA-induced chronic spontaneous recurrent seizures.
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Figure 1. Microglia depletion and re-population in the mouse brain.
a, Tamoxifen treatment scheme. b,e, Representative images showing microglia depletion and 

re-population in the brain of iDTA mice (b) and Csf1r mice (e). Using Analyze Particles in 

ImageJ to perform automatic cell counting, each blue dot represents a microglial cell. c,f, 
Immunostaining images of Iba1+ microglial cells in the hippocampus and cortex of iDTA 

mice and Csf1r mice during the time course of depletion and re-population. Scale bar ＝ 50 

μm. d,g, Quantification of Iba+ microglial cells in the brain of iDTA mice and Csf1r mice 

treated with tamoxifen. Data presented as means ± SEM, n=3–4, ***P<0.001 vs 0d.
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Figure 2. Re-populated cells are P2Y12+ microglia.
a, The scheme of tamoxifen treatment. b,c Representative images show that CD11b (green) 

and P2Y12 (red) are co-expressed in re-populated cells in the brain of iDTA mice (b) and 

Csf1r mice (c). Scale bar ＝ 50 μm.
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Figure 3. Microglia depletion increases acute seizure in response to KA treatment.
a, Drug treatment and behavior test scheme in iDTA and Csf1r mice. b–e, Quantification of 

seizure scores and mortality in iDTA mice (b–c) and Csf1r mice (d–e) after ICV KA. f, 
Drugs treatment and immunostaining scheme in iDTR mice. g, Representative images and 

quantification of Iba-1+ cells showing microglia depletion and re-population in iDTR mice 

at 1d, 2d, 3d, 5d, and 7d after tamoxifen and DT treatment. Scale bar ＝ 100 μm. h, Drugs 

treatment and behavior test scheme in iDTR mice. i–j, Quantification of seizure scores and 
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mortality in iDTR mice after ICV KA. Data presented means ± SEM, n=6–8. ***P<0.001 or 

**P<0.01 vs control group.
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Figure 4. Microglia depletion increases neuronal injury in response to KA treatment.
a, Drug treatment and immunostaining scheme in iDTA and Csf1r mice. b–e, Representative 

images and quantification of FJC+ neurons show that CX3CR1+ cell depletion worsens 

neuronal damage in the hippocampus of iDTA mice (b, c) and Csf1r mice (d, e) 1d and 3d 

after ICV KA treatment. f, Drug treatment and immunostaining scheme in iDTR mice. g–h, 

Representative images and quantification of FJC+ neurons show that specific microglia 

depletion worsens neuronal damage in the hippocampus of iDTR mice 1d and 3d after KA 

treatment. Scale bar ＝ 100 μm. Data presented as means ± SEM, n= 3, **P<0.01 vs control 

group.
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Figure 5. Microglia depletion aggravates spontaneous seizure induced by KA.
a, Drug treatment and EEG recording scheme in iDTA and Csf1r mice. b–e, Representative 

traces and quantification of EEG recordings show that CX3CR1+ cell ablation aggravates 

spontaneous seizures in iDTA mice (b, c) and Csf1r mice (d, e) starting 28 days after KA 

treatment. f, Drug treatment and EEG recording scheme in iDTR mice. g–h, Representative 

traces and quantification of EEG recordings show that specific microglia depletion increases 

spontaneous seizures in iDTR mice starting 28 days after KA treatment. Data presented as 

means ± SEM, n=3–4. **P<0.01 vs control group.
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Figure 6. Re-populated microglia did not alter seizures induced by KA.
a, Drug treatment, immunostaining and behavior test scheme in iDTA and Csf1r mice. b–c, 

Representative images showing the time course of microglia repopulation in the 

hippocampus following rapid depletion in iDTA mice (b) and Csf1r mice (c). Scale bar ＝
50 μm, n=3. d–e, Quantification of seizure scores show that iDTA mice and Csf1r mice with 

repopulated microglia have similar seizure scores compared with their respective controls. 

Data presented as means ± SEM, n=6–8.

Wu et al. Page 20

Brain Behav Immun. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Microglia depletion and re-population.
	Microglia depletion increases acute seizure severity after KA-induced status epilepticus.
	Microglia depletion increases KA-induced neuronal loss.
	Microglia depletion aggravates chronic spontaneous seizure.
	Re-populated microglia reverse the effects on SE induced by microglial depletion.

	Discussion
	Methods
	Animals:
	Ablation induction:
	Status epilepticus induction:
	Spontaneous recurrent seizure induction and EEG recording:
	Fluorescent immunostaining and analysis:
	Fluoro-Jade C staining and analysis:
	Statistical analysis:

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

