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Abstract

Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of 

cases among patients with lung, breast cancer and melanoma most notably. Although research on 

brain metastasis was considered a minor aspect in the past due to its untreatable nature and 

invariable lethality, nowadays limited but encouraging examples have questioned this statement 

making it more attractive for basic and clinical researchers. Evidences of its own biological 

identity (i.e. specific microenvironment) and particular therapeutic requirements (i.e. presence of 

blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are 

thought to be critical aspects that must be functionally exploited using preclinical models.

We present the coordinated effort of 19 laboratories to compile comprehensive information related 

to brain metastasis experimental models. Each lab has provided details on the cancer cell lines 

they have generated or characterized as being capable of forming metastatic colonies in the brain, 

as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines 

Panel (BrMPanel) represents the first of its class and includes information about the cell line, how 

tropism to the brain was established and the behavior of each model in vivo.

These and other aspects described are intended to assist investigators in choosing the most suitable 

cell line for research on brain metastasis. The main goal of this effort is to facilitate research on 

this unmet clinical need, to improve models through a collaborative environment, and to promote 

the exchange of information on these valuable resources.
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Introduction

Central nervous system (CNS) metastasis, notably in the brain, are most prevalent in lung 

cancer (20–56% of patients), breast cancer (5–20% of patients) and melanoma (7–16% of 

patients), but occur in many other cancer types (1,2). Lesions occur in both the brain 

parenchyma and the meninges. The incidence of brain metastases is thought to be 

increasing, owing to improved systemic therapy that however fails to control the disease in 

the brain, more frequent and improved imaging, and other factors. The development of brain 

metastases impairs patient survival (3) and is the cause of death in up to 50% of affected 

patients (1).

Hallmarks of brain metastasis development have been identified (4). The brain metastatic 

tumor cell must traverse the blood-brain barrier (BBB). The BBB is then modified to a 

poorly characterized blood-tumor barrier (BTB) which is heterogeneously permeable to 

most drugs (5,6). Immune cell penetration of the brain is negligible in healthy 
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circumstances, but occurs during brain metastasis development (7). Metastatic tumor cells 

colonize the brain in an intimate relationship with the BTB, activated astrocytes and 

microglia, which form a neuro-inflammatory response around damaged areas, neurons, 

oligodendrocytes, and other specialized brain cells (8–13).

Until recently, brain metastasis therapy was primarily local including surgery, stereotactic 

radiation therapy, and whole brain radiation therapy. Further, steroids are used to control 

edema. Systemic brain-permeable kinase inhibitors and immune checkpoint therapies are 

active and now in use for some cancer types (14–21).

In order to mechanistically understand CNS metastasis formation and to develop preventives 

and therapeutics, it is essential to use model systems that, as much as possible, faithfully 

recapitulate the progression in the patient. Thus, the complexities of brain metastases, as 

listed above, dictate that multiple model systems should be interrogated.

This article shares the experience of 19 laboratories that have established and/or 

characterized brain-tropic experimental models for parenchymal and leptomeningeal 

metastasis. This resource is expected to significantly foster brain metastasis research, and is 

available to the entire scientific community.

Results

Overview of the Brain Metastasis Cell Lines Panel

The BrMPanel (https://apps.cnio.es/app/BrainMetastasis/CellLines) (Supplementary Table 

1) is composed of 60 cell lines, derived from patients (32 cell lines, 53.3%), mouse (27 cell 

lines, 45.0%) or rat (1 cell line, 1.7%), and represent the three main sources of brain 

metastasis including breast cancer (38 cell lines, 63.3%), lung cancer (8 cell lines, 13.3%) 

and melanoma (14 cell lines, 23.3%). Each type of cancer has the main molecular drivers or 

cancer subtypes represented (Figure 1).

In addition to biologically relevant characteristics, the cell lines included in the BrMPanel 

express different reporters to track and measure brain metastasis such as luciferase (35 cell 

lines, 58.3%) and/or fluorescent reporters (green fluorescence reporters (i.e. GFP), 43 cell 

lines, 71.7%; red fluorescence reporters, 11 cell lines, 18.3%). A limited number of cell lines 

are not labelled at all (13 cell lines, 21.2%).

Methods for establishing brain tropism

The most popular method to enrich brain tropism is the in vivo selection of cell lines that are 

preferentially metastatic to the CNS (33/60 cell lines, 55.0%). This approach, described 

elsewhere (22,23), offers the possibility to select not only aggressive derivatives, but also 

indolent ones (24). The selection process involves engineering cancer cells with reporters 

(i.e. luciferase or GFP) so that lesions can be easily visualized, scored and dissected, and 

finally re-implanted into mice, typically after some period of in vitro growth. Subsequent 

additional rounds of selection are typically performed. Although less frequent, it is also 

possible to perform the in vivo selection blind if no reporters are used, based on the 
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macroscopic identification of metastases and MRI (entry#7 and #8 from the BrMPanel) 

(Supplementary Table 1) (25).

In addition, the BrMPanel contains entries that do not require any selection owing to their 

intrinsic ability to grow in the brain (27/60 cell lines, 45.0%). However, within this group we 

have to differentiate between three distinct categories: those that have been directly 

implanted within the brain (5/27 cell lines, 18.5%), so whether or not they are able to target 

the brain from a systemic inoculation remains an open question; those that are able to 

metastasize to the brain from a systemic inoculation into the bloodstream (15/27 cell lines, 

55.6%); and those that metastasize from an orthotopic implantation (e.g. a melanoma cell 

line with the ability to spontaneously metastasize in the brain from intradermal inoculation) 

(7/27 cell lines, 25.9%).

Syngeneic versus xenograft BrM models

Given the increasing efforts to use immunotherapy in brain malignancies (19–21), syngeneic 

cell lines, which are compatible with genetically engineered mouse models (GEMM) and 

with immune competent strains in general, represent a growing interest among cancer 

researchers studying brain metastasis (26). The use of syngeneic cell lines engineered to 

express exogenous reporter proteins has been shown to potentially activate an immune 

response of variable intensity depending on multiple factors, including the specific reporter 

and the mouse strain (27). Although this has not been specifically reported for any BrM cell 

line included in the BrMPanel, some researchers are intentionally avoiding the use of any 

reporter either in syngeneic models (entry#7, #8, #10, #25, #33, #48) (25,28,29) or human 

models (entry#42, #54) (30–32) and rely on other imaging modalities such as magnetic 

resonance imaging (MRI) and ultrasound imaging for monitoring local progression 

(25,33,34) (Table 1 and Supplementary Table 1). In addition, a potential limitation to using 

syngeneic models is that the endpoint following intracardiac or intracranial injection of the 

same number of BrM cells is reached faster (2–3 weeks) than in xenograft models (4–6 

weeks), which limits the time window to study their growth in the brain, and to assess 

therapeutic approaches. Notably, although enriched for their brain tropism, extracranial 

disease is often present in BrM models. In xenografts the incidence of extracranial 

metastases tends to be less evident than in syngeneic models, which might facilitate the 

evaluation of brain-specific benefits with a given therapeutic intervention.

Spontaneous models

A spontaneous model of brain metastasis requires that cancer cells must accomplish all steps 

of the metastatic cascade from a spontaneously arisen or orthotopically implanted tumor. 

Thus, the main advantage of utilizing such models is that they more faithfully recapitulate 

the human metastatic process (35,36). In addition, these models also allow one to study the 

potential influence of the primary or orthotopic tumor on the formation of the pre-metastatic 

niche, which has been shown to influence BBB permeability, neuroinflammation, dormancy 

and latency (37). However, spontaneous models often involve a longer latency period to the 

establishment of brain metastasis, which generally requires the removal of the fast-growing 

primary or orthotopic tumor, and results in a lower and highly variable incidence of CNS 

metastasis, which necessitates the use of larger cohorts of mice (37).
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Although some breast cancer cell lines included in the BrMPanel (i.e. MDA-MB-231 and 

4T1) have been previously reported to form spontaneous brain metastases (38–40), they are 

not currently used as such. In fact, more convincingly characterized spontaneous models of 

melanoma brain metastasis have recently been reported. The RMS cell line (entry #51) was 

originally derived from a spontaneous primary tumor in the Ret transgenic mouse (41,42). 

Subdermal orthotopic injection of RMS cells results in the formation of aggressive primary 

tumors, which, after being surgically removed, are the source of brain micrometastases (50% 

of mice) that evolve to fully developed metastases in 23% of mice after 4–6 months (37,43). 

Brain-tropic derivatives were also established after intracardiac injection of the RMS cell 

line (BT-RMS cells, entry #52) or by isolating a spontaneously arisen brain metastasis from 

an orthotopic tumor (sBT-RMS, entry #53). These additional cell lines increased the 

incidence of brain metastasis to 80–90% at 2 weeks after systemic inoculation or to 55–60% 

at 4–6 months after orthotopic inoculation, respectively (37,43).

In addition, the 5610 cell line was originally derived from a spontaneous primary melanoma 

arising in a Dct::TVA;BrafCA;Cdkn2alox/lox mouse injected with RCAS-Cre (29) and later 

engineered ex vivo to express Akt1 (entry #49) and Akt1E17K (entry #50) along with 

luciferase and ZsGreen. Subcutaneous injections of 5610, 5610-Akt1, or 5610-Akt1E17K 

cells result in the formation of primary tumors in all injected mice but they demonstrate 

different metastatic capacities. Whereas the parental 5610 cell line does not metastasize, 

brain (30% of mice) and extracranial (30% of mice) metastases develop in mice injected 

with either 5610-Akt or 5610-Akt1E17K cells after 2 months (29). Most of these mice have 

both brain and extracranial metastases, but a reduced number of them have only their brain 

affected (29). Moreover, the parental 5610 is unable to grow in the brain even if directly 

implanted by intracranial injection (29). The loss of Pten in the cell line 7788 (entry #48), 

which also has all previous genetic modifications described in the 5610-AktE17K cells, 

increases to 100% the mice showing tumor growth upon direct intracranial inoculation, 

though their tropism upon systemic inoculation is still unknown (29).

PDX models

Patient-derived xenografts (PDX) are models of cancer where the tissue or cells from a 

patient’s tumor is implanted into humanized or immunodeficient mice. The advantage of this 

experimental model is the potential to study an avatar of the patient’s tumor that 

recapitulates the enormous complexity of human cancer. Humanized models, however, 

remain a challenge due to species-specific differences that preclude proper engraftment and 

development of human immune cell populations (44).

The BrMPanel has eight PDX models obtained from surgically resected brain metastases 

derived from breast cancer (F2–7, entry#35 (45); USC-BBM3.1, entry#34), lung cancer 

(USC-LUBM5, entry#43; SEBTA 001, entry#42 (30,31), and melanoma (H1, entry#54; 

H1_DL2, entry#55; H1_Tomato, entry#56 (32,46,47); WM4237, entry#59, (48)) that were 

propagated in vitro for a maximum of 10 passages, during which they were engineered with 

various reporters (i.e. Luciferase, GFP or tdTomato), and then injected in NSG mice. These 

PDX models did not require any enrichment in vivo since they were able to generate brain 

metastases and extracranial metastasis in 3–9 weeks after intracardiac inoculation depending 
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on the model. This also applies to WM4237, obtained from a melanoma brain metastasis in a 

patient treated with immunotherapy, which is the only PDX model that has been 

demonstrated to spontaneously metastasize to the brain upon orthotopic injection. As 

expected, this model requires longer periods of time (17 weeks) and removal of the primary 

tumor (48).

Ex vivo tumor cell culture in serum-free, “stem-like” culture medium, has been utilized in 

primary brain tumor research in recent years due to greatly improved persistence of key 

cellular and molecular features of patients’ tumors (49,50). Limited models of brain 

metastasis, which are not part of the BrMPanel, have been established under this condition 

(51). Thus, it remains to be seen whether this strategy will also help to improve models for 

CNS metastasis research.

Experimental approaches with brain tropic cell lines

Routes of BrM cell line inoculation—There are three types of tumor cell inoculations 

represented in the BrMPanel: local (intracranial), systemic (intracardiac and intracarotid), 

and orthotopic (intradermic/ subcutaneous for melanoma and mammary fat pad for breast 

cancer) (Supplementary Figure 1). The advantages and disadvantages of each type are 

briefly discussed below. The techniques to evaluate brain colonization (22,25,31,37,52–55) 

are compared in Table 1.

Local inoculation (5/60, 8.3% of all entries)

Advantage: This is a simple and fast method to generate brain tumors that allows the study 

of cancer cells of non-brain origin within their appropriate microenvironment in the brain. It 

is only suited to study large tumors that can, under certain circumstances, be regarded as 

models for brain macrometastases. Another advantage is that the exact site of tumor cell 

growth in the brain can be predetermined.

Disadvantage: This model does not reproduce the metastatic cascade, including the 

important aspects of organ colonization, such as the initiation of metastasis from isolated 

clones. Moreover, the inoculation per se induces local neuroinflammation mostly affecting 

resident cells such as astrocytes and microglia, which might interfere with the role of this 

process in the initial steps of brain colonization. Therefore, it cannot be regarded as a true 

“metastasis model” but rather as a technical strategy to avoid the intrinsic difficulties of 

more advanced approaches (i.e. variable number and location of metastases) when these 

aspects are not necessarily required to answer the question of interest.

Systemic inoculation (48/60, 80.0% of all entries)

Advantage: This experimental approach recapitulates all steps required for organ 

colonization. Although intracardiac inoculation involves phenotypic variability (i.e. variable 

number of mice with brain metastasis, variable number of metastases per mouse) it is 

consistent enough to be the most frequently used approach given its technical feasibility (i.e. 

no requirement for invasive surgery, the injection could be guided by ultrasound imaging 

(56)), high incidence of brain metastasis among mice injected with brain-homing cells, and 

sufficiently homogeneous time to reach the experimental endpoint (22,23,57). Intracarotid 
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inoculation minimizes the number of cancer cells that circulate systemically out of the head, 

thus reducing the incidence of extracranial metastases, which might be useful when the 

efficacy of different interventions is to be evaluated without the confounding effects of 

extracranial disseminated disease (58).

Disadvantage: In particular, intracarotid injection is technically challenging, and requires 

invasive surgery, which may impact disease pathology.

Systemic inoculation in general obviates the stages of the metastatic cascade preceding 

organ colonization, and involves the growth of metastatic cells in a cancer naïve host, which 

does not reproduce the clinical situation. In addition, this strategy to induce metastasis 

neglects the co-evolution of the cancer and the host from the initial stages of primary tumor 

growth, and involves the inoculation of a single bolus of a high number of cancer cells rather 

than the reality of limited numbers of circulating tumor cells disseminated from early stages 

of the primary tumor development (59,60). In an effort to minimize some of these 

disadvantages, orthotopic inoculation of the cancer cells has been combined with subsequent 

systemic inoculations (26).

Orthotopic extracranial inoculation (7/60, 11.7% of all entries)

Advantage: Although this modality still does not fully recapitulate the spontaneous 

emergence of cancer, it is nonetheless the second-best approach to study the entire process 

of metastasis. It reproduces not only the colonization step but also the growth of the original 

tumor and more realistic systemic dissemination of cancer cells. Since these models have an 

orthotopic tumor and, frequently, extracranial metastases as well, it more closely 

recapitulates the clinical scenario and the potential influence that extracranial disease might 

have on the brain.

Disadvantage: These models are still not widely used by brain metastasis researchers owing 

to their limitations, including the highly variable and low rate of incidence of brain 

metastasis, which is also lower than for any systemic inoculation, increased time to generate 

brain metastasis, and the frequent need to add surgery to remove the orthotopic tumor, which 

otherwise involves reaching humane endpoint criteria before brain metastases have 

developed (37).

Preclinical therapeutic approaches—Preclinical therapeutic approaches in BrM 

mouse models encompass both local and systemic treatment strategies (Supplementary Table 

2), similar to clinical care. Local interventions in BrM models have largely focused on 

radiation strategies, including modeling whole brain radiation therapy (WBRT) (61–63) and 

stereotactic radiosurgery (SRS) (64–66). With regards to systemic therapies, a broad 

spectrum of treatments has been tested in BrM models: traditional chemotherapies, 

including DNA-damaging agents (67–69); small molecule inhibitors, including tyrosine 

kinase inhibitors (70–75); nanoparticles and other lipid-based delivery systems (76–80); and 

biologics, including checkpoint inhibitors (26,81), monoclonal antibodies (34,55,74,75,82) 

and stem cells (83). Preclinical models described here continue to contribute to our 

understanding of the BrM tumor microenvironment during therapeutic intervention (53,84–
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86). Sophisticated studies have also explored optimal partners and their respective timing/

sequencing for optimal combinations of systemic and local therapies (87), both mirroring 

and informing clinical research. Other studies have investigated methods of opening the 

BBB to improve delivery of drugs that would otherwise be too large to reach intracranial 

tumors (6,54,80,88,89).

While BrM mouse models allow for a variety of therapeutic strategies, it is imperative that 

the goal of the tested preclinical treatment modalities is best matched to the appropriate 

clinical application. For example, investigations with immunotherapies require 

immunocompetent models (e.g. mouse-derived cells into a syngeneic host). Explorations of 

inhibitors of the metastatic cascade should utilize intracardiac or intracarotid injections or 

models that generate spontaneous brain metastasis, depending on the focus of the study, with 

therapeutics administered at pre-specified time intervals during the metastatic process to 

determine treatment effects on the respective metastatic stages (51,90,91).

Specific features of BrM cell lines according to their primary origins

Little is known so far about the differences and similarities of various tumor entities with 

respect to their specific biological mechanisms of brain colonization, and successful growth 

in the brain. Several reasons might explain this lack of knowledge.

First, in the interest of finding critical aspects of CNS colonization, researchers initially 

hypothesized and later demonstrated (52) that the high selective pressure imposed by the 

brain, which is independent of the source of the primary tumor, acts as a potent “filter” that 

selects those cancer cells that are better fitted to grow in this organ. In fact, this finding does 

not seem to be determined by particular alterations at the DNA level, which is usually linked 

to the original source of the metastasis, but rather derived from a transcriptomic rewiring 

(23,92). Second, research programs devoted to single tumor cell entities have not applied 

their expertise to additional tumor sources to pinpoint differences. Better understanding of 

tumor-specific differences might help with the design of clinical trials for brain metastasis, 

as has been suggested by the early angiogenic dependency of lung cancer brain metastasis 

(55,93) or the hormonal dependencies of certain subtypes of breast cancer (94).

In an effort to recognize the variety of brain metastasis models in the BrMPanel we briefly 

describe them according to their primary tumor source.

Breast cancer: This Panel represents 3 of the 4 molecular subtypes of breast cancer, with 

Luminal A (ER+, PR+/−, HER2-) being currently absent. Metastatic cells in the BrMPanel 

harbor all of the major somatic mutations found in patients including those affecting 

BRCA1, PTEN, HER2, CDK, EGFR and p53, and others which are less prevalent such as 

BRAF, MYC, KRAS, RB1 and SMAD4. Expression of the epidermal growth factor receptor 

ErbB2 (HER2) and lack of expression of the estrogen receptor (ER) are independent strong 

risk factors for the development of brain metastasis in breast cancer patients (95–98). 

Consistently, the majority of the cell lines represented in this panel are from triple negative 

breast cancer (ER-negative, progesterone receptor (PR) - and normal HER2) (TNBC) (19/38 

entries, 50.0%) and HER2+ subtypes (16/38 entries, 42.1%). Of note, derivatives obtained 

from the MDA-MB-231 cell line are over-represented in the BrMPanel. The rich 
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representation of breast cancer models in the BrMPanel includes cell lines that progress 

expeditiously in the brain (entry#1), but also additional HER2+ BrM models with slower 

progression (entry#2), which will provide the BrM research community with tools to better 

represent the heterogeneity of brain metastases. Similarly, ER+ BrM cell lines present in the 

BrMPanel (cell lines#7–10, #18, #30, #31) reflect the characteristic slower progression rates 

of luminal tumors (1–3 months following IC injection).

Lung cancer: All BrM cell lines in the Panel were derived from non-small cell lung cancer 

(NSCLC) adenocarcinomas. Developing models to study small-cell lung cancer (SCLC), 

which is a tumor entity with very high CNS tropism in patients (99), is urgently needed. In 

addition, the limited characterization of molecular profiles in the BrMPanel includes KRAS 

(G12C), p53 and EGFR (△E746-A750) driver alterations represented. Remarkably, no 

models involving ALK alterations are present, in spite of the high frequency of brain 

metastasis in these patients. Finally, the need to increase the lack of mouse-derived BrM 

models of lung cancer in the field is also evident (2/8, 25%), especially given the growing 

interest in the use of immune-based approaches in this tumor type.

Melanoma: The fourteen melanoma BrM models present in the BrMPanel represent key 

genomic alterations such as BRAF, Cdkn2a, RB1, p53, AKT, PTEN and RET. Interestingly, 

the melanoma models include the highest representation of syngeneic models within a tumor 

type (8/14, 57.1%), which could facilitate research on immune-based therapies to dissect the 

biology of clinically-relevant approaches as demonstrated, at least, in asymptomatic brain 

metastases (21).

Meningeal brain metastasis

The meninges, or coverings of the CNS consist of two categories: the innermost 

leptomeninges, and the outer pachymeninges. The pachymeninges consist of the dura mater. 

Both leptomeninges (from melanoma, breast and lung cancer) and dura (from breast cancer) 

metastatic cancer cell variants are represented in the BrMPanel.

Leptomeninges metastatic (LeptoM) cell lines: The delicate leptomeninges consist 

of the pia mater and arachnoid mater, and contain the circulating cerebrospinal fluid (CSF). 

The leptomeningeal space represents an anatomical compartment separate from that of the 

systemic circulation and the brain. Entry into this leptomeningeal space is governed by the 

blood-CSF-barrier, the choroid plexus. LeptoM cell lines (MDA-MB-231-LeptoM, 

entry#19; HCC1954-LeptoM, entry#20; PC9-LeptoM, entry#44; LLC-LeptoM, entry#45) 

were generated through iterative rounds of in vivo selection after injecting them into the 

cisterna magna. An intermediate derivative obtained after the third round was subsequently 

injected intracardially into recipient mice for one additional in vivo round. The recovered 

cell line was termed the LeptoM cell lines. LeptoM cell lines do not generate parenchymal 

metastases upon IC injection, and, in fact, differ from them transcriptomically (100). As in 

the clinic, LeptoM cell lines kill mice faster than parenchymal models (2 weeks versus 5 

weeks, respectively) (100). Besides the LeptoM cell lines, the B16/F10-BrM (entry#47), 

RMS (entry#51), BT-RMS (entry#52) and sBT-RMS (entry#53) spontaneously develop 
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limited but consistent meningeal tropism in spite of a purely parenchymal in vivo selection 

(53).

Dura metastatic (Dura) cell lines: The tough and fibrous dura mater resides outside of 

the BBB and is served by the systemic circulation. As such, systemic therapeutics easily 

reach tumors that seed and grow within this space, in contrast to the leptomeningeal space.

Following internal carotid artery injection of 4T1 cancer cells into syngeneic BALB/c mice, 

4T1-Dura3 (entry#13) were established after 3 rounds of in vivo selection from the dura. In 

parallel, derivatives that grew in the parenchymal space were established (4T1-Par3, 

entry#12). The cell line 4T1-Dura3 still targets the parenchyma to some extent, but differs 

from 4T1-Par3 in the immune cell composition as well as inflammation-related pathways 

(101).

Conclusions and future directions

The BrMPanel is an open resource meant to exchange information and is intended to 

become a reference for those investigators interested in brain metastasis research. Of note, 

the BrMPanel is not a cell repository, and those interested in any of these cell lines should 

directly reach out to the investigator listed in the table for each individual reagent 

(Supplementary Table 1). The conditions under which cell lines will be shared are entirely 

dependent on each laboratory/institution.

Importantly, this BrMPanel is a first attempt to summarize such resources and is intended to 

expand with additional cell lines in the future, from the many laboratories that have reported 

additional brain metastasis models (102–125). As shown in Figure 1 and mentioned above, 

some tumor types (lung cancer) and relevant genomic alterations (i.e. ALK translocations) 

are poorly represented in the Panel, and provide the opportunity to continue with this effort 

intended to mimic the complete clinical scenario. Consequently, the BrMPanel is a resource 

open for additional collaborators. Furthermore, we envision similar resources could also 

emerge for other tropic cell lines to different organs and, with the help of established entities 

(e.g. Cellosaurus), a comprehensive resource of organotropic cell lines could be made 

available in the future.

Certainly, these resources could be further enriched through more ambitious projects 

involving full molecular characterization (i.e. transcriptomic, epigenomics, proteomics, cell 

surface, karyotyping, etc.), which, if made available to the scientific community, will speed 

up research and optimize resources. Having the opportunity to identify commonalities 

between different organotropic cell lines within large repositories might provide new 

hypotheses to be tested, presumably, increasing the potential for translation to patients. In 

this regard, although there have been a few clear examples of how the use of cell lines within 

the BrMPanel can lead to new clinical trials with encouraging results for patients 

(Supplementary Table 2), there is still room for significant improvement given the dismal 

prognosis for this disease. For instance, spontaneous models of metastasis would aid in 

testing preventive strategies and predictive biomarkers before the metastasis becomes 

clinically relevant. The incorporation of both local and systemic therapies that are part of the 

standard-of-care might improve the translational potential of basic research. The 
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development of drug screening platforms adapted to the particularities of metastasis and the 

organ in which they grow (i.e. lab-on-a-chip, organotypic cultures) together with the use of 

FDA-approved or experimental libraries of compounds preferentially pre-selected for their 

BBB-permeable properties could drastically increase the limited arsenal against brain 

metastasis. In addition, a domain that has been poorly explored so far in pre-clinical models 

of brain metastasis, which is now emerging within the “cancer neuroscience” field (126), is 

the cognitive deficit associated with the disease itself, a critical concern for patients.

The use of BrM cell lines involves, beyond the general concerns that apply to all models 

based on cancer cell lines (127), a large number of variables regarding the specific cell line, 

model, and the particular approach to study metastases. Careful consideration of the 

underlying question is critical to evaluate whether a simple versus more complex strategy 

would be more appropriate. For instance, utilizing fully immunocompetent hosts is 

becoming almost a requirement given the emerging crosstalk between the brain and the 

immune system as well as the occasional positive responses of CNS metastasis to 

immunotherapy. However, the use of immunocompetent hosts and mouse cancer cells is not 

exempt from limitations such as the existing differences between species and the higher 

complexity of human cancer. In addition, our ability to manipulate the brain immune system 

is still limited due to relatively recent major discoveries (e.g. brain lymphatic system) and 

existing open questions regarding basic aspects of the crosstalk between metastasis and 

different cell types of the adaptive immune system. In addition, the potential impact of 

exogenous proteins (e.g. reporters) on anti-tumor responses might complicate the ability to 

track metastasis development. Although some of these aspects could be circumvented (e.g. 

tolerogenic GEMM (128), novel variants of non-immunogenic reporters (27), the use of 

humanized mouse models or using imaging methods based on endogenous reporters (i.e. 

MRI) to minimize the effects of reporters on immunity), a good strategy is to combine and 

validate experimental findings using several models.

In this sense the emerging, but still very limited number of models that recapitulate the 

whole metastatic cascade are priorities for further development and should be incorporated 

into the experimental pipelines more frequently, at least to confirm findings obtained with 

simpler models.

By combining more sophisticated models with different clinically-relevant therapeutic 

approaches and appreciating the genomic complexity of human disease, we hope that novel 

and more effective strategies to target metastases in the brain and elsewhere will soon 

become a reality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cancer cell lines in the BrMPanel.
Brain metastatic (BrM) cell lines have been established from human or mice parental cells 

(derived from primary tumors, pleural fluids or lymph node metastasis). Depending on the 

model, some cell lines were labelled with fluorescent (i.e. GFP) and/or bioluminescent (Luc) 

reporters and they underwent subsequent in vivo selection, for 0–5 rounds. Alternatively, 

spontaneous metastasis obtained from patients or mice (i.e. derived from genetically 

engineered mouse models (GEMM) or orthotopic injections) could be a direct source of 

BrM cell lines, without the need of performing in vivo selection. The BrMPanel has 60 cell 

lines from breast cancer (38 cell lines, 63.3%), lung cancer (8 cell lines, 13.3%) and 

melanoma (14 cell lines, 23.3%) of human (h), mouse (m), or rat (r) origins. Molecular 

drivers and cancer subtypes are represented for each cancer type: Breast cancer: 16 entries of 

HER2+, 42.1%; 19 entries of triple-negative breast cancer patients (TNBC), 50.0%; 3 entries 

of other, 7.9%; Lung cancer: KRAS mutant and p53 null (1 out of 8 cell lines of 12.5%) or 

EGFR alterations (3 out of 8 cell lines, 37.5%); Melanoma: 8 BRAF mutant cell lines 

(57.1%) and 3 Ret alterations (21.4%). Analysis of the molecular profiles correspond to the 

parental cell lines.
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Table 1.
Techniques to analyze metastasis progression in the brain.

There are multiple available techniques (columns) for assessing the development and treatment of brain 

metastasis. In selecting the most appropriate approach, it is essential that the researcher considers different 

parameters (rows). Each cell in the table provides binary information (yes (white background)/ no (red 

background)) regarding the compatibility of the technique with the specific parameter. However, for several 

parameters it is important to consider additional quantitative or qualitative aspects. For example, the row 

testing “sensitivity” can be divided into the different stages of brain metastasis development. The different 

stages derive from the number of cells in a given metastasis (see (*) at the bottom). The parameters “technical 

requirement” and “time requirement” do not respond to binary options but are better defined by 

semiquantitative considerations of feasibility and resource requirements. Finally, the last row reflects potential 

limitations for a given technique, such as the need to have the BrM cells engineered with particular reporters 

or the need to use antibodies. We provide a graded code using “+” signs to suggests what is (+) somehow 

suitable, (++) suitable, and (+++) optimal. A key reference has been added to each technique to provide an 

example of its implementation.

Histology52 FACS25 PCR37 MRI31 Bioluminescence22,53

Two-photon 
video-

microscopy54

Techniques to 
analyze metastasis 

progression

Compatible with in 
vivo No No No

Yes(+++) 
(Non-

invasive)

Yes(+++) (Non-
invasive)

Yes (+++) 
(Partially-
invasive)

Sensitivity (*) Single 
cell→Big Medium-Big Medium-Big Medium-Big Medium-Big Single 

cell→Small

Number of 
metastases Yes (+++) No No Yes(++) Yes (+) No (In field-of-

view only

Size Yes (+++) No No Yes(++) Yes (+) Yes (+++)

Distribution Yes (+++) No No Yes(+++) Yes(++) No

Growth
Yes (+++) 
(cellular 
pattern)

No No Yes(+++) 
(over time) Yes(+++) (over time)

Yes(+++) (cell, 
pattern/over 

time)

Microenvironment 
features Yes (+++) Yes (++) Yes (+) Yes (++) No Yes(+++)

Technical 
requirement 
(Equipment/ 

expertise)

Low/ Low 
(+++)

Low/ Low 
(+++)

Low/ Low 
(+++) High/ High Medium/ Medium (++) High/ High

Time requirement Medium-high Low (+++) Low (+++) Medium Low (+++) High

Info about extra-
cranial No No No No Yes(+++) No

Particular 
considerations Antibodies

Antibodies 
and/ or 

Engineering 
BrM cells

Relative 
quantification

High field 
strength Engineering BrM cells Engineering 

BrM eel

(*)
Sensitivity: Small (micrometastasis): 5–50 cells

Medium (micrometastasis): <500 cells
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Big (macrometastasis): >1000 ceils

Suitability:

(+)
Somehow suitable

(++)
Suitable

(+++)
Optimal
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