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Abstract

Purpose: Gene-expression-based molecular subtypes of high-grade serous tubo-ovarian cancer 

(HGSOC), demonstrated across multiple studies, may provide improved stratification for 

molecularly targeted trials. However, evaluation of clinical utility has been hindered by non-

standardized methods which are not applicable in a clinical setting. We sought to generate a 

clinical-grade minimal gene-set assay for classification of individual tumor specimens into 

HGSOC subtypes and confirm previously reported subtype-associated features.

Experimental Design: Adopting two independent approaches, we derived and internally 

validated algorithms for subtype prediction using published gene-expression data from 1650 

tumors. We applied resulting models to NanoString data on 3829 HGSOCs from the Ovarian 

Tumor Tissue Analysis Consortium. We further developed, confirmed, and validated a reduced, 

minimal gene-set predictor, with methods suitable for a single patient setting.

Results: Gene-expression data was used to derive the Predictor of high-grade-serous Ovarian 

carcinoma molecular subTYPE (PrOTYPE) assay. We established a de facto standard as a 

consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, 

stage, residual disease, tumor infiltrating lymphocytes, and outcome. The locked-down clinical-

grade PrOTYPE test includes a model with 55 genes that predicted gene-expression subtype with 

>95% accuracy that was maintained in all analytical and biological validations.

Conclusions: We validated the PrOTYPE assay following the Institute of Medicine guidelines 

for the development of omics-based tests. This fully defined and locked-down clinical-grade assay 

will enable trial design with molecular subtype stratification and allow for objective assessment of 

the predictive value of HGSOC molecular subtypes in precision medicine applications.

Introduction:

Anatomy and histopathology have been the foundations of cancer classification for more 

than a century, but both are now complemented by objective assessment of underlying 
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molecular features of disease.(1–8) The development of microarray-based gene-expression 

profiling of high grade serous tubo-ovarian carcinoma (HGSOC) (9,10) raised expectations 

for rapid advances in classification, prognostication and prediction in this most common 

histotype (~70%) of ovarian carcinoma, the deadliest gynecological malignancy.(11,12)

Previous studies identified four phenotypically distinct expression-based HGSOC molecular 

subtypes.(9,10,13–18) These subtypes have been repeatedly reproduced, with broad 

similarities in composite pathological characteristics. The C1/Mesenchymal (C1.MES) 

subtype is characterized by a desmoplastic stroma, high expression of extracellular matrix 

components, and poor outcomes compared to other HGSOCs; which is consistent with other 

solid tumors with highly desmoplastic stroma.(19–23) The C2/Immunoreactive (C2.IMM) 

subtype is dominated by intratumoral CD3+/CD8+ cellular infiltration, inflammatory 

cytokine expression, and generally more favorable outcomes. The C4/Differentiated 

(C4.DIF) subtype is characterized by high expression of CA125/MUC16, a subset of 

immuno-modulatory cytokines, modest lymphocyte infiltration, and clinical outcome 

indistinguishable from C2.IMM.(10,15,17,24) Finally, the C5/Proliferative (C5.PRO) are 

depleted for both stromal and immune elements, overexpress onco-fetal and stem cell-

associated genes(24), and have unfavorable outcomes.(13–15,17,18).

Unlike modern histotype classification of ovarian carcinoma,(12,25) no agreed-on gold 

standard exists to define expression-based HGSOC molecular subtypes. Both analytical 

methods and data used for subtype assignment are fragmented, differing in algorithms and 

specific genes used, each defining its own brand of subtype. No methods discussed to date 

provide a workflow with compatibility for fixed/archival tissues that are the mainstay of 

modern pathology laboratories. Thus, the potential of gene-expression subtype information 

to guide patient management remains unrealized.(12,26)

Our motivation for the current project was driven by limitations of previous attempts, that 

contributed to low uptake of HGSOC subtyping in translational research and clinical trials. 

To optimize clinical uptake, a classification scheme needs to be cost-effective, compatible 

with available clinical specimens (i.e. formalin-fixed paraffin embedded; FFPE), and be 

technically reproducible on single patient samples. Prior methods have relied on 

normalization and unsupervised clustering of array based data, requiring a cohort of 

samples.(9,10,13–15,17,18,24,27) With few exceptions,(18) prior studies defaulted to a 

single method or single dataset to train models. Finally, no prior approach reviewed 

histotype based on the current diagnostic standards for HGSOC, which has significantly 

altered over the last decades, and may have contributed to significant contamination of 

historic datasets with non-HGSOC specimens.(28–30)

Using newly curated, previously published array data, and clinically annotated HGSOC 

specimens from the Ovarian Tumor Tissue Analysis (OTTA) consortium, we propose and 

validate(26) a Predictor of high-grade serous Ovarian carcinoma molecular subTYPE 
(PrOTYPE) that recapitulates previously derived gene-expression based molecular subtypes 

using a minimal set of genes (Figure 1). To ensure clinical applicability we adopted the 

NanoString platform, a highly automated processing method with tolerance to degraded 

RNA, typical of fixed tissue that are the mainstay of modern hospital pathology laboratories. 
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Similar multi-gene predictors using NanoString are already in the clinic (31–34) and 

methods to enable single-sample analytical approaches are well established,(35) tailored to 

the patient-at-a-time delivery of care that is a necessity for precision medicine. The 

PrOTYPE assay will enable evaluation of the clinical utility of HGSOC gene-expression 

molecular subtypes, such as response to targeted therapies that are already emerging with a 

potential need for subtype information.(36)

Methods

OTTA Consortium NanoString Study

We retrospectively analyzed FFPE tumors and clinical data from 20 OTTA consortium 

studies with available clinical, pathological, demographic features, and survival outcomes 

(Supplement A.1–A.3). Inclusion criteria (including approval through institution-specific 

research ethics boards), individual study settings, dates of accrual, and follow-up are 

described in Table SA1. Studies were asked to contribute adnexal-sourced specimens, 

though others were accepted when anatomical sites was defined. Expert gynecologic 

pathologists reviewed samples from hematoxylin and eosin (H&E) stained sections, 

confirmed HGSOC diagnosis(29), and marked specimens for removal non-involved organ 

tissues but retained infiltrating stroma.

NanoString Gene Selection and Data Processing

A NanoString CodeSet included 513 genes (plus 5 housekeeping genes), relevant for gene-

expression subtyping and selected prior to beginning the analysis. We included top-ranking 

differentially expressed, subtype-specific genes based on prior reports;(9,10) previous 

supervised learning of subtype classification;(37) and manual review of literature to identify 

genes in commonly cited molecular pathways associated with subtype.(9,10,13,15,24) 

Additional genes were selected from a meta-analysis for their prognostic value and other 

specific hypothesis (75). To ensure representation from across the transcriptome, we tagged 

and included additional genes from 99%-correlated gene-expression clusters derived from 

previous reports, if clusters did not already have representation.(9,10,38,39)

We extracted RNA and ran NanoString assays at three sites (in Vancouver, Los Angeles, and 

Melbourne), as described previously.(35) We included three regularly assayed RNA 

reference specimens (Pool1, Pool2, Pool3) to monitor technical bias, allow for comparison 

of NanoString CodeSet synthesized in different lots, and integrate a single-patient data 

normalization strategy.(35) Additional description is in Supplement A.4–A.7; data can be 

found in NCBI GEO Accession GSE135820

Subtype Labels Assignment to NanoString Data

There is presently no definitive standard for gene-expression based subtypes, therefore we 

derived a de facto standard through application of two parallel approaches, led by 

independent teams (Figure 1A–B). One approach, denoted All array, aggregated gene-

expression datasets to take advantage of broad sample representation and increased 

statistical power. The other, denoted TCGA, was conservative with respect to potential loss 
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of signal associated with post-hoc batch correction and used the largest, optimally batch-

corrected dataset(9). See also Supplement B.

All array: One team curated data to retain only HGSOC specimens from historical 

datasets(30), and datasets with greater than 40 remaining unique HGSOC. This reduced 49 

potential studies (n=3437) to 1650 unique HGSOC from 14 studies (Table SB1).(9,10,40–

50) Individual samples where data was also available from NanoString assays were excluded 

(Figure SB1). The team combined and batch corrected 11/14 array studies (training 1), and 

used an ensemble of nine clustering algorithms(51) to re-establish previously recognized 

subtypes. They next restricted the data to pre-selected NanoString genes also present in all 

array platforms (454/513 possible NanoString genes), trained and evaluated nine supervised 

learning algorithms using a bootstrap approach.(52) The top five algorithms were retained 

and validated on the remaining three (3/14) array studies (confirmation1) with a final 

selection based on how well predicted subtypes correlated with previously published 

signatures.(13,24) The tree-based ensemble classification algorithm (AdaBoost) was 

selected.

TCGA: Another team curated the TCGA data using the same criteria described above and 

using data and TCGA-published subtype labels,(9) retaining 434 unique HGSOC (Figure 

SB1). They next trained and evaluated five different supervised learning algorithms, as 

above using NanoString gene-restricted data (438/513 genes), using five-fold cross 

validation, selecting random forest. This approach was validated externally on originally 

published dataset and labels from Tothill et al.(10)

Minimal Gene Set Classifier

We used the above two approaches to label 3829 NanoString samples and retaining only 

samples with concordant labels, denoted the consensus labels (CL). We discarded previous 

models and started anew to rederive a minimal gene set classifier using NanoString data. 

Sample were randomly partitioned from the dataset into three independent groups on a per 

study basis: a training set (8 studies), a confirmation set (5 studies), and a validation (4 

studies). A fourth partition/second validation (3 studies), comprised of clinical trial cohorts, 

and was set aside to validate any modifications to the predictive model after 

confirmation(26,53) (Figure 1C; Figure SA1). See also supplement C.

We adopted a leave-one-study-out cross-validation approach and assessed performance of 

three algorithms (LASSO, random forest and AdaBoost) in recovering the CL. We removed 

one study at a time and bootstrapped the remaining seven (500 repetitions) to train a full 

model that uses all the genes to predict subtype. For each bootstrap sample, we ranked the 

genes based on the aggregated Gini coefficients, for Random Forest and Adaboost,(54) or 

the proportion of non-zero coefficients for Lasso. We then ranked genes overall on the 

proportion of times they were included in the top 100, across bootstrap iterations. This was 

repeated for each study.

For n increasing from four to 100 in increments of five, we used the top n overall-ranked 

genes to predict the left-out study, comparing the predicted label to the CL. We selected the 

top algorithm based on accuracy, consistency, and stability in predictions across studies. We 
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refined gene selection within the confirmation set by considering a smaller range of gene 

numbers (40-78) and repeating the previous step with one gene increments to define a 

minimal number of genes needed to sustain performance and we validated it in two 

additional datasets.

Biological Associations

We confirmed associations of predicted labels with clinical and pathological features 

including age, stage, residual disease, cellularity, necrosis, BRCA1/2 germline status, race/

ethnicity, and CD8+ tumor infiltrating lymphocytes (TIL; Supplement A.3). We used one-

way ANOVA to compare continuous variables and the chi-square test for categorical 

variables. We evaluated univariable survival using Kaplan-Meier survival curves and the log 

rank test. In multivariable models, we used the Cox proportional hazard and computed P 

values using an omnibus likelihood ratio test. All statistical tests were two-sided. We applied 

pairwise deletion (available-case analysis) on missing data, as applicable.

Results

Subtyping the NanoString Data

Parallel array-based approaches resulted in two final models: the All array (ADAboost) and 

TCGA (random forest) models (Supplement B). Each of these algorithms were used to 

generate per-subtype probabilities and predictive entropy(55) on the 3829 HGSOC samples 

run on the NanoString platform. The label of the subtype with the highest probability was 

taken as the final label from each model. The observed concordance between the two models 

was high (accuracy 79%; kappa 0.72) and discordance was seen mostly between C1.MES/

C2.IMM and C2.IMM/C4.DIF subtypes (Figure 2A). Discordant samples were enriched for 

lower signal-to-noise ratio in NanoString data, consistent with lower-quality RNA (ratio < 

1000 in 7.5% vs 5%, p=0.0130; Supplemental B.4). No other technical variables showed 

differences between concordant and non-concordant labels. In concordant samples 

(consensus labelled; CL), the predictive entropy was significantly lower (p < 0.0001; Figure 

2B). In a set of 67 cases, repeated on both array and NanoString (and excluded from 

training), the CL reproduced originally published labels with 94% accuracy (kappa 0.92).

(9,10) Concordant samples (n=3030) were considered the de facto standard and 

subsequently used for training a minimal gene set classifier.

Development of a NanoString Minimal-Gene Classifier

Using a leave-one-study-out cross validation design, random forest and LASSO 

outperformed AdaBoost (Figure 3A) in the training set (n=1135). Despite requiring more 

genes overall, we chose the random forest model based on stability in gene selection across 

studies and a less variable overall accuracy with increasing numbers of genes (Figure 3B). 

Accuracy of random forest in the confirmation set (n=817) ranged from 95 - 97% and 

achieved marginal gains after 55 genes. The locked-down assay, named PrOTYPE 

(Predictor of high-grade-serous Ovarian carcinoma molecular subTYPE), is represented by 

a final 55-gene model with specified NanoString probeset and controls, specific 

computational procedures, and requirements for specimen input from primary tubo-ovarian, 

treatment-naïve HGSOC samples as outlined in Figure 4 (see also Tables SC7; and 
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Supplement E). Computational methods to normalize and generate predictions are available 

as a web application and R-script.1

PrOTYPE genes (55 genes plus five housekeeping genes; Table SC7) included 

representation from pathways previously reported as enriched in HGSOC subtypes (Figure 

SC9), including components of extracellular matrix (COL11A1, COL1A2, FBN1), immune 

cell markers (CD3D, CD3E, CD8A), surface receptors and kinases (CSF1R, CD2, AXL), 

cytokines and cell morphology (CXCL9, CXCL11, CCL5), and angiogenesis genes 

(PDGFRB, FGF1, TCF7L1). The per-subtype pattern of expression of PrOTYPE genes was 

near-identical between the NanoString data and the array data, used in establishing the CL 

standard (Figure SC10–SC12).

PrOTYPE was validated in two independent NanoString dataset partitions (n= 719 and 283 

respectively) (Figure SB1). Partitions showed 95% and 94% accuracy and kappa=0.94 and 

0.92 respectively, relative to the CL (Tables SB10–SB11).

In a set of 103 samples re-assayed in a newly-synthesized NanoString CodeSet, containing 

only the 55 PrOTYPE genes and controls, PrOTYPE predictions achieved 97% accuracy 

(95% CI: 92% - 99%), kappa 0.96 (0.91 - 1) in recovering the CL. We observed similar 

results in 100 samples that we replicated in another newly-synthesized CodeSet that 

included PrOTYPE genes as well as others (Tables SD2 – SD4). Of the 80 samples that 

overlapped all three CodeSets (original, PrOTYPE genes only, and PrOTYPE genes plus 

others), Fleiss’ kappa was 0.95, indicating excellent repeatability (p<0.0001). This 

confirmed the analytical validity of the PrOTYPE assay, our reference-based normalization, 

and single-sample processing strategy.

Confirmation of Subtype Signatures with Clinicopathological Associations

Patients were diagnosed between 1982-2014, with no differences in the distribution of 

subtypes related to year of diagnosis (Figure SD3). Omental-sourced specimens were 

enriched for C1.MES (72%) compared to adnexal specimens (25%), and the overall 

distribution of subtypes was significantly different (p<0.0001; Table 1A; Table SD7). We 

also noted a similar C1.MES enrichment at other anatomical sites, including the peritoneum 

(46%) and upper gynecological tract (50%). In tumors where anatomical site was presumed 

adnexal but not specifically annotated (n=1647), subtypes showed a distribution similar to 

those known to be adnexal (p=0.089).

In 53 patients where paired adnexal and omentum samples were available, we observed poor 

agreement (kappa 0.06) in classification from the two sites. For 30/39 (77%) adnexal 

samples which were assigned non-C1.MES subtypes, their corresponding omental sample 

was C1.MES (Supplementary Table SD5). For all 14 adnexal specimens that were C1.MES, 

their omental classification was also C1.MES. As previously reported, subtype designation 

varies between metastatic sites within a patient, therefore we interpreted this to be a 

characteristic of tumors within their specific microenvironment rather than a weakness in the 

classification.(37,56) Heterogeneity in subtype assignment per-patient would confound 

1https://ovcare.shinyapps.io/PrOType/
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clinicopathological associations; therefore, we present associations to subtype of adnexal-

sourced specimen as this was the most commonly acquired specimen type (known n=1740; 

or presumed n=1647; Table 1B; Supplement D contains results also excluding presumed 

adnexal samples).

The median age at diagnosis was lowest amongst C4.DIF (58 yrs.) and highest amongst 

C5.PRO (63 yrs.), p<0.0001. Stage was significantly associated with subtype (p<0.0001; 

Table 1B): with 94% of C1.MES at high-stage and only 74% of C4.DIF. Residual disease 

was significantly associated with subtype, with C1.MES tumors being the most enriched. 

Similarly, both tumor cellularity and necrosis were associated with subtype. Lowest 

cellularity was in the C1.MES and highest necrosis was seen in C2.IMM. BRCA1/BRCA2 
pathogenic germline mutation status was not associated with subtype. We found CD8+ TIL 

levels, derived from prior work,(57) highest in C2.IMM: 43% with high TIL and only 10% 

with absent/low CD8+ TIL. C5.PRO had the lowest CD8+ TIL, with 68% having absent/low 

CD8+ TIL. C4.DIF had the second highest level of CD8+ TIL at 22%.

Median follow up time was 8.1 years for overall survival (OS) and 6.5 years for progression-

free survival (PFS) (reverse Kaplan-Meier), and were slightly longer for C2.IMM and 

C4.DIFF. Significant difference in survival was observed between subtypes for both OS and 

PFS (Log-rank p<0.0001; Figure 5A), as previously reported.(9,10,13–18,27) C2.IMM and 

C4.DIF had the best survival outcome and C1.MES had the poorest outcome. In 

multivariable analyses, we adjusted for risk factors known to be associated with survival: age 

at diagnosis, stage, residual disease, and germline deleterious BRCA1/2 status. Molecular 

subtypes were prognostic when adjusting for age and stage in both OS and PFS (Figure 5B). 

With the addition of CD8+ TIL, there was a change in the hazard ratio corresponding to 

subtype for both OS and PFS, but subtypes remained independently prognostic for OS only. 

With the addition of residual disease and/or BRCA1/2 to the model, molecular subtypes lost 

independent prognostic value in both OS and PFS.

Discussion:

Any potential of gene-expression subtype information to guide patient management cannot 

be realized without a de facto standard and validated assay that can be applied in a single-

patient setting using pathology-standard fixed tissues - such as would be encountered in the 

clinic. Here we have defined a de facto standard for HGSOC gene-expression molecular 

subtypes using the consensus from two independent models derived from 1650 bona fide 

HGSOC samples with array data. Using these samples, we designed and validated 

PrOTYPE, robust and pragmatic 55-gene classifier based on the NanoString gene-expression 

platform. We evaluated the analytical validity of PrOTYPE by testing it in newly-

synthesized CodeSets. Finally, we confirmed reported associations between subtype and 

clinico-pathological parameters.

We have addressed limitations of prior work including designing PrOTYPE with an 

established single-sample normalization and batch correction approach.(35) PrOTYPE is 

built on the NanoString platform, known to be tolerant to different analytes and well suited 

for FFPE tissues.(31,32,58,59) This particular feature is critical to implementation in 
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modern pathology labs and may also enable retrospective re-examination of archival 

specimen collections and clinical trials. Our model is not derived from a single dataset but 

instead uses two approaches to integrate information from 14 array studies and a consortium 

collection of >3000 tumors. Every sample included has been curated to ensure inclusion of a 

pure population of HGSOC, using either central review by expert gyne-pathologists 

(NanoString cohort) or a proven mechanism to minimize non-HGSOCs from historical 

datasets (array data cohorts).(30) Using the intersection of parallel approaches as a de facto 
standard, we provide a first example of an HGSOC gene-expression subtype classifier 

derived using the step-wise best practice recommended by the Institute of Medicine.(26) The 

PrOTYPE assay is therefore at the so-called “bright line”, bringing gene-expression 

molecular subtypes to the stage at which evaluation for clinical utility and use may begin.

Similar to NanoString’s Prosigna assay for breast cancer (31,32), we use a reference based 

strategy for single-sample classification and batch effect correction.(35) In our development 

phase, one limitation is that the chosen references are finite resources and will not be 

sufficient for long-term, widespread distribution. Less restricted reference source material 

will need to be chosen and integrated into the PrOTYPE assay to ensure sustainability. 

PrOTYPE is designed exclusively for gene-expression HGSOC molecular subtyping, 

application on other histotypes is uninterpretable. Further, the relationship between subtype 

and effects of neoadjuvant chemotherapy, a common practice for modern management of 

HGSOC, are unclear. Mitigating this could be solved by using pre-treatment biopsies, 

however, diagnostic biopsies currently favor omentum for ease of access to the tumor mass 

and our data suggest the omental microenvironment strongly biases towards a C1.MES 

prediction. Thus, the clinical utility of PrOTYPE may relate to consistency of phenotypes 

predicted from multiple anatomical sites within a patient and remains to be tested.

Our dataset enables validation of biological characteristics that smaller datasets have been 

unable to address. Consistent with prominent desmoplastic stroma reported from metastatic 

disease(60–62) we noted a systematic shift of all subtypes to a C1.MES phenotype at extra-

adnexal sites. In addition, few cases of C1.MES were clear of visible macroscopic residual 

disease, suggesting a potential application for PrOTYPE may be predicting 

cytoreductability. Application of PrOTYPE to biopsied specimens may provide valuable 

information prior to surgery and allow investigation of whether C1.MES tumors are a logical 

choice for neo-adjuvant or other pre-surgical targeted therapies. However, given the 

limitations of our retrospective cohort, with potential heterogeneity in surgical practice, a 

well-designed prospective study is warranted to test this hypothesis.

In multivariable models we observed waning prognostic value for molecular subtypes in the 

context of known age, stage, CD8+ TIL infiltration, residual disease, and germline 

deleterious BRCA1/2 status, albeit with reduced sample size. Previous studies have 

suggested there may be an overall enrichment of BRCA1 disruptions (including methylation, 

somatic and germline events together) within C2.IMM (63), however, data on somatic events 

affecting BRCA1/2, and other measures of homologous repair deficiency, are currently 

unavailable in our dataset. Nonetheless, subtype appears to capture some information for 

critical prognostic variables. However, for a disease with a generally poor prognosis, 

prediction may be more important.
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In keeping with previous observations, only a modest proportion of cases reflect a “pure” 

phenotype signature.(13,18) We suggest that thresholds for subtype prediction, and implied 

utility, should be determined empirically - these may be specific to a given intervention. 

While few clinical trials have invested in HGSOC gene-expression subtyping, at least one 

points to differential benefits of Bevacizumab across subtypes.(36) Potential benefits to 

C2.IMM are presently being tested using PrOTYPE in a trial of pembrolizumab in recurrent 

disease (NCT03732950). Likewise, there is an ongoing investigation in targeting both the 

reactive stromal features of C1.MES, in the BEACON trial (NCT03363867; combined 

Bevacizumab, Atezolizumab and Cobimetinib), and the stem-like features of C5.PRO, in a 

phase II study of Vinorelbine (NCT03188159). It remains to be seen whether stringent or lax 

subtype thresholding is important to patient selection for these interventions. Other umbrella 

multicenter pragmatic studies such as INOVATe (Individualized Ovarian Cancer Treatment 
Through Integration of Genomic Pathology into Multidisciplinary Care) are incorporating 

PrOTYPE in their evaluations of guided treatment modalities.(64)

While only small improvements in HGSOC outcomes have been achieved in the past 

decades, an increasing number of therapeutic options are emerging with a growing need to 

identify response groups to targeted therapies such as angiogenesis inhibitors,(36,65) 

immune modulators,(66–68) and PARP inhibitors.(69–71) While In the context of these new 

therapeutics, PrOTYPE will enable objective testing of the clinical utility of intrinsic 

HGSOC gene-expression subtypes - a threshold that has previously been elusive. Similar to 

molecular profiling tools that are already emerging for other cancers, (31,32,72–74) the 

clinical-grade PrOTYPE assay is ready for integration into clinical trials as well as research 

applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of translational relevance:

Outcomes for women diagnosed with high-grade serous tubo-ovarian carcinoma 

(HGSOC) have limited improvements over the last few decades. While novel targeted 

therapeutic strategies are maturing, their widespread adoption is often dependent on 

biomarkers that can guide management and identify women who are more likely to 

benefit from new compounds. For HGSOC, several previously described, near-identical 

gene-expression based sub-classification schemes have had little impact on practice or 

clinical trial design. The most prominent drawback to their implementation is that they 

have not been designed in a clinically applicable way. Without a de facto standard any 

potential clinical utility of HGSOC gene-expression subtypes cannot be determined.

Here, we develop and validate a standardized and reproducible HGSOC gene-expression 

subtype classifier that will enable prospective assessment of the clinical utility of 

HGSOC gene-expression subtypes. The Predictor of high-grade-serous Ovarian 

carcinoma molecular subTYPE (PrOTYPE) represents an Institute of Medicine 

guidelines-compliant, fully-defined, and validated assay that can be used with formalin 

fixed paraffin embedded (FFPE) tissues - making it practical for clinical uptake. Our 

report confirms the biological relevance of gene-expression subtypes in HGSOC and will 

facilitate the incorporation of subtype classification into ongoing and future clinical trials.
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Figure 1: 
A schematic representation of the process we followed to obtain a final, clinical-grade 

classifier for HGSOC. Please note that the schematics above are for orientation only and are 

not intended to be interpreted. In the first panel we outline how de facto subtype labels were 

assigned to NanoString data, starting with (A) two parallel approaches to build models from 

array data, and (B) applying the resulting final models onto the NanoString dataset, where 

the consensus of the two methods became the de facto gold standard with 79% (n=3030) of 

our total NanoString cohort having agreement, consensus label (CL). In the second panel, 

(C) we provide the framework used to derive a minimal gene set classifier using the CL 

NanoString data after removing samples that overlapped both the NanoString and Array 

datasets (overlap n=76). Finally, in (D) a synopsis of the biological and clinical correlates 

that were investigated to confirm the biological validity of gene-expression based subtypes 

compared to previous work.
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Figure 2: 
Evaluation metrics of consensus in subtype assignment between the All Array and TCGA 
models. (A) Confusion matrix comparing the agreement between the TCGA and the All 
Array approaches. In bold we present the results where there is agreement and highlighted in 

red are the most sizeable disagreements. We also present sensitivity, specificity, and F-score 

for each subtype. (B) Predictive entropy computed from per-class probabilities generated by 

each of the TCGA and the All Array model. When entropy approaches 0, it is indicative that 

the probability used to assign a sample to class is close to 1, while a high entropy 

(approaching 2) indicates that assignment to any class has a roughly equal probability. 

Overall, samples where consensus was not reached, had higher entropy in both models (p < 

0.0001; Mann-Whitney U test).
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Figure 3: 
Model selection metrics for a minimal gene classifier. (A) The aggregate accuracy left and 

F1-score right (for all samples in all studies) obtained by increasing numbers of genes and 

using the top n genes from each frequency list computed above, where n varied from 4 to 

100 in increments of 5. Note that the top n genes from each study were not necessarily the 

same. B) Top: Boxplots of the prediction accuracy by study using the LASSO and the 

random forest algorithm. Each point in the boxplot corresponds to the individual study 

prediction (when left-out). Bottom: Heatmap depicting the importance rank of the top 50 

ranking genes obtained from each data partition in the leave-one-study out scheme.
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Figure 4: 
Locked-down Predictor of Ovarian carcinoma molecular subTYPE (PrOTYPE). The 

schematic illustrates the four critical components of the clinical-grade PrOTYPE assay 

(Supplement E) consisting of: (1) 500ng of total RNA from primary chemo-naïve HGSOC 

and (2) 100ng (each) of validated reference specimens. Each of these assayed individually 

by mixing specimen RNA with a (3) custom NanoString CodeSet (Supplemental Table SC7) 

containing 55 prediction model gene probes and 5 control gene probes (*55+5 NanoString 

Assay). RNA is hybridized with CodeSet, processed on a NanoString nCounter Prep-Station, 

and imaged at maximum fields of view on a NanoString nCounter Digital Analyzer. 

Resulting raw data is then normalized and HGSOC molecular subtypes predicted with our 

PrOTYPE computational algorithms using either a web-based tool, or R-script. This process 

will return (4) a prediction probability for the assayed specimen, for each subtype, and a 

single predictive entropy value. The latter can be used to estimate the certainty of prediction 

where 0 entropy corresponds to a near perfect prediction or “pure” subtype, while 2 entropy 

corresponds to near equal chance of assignment to any subtype.

Talhouk et al. Page 23

Clin Cancer Res. Author manuscript; available in PMC 2021 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Univariable and multivariable survival analysis with PrOTYPE subtypes. (A) Kaplan-Meir 

survival curves for Overall and Progression-free survival by molecular subtype. C2.IMM 

and C4.DIF had the best survival in both OS and PFS in univariable analyses, while C5.MES 

had the worst survival. While C2.IMM and C4.DIF had inseparable outcomes, other clinical 

features were distinct between these groups (see also Table 1B). (B) Multivariable survival 

analysis results from Cox proportional hazard models adjusting for different known 

prognostic risk factors. The top table provides overall survival results while the bottom 

portion provides progression-free survival results. Each column in the table represents an 

independent model that adjusts for different risk factors. To assess the significance of a 

factor, we used the omnibus Likelihood Ratio Test evaluating the likelihood with and 

without that factor in the model. As such, the resulting P values are associated with the 

entire factor and not a specific level of that factor; this is indicated by a vertical bar to clarify 

and the asterisks (*) indicate that the omnibus Likelihood Ratio Test P value was below 0.05 

for the entire marked variable. The Score Test was used to compute confidence intervals, 

therefore these may not always match the P value results.
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Table 1:

(A) The distribution of HGSOC molecular subtype within different anatomical specimen collection sites. (B) 
Clinical and pathological parameters across HGSOC molecular subtype. Percentages are column wise except 

for totals where they are computed row wise. P values are computed using one-way analysis of variance for 

numerical parameters, and chi-square test for categorical ones.
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