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Abstract

Pancreatic cancer is among the most well characterized cancer types, yet a large proportion of the 

heritability of pancreatic cancer risk remains unclear. Here we performed a large transcriptome-

wide association study (TWAS) to systematically investigate associations between genetically 

predicted gene expression in normal pancreas tissue and pancreatic cancer risk. Using data from 

305 subjects of mostly European descent in the Genotype-Tissue Expression Project, we built 

comprehensive genetic models to predict normal pancreas tissue gene expression, modifying the 
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UTMOST (unified test for molecular signatures). These prediction models were applied to the 

genetic data of 8,275 pancreatic cancer cases and 6,723 controls of European ancestry. Thirteen 

genes showed an association of genetically predicted expression with pancreatic cancer risk at a 

false discovery rate (FDR) ≤ 0.05, including seven previously reported genes (INHBA, SMC2, 

ABO, PDX1, RCCD1, CFDP1, and PGAP3) and six novel genes not yet reported for pancreatic 

cancer risk (6q27: SFT2D1 (odds ratio (OR) (95% confidence interval (CI)): 1.54 (1.25–1.89)); 

13q12.13: MTMR6 (OR (95% CI): 0.78 (0.70–0.88)); 14q24.3: ACOT2 (OR (95% CI): 1.35 

(1.17–1.56)); 17q12: STARD3 (OR (95% CI): 6.49 (2.96–14.27)); 17q21.1: GSDMB (OR (95% 

CI): 1.94 (1.45–2.58)); and 20p13: ADAM33 (OR (95% CI): 1.41 (1.20–1.66))). The associations 

for ten of these genes (SFT2D1, MTMR6, ACOT2, STARD3, GSDMB, ADAM33, SMC2, 
RCCD1, CFDP1, and PGAP3) remained statistically significant even after adjusting for risk SNPs 

identified in previous GWAS. Collectively, this analysis identified novel candidate susceptibility 

genes for pancreatic cancer that warrant further investigation.
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Introduction

Pancreatic cancer is the third leading cause of cancer death in the United States, and its 

incidence has continued to increase in recent years (1). There are several established risk 

factors for pancreatic cancer, including tobacco smoking, heavy alcohol consumption, 

obesity, chronic pancreatitis, type 2 diabetes, and family history of pancreatic cancer (2). 

Inherited rare mutations in hereditary pancreatic cancer explain only a small fraction of 

genetic heritability (3). Due to the nonspecific symptoms in earlier stages, this malignancy is 

usually detected at a late stage, resulting in a 5-year survival rate of only 9% (1). Currently, 

there is no effective screening test available for pancreatic cancer. Therefore, there is an 

urgent need to better characterize the etiology of pancreatic cancer and develop effective 

early detection and/or screening strategies.

Since 2009, several GWAS have been performed to identify common susceptibility variants 

associated with pancreatic cancer risk, including studies conducted by the Pancreatic Cancer 

Cohort Consortium (PanScan I, II, III) and the Pancreatic Cancer Case Control Consortium 

(PanC4) primarily focusing on Europeans, as well as studies conducted in East Asians. To 

date, nearly two dozen common risk variants have been identified for pancreatic cancer risk 

(3–9). Many pancreatic cancer risk variants identified by GWAS, however, are not located in 

coding regions, but in gene regulatory elements (10). It has been hypothesized that a large 

proportion of GWAS reported association signals may be due to regulatory effects of 

susceptibility variants on the gene expression of disease target genes (11,12). For pancreatic 

cancer, the genes responsible for the reported associations remain unknown for the large 

majority of the GWAS-identified risk loci.

Recently, gene-based approaches, such as Transcriptome-wide association study (TWAS) 

design, have been developed to uncover novel candidate disease susceptibility genes by 
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assessing associations between genetically predicted gene expression with disease risk 

(13,14). Unlike GWAS that tests individual genetic variants, TWAS aggregates the effect of 

multiple SNPs into a single biologically meaningful testing unit, thus significantly 

improving the power for gene identification. Such a design also confers an advantage for 

disease gene discovery since direct profiling of the transcriptome in relevant (normal) human 

tissues in a sufficient sample size is expensive and often difficult to carry out. Such an 

approach using genetic instruments could potentially reduce the influence of several biases 

commonly encountered in typical epidemiological studies, including selection bias, residual 

confounding, and reverse causation. Besides discovering novel genetic loci, TWAS design 

can also potentially identify candidate target genes of GWAS identified risk variants. To 

date, such a TWAS design has been applied to uncover candidate susceptibility genes for 

multiple cancer types, including breast cancer, ovarian cancer, prostate cancer, and 

melanoma (11,12,15–17). A recent TWAS study for pancreatic cancer risk has been 

conducted, in which 25 significant gene-level associations, including 14 at 11 novel loci, 

were identified (18). In this study, authors assessed gene expression genetic imputation in 48 

tissue types beyond the pancreas tissue. Focusing on the pancreas, the most relevant tissue 

for pancreatic cancer, the authors evaluated both tumor adjacent normal pancreas tissue (the 

Laboratory of Translational Genomics dataset, n=95) and normal pancreas tissue (the 

Genotype-Tissue Expression dataset (GTEx), n=174). It is known that tumor growth can 

influence gene expression levels in surrounding tissues, and some gene expression might be 

substantially altered in tumor-adjacent normal tissue compared with that in normal tissue 

from subjects without cancer. Therefore, ideally, to study pancreatic cancer susceptibility 

genes, normal pancreas tissue from healthy subjects should be used. Recently, data from the 

final version (v8) of the GTEx project have been released. In this dataset, 305 subjects, 

primarily of European ancestries, have both genotyping and normal pancreas tissue 

transcriptome data available. Leveraging this largest available reference dataset for normal 

pancreas tissue, we applied the state-of-the-art modeling strategy of UTMOST (unified test 

for molecular signatures), to generate comprehensive normal pancreatic tissue gene 

expression genetic models. We conducted a large pancreatic cancer TWAS (19) to identify 

additional candidate pancreatic cancer susceptibility genes.

Methods

Transcriptome and genome data from the GTEx project

We used transcriptome and genome data from the GTEx v8 (The database of Genotypes and 

Phenotypes (dbGaP) accession: phs000424.v8.p2) to develop genetic imputation models for 

genes expressed in normal pancreatic tissue. Details of the GTEx v8 dataset have been 

described elsewhere (https://gtexportal.org/home/documentationPage). In brief, genomic 

information of 838 subjects was collected using whole genome sequencing (WGS), as 

performed by the Broad Institute’s Genomics Platform. Details of RNA sequencing 

experiments, quality control (QC) of the gene expression data, and genomic data have been 

described elsewhere (20,21).
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Building pancreatic tissue gene expression prediction models

The cross-tissue UTMOST framework was used to build pancreas tissue gene expression 

genetic models (19). Here we modified the model training approach to obtain a reliable 

estimate of the imputation performance. SNPs within 1 Mb upstream and downstream of the 

gene body were considered as predictor variables in the model. To reduce the computational 

burden, LD-pruning (r2=0.9) was performed before model training. It has been shown that 

there is no significant difference in prediction quality from applying LD pruning (13). The 

residual of the normalized TPM was used for model building after adjusting for covariates of 

age, sex, sequencing platform, the first five principal components (PCs), and probabilistic 

estimation of expression residuals (PEER) factors. In the joint-tissue prediction model, the 

effect sizes were estimated by minimizing the loss function with a LASSO penalty on the 

columns (within-tissue effects) and a group-LASSO penalty on the rows (cross-tissue 

effects). The group penalty term implemented sharing of the information from feature (SNP) 

selection across all the tissues. The optimization problem uses two hyperparameters, λ1 and 

λ2, for the within-tissue and cross-tissue penalization, respectively. Five-fold cross-

validation was performed for hyperparameter tuning.

Here, we modified the original model training by unifying the hyperparameter pairs to avoid 

the overestimation of the prediction performance. Briefly, λ1 and λ2 were initialized using 

the range of pre-trained lambdas from single-tissue elastic net models. For each gene, 25 

lambda pairs (five for each lambda) were generated. In our modified version, the 25 lambda 

pairs were consistent across the five-fold cross-validation, while the original UTMOST 

assigned different lambdas for each fold. The unified hyperparameter pairs made the 

different folds comparable, thus avoiding the performance overestimation in a retrained 

model. The optimization of the joint model was initialized by single-tissue weights 

generated in each fold and the optimization stopped if the training error in each training set 

or the related tuning error was higher than the previous step. After the five-fold training, one 

of the 25 lambda pairs was selected as the best lambda pair according to the average tuning 

error across the five folds. The prediction performance was evaluated by the correlation 

between the predicted and observed expression levels in the combined tuning set. Models 

with Pearson’s correlation r > 0.1 and P < 0.05 were used in subsequent analysis.

Associations between genetically predicted gene expression and pancreatic cancer risk

For our association analysis, we leveraged GWAS conducted in PanScan I, PanScan II, 

PanScan III, and PanC4, downloaded from dbGaP (Study Accession: phs000206.v5.p3 and 

phs000648.v1.p1). The detailed information for these GWAS has been described elsewhere 

(4–7,22,23). Briefly, genotyping was performed on the Illumina HumanHap550, 610-Quad, 

OmniExpress, and OmiExpressExome arrays, respectively. We performed standard QC 

according to the guidelines recommended by the consortia (3). We excluded study subjects 

who were related to each other, with missing information on age or sex, had gender 

discordance, were non-European ancestry based on genetic estimation, and with a low call 

rate (less than 94% and 98% in PanScan and PanC4, respectively). We also removed 

duplicated SNPs and those with a high missing call rate (of at least 6% and 2% in PanScan 

and PanC4, respectively), or with violations of Hardy-Weinberg equilibrium (HWE) (of P < 

1×10−7 and P < 1×10−4 in PanScan and PanC4, respectively). In PanC4 dataset, we 
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additionally excluded variants with minor allele frequency (MAF) < 0.005, with more than 

one mendelian error in HapMap control trios, with more than two discordant calls in study 

duplicates, and those with sex difference in allele frequency > 0.2 or in heterozygosity > 0.3 

for autosomes/XY. The genotype imputation was conducted with a reference panel of the 

Haplotype Reference Consortium (r1.1 2016), using Minimac4 after phasing with Eagle 

v2.4 (24).

Imputed SNPs with an imputation quality of at least 0.3 were retained. We then evaluated 

the associations between individual SNPs and pancreatic cancer risk after adjusting for age, 

sex and top principal components (25).

We investigated the associations of genetically predicted gene expression in pancreas tissue 

with pancreatic cancer risk using the summary statistics generated from 8,275 cases and 

6,723 controls of European ancestry. Using S-PrediXcan (26), the associations of genetically 

predicted gene expression were estimated based on prediction weights, GWAS summary 

statistics, and an SNP-correlation (LD) matrix (14,15). In brief, the formula:

Zg ≈ ∑
l ∈ Modelg

wlg
σl
σg

βl
se βl

was used to estimate the Z-score of the association between predicted gene expression and 

pancreatic cancer risk. Here wlg represents the weight of SNP l for predicting the expression 

of gene g, β l and se β l  represent the GWAS association regression coefficient and its 

standard error for SNP l, and σl and σg represent the estimated variances of SNP l and the 

predicted expression of gene g respectively. For a majority of the tested genes, most of the 

corresponding predicting SNPs were available in GWAS datasets and used for the 

association analyses (e.g., ≥80% predicting SNPs used for 90.2% of the tested genes). A 

Benjamini-Hochberg false discovery rate (FDR) corrected P-value threshold of ≤ 0.05 was 

used to determine significant associations. The FDR analysis was performed using ‘p.adjust’ 

function in R (27). We further conducted conditional analysis with adjustments of previously 

identified pancreatic cancer risk variants to assess whether the associations between 

genetically predicted gene expression and pancreatic cancer risk in the main analyses were 

independent of the risk variants identified in GWAS. Previously reported pancreatic cancer 

risk SNPs that are available in the current dataset (rs10094872, rs11655237, rs1486134, 

rs1517037, rs1561927, rs16986825, rs17688601, rs2736098, rs2816938, rs2941471, 

rs35226131, rs3790844, rs401681, rs4795218, rs505922, rs6971499, rs7190458, 

rs78417682, rs9543325, rs9581943, and rs9854771) were adjusted for in the conditional 

analysis using individual level data.

To evaluate whether the TWAS identified genes can improve the risk prediction of 

pancreatic cancer, we compared the baseline model (PRS1) including age, sex, top principal 

components, and GWAS identified risk variants with another model (PRS2) in which 

predicted expression of TWAS identified genes were also included. In PRS2 model, we did 

not include the three genes with associations of genetic predicted expression were shown to 

be influenced by risk variants, as well as exclude one other gene (PGAP3) correlated with 
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STARD3. We compared the Area Under the ROC curve (AUC) of both models. Analyses 

were conducted using R version 4.0.1 (2020-06-06).

Results

Gene expression prediction model building

The overall study flow was presented in Figure 1. The flowchart of quality control and 

prediction model training in the reference dataset was shown in Supplementary Figure 1. 

Using the modified UTMOST framework, we generated prediction models for 8,479 genes 

with performance r > 0.1 and P < 0.05. Detailed information regarding the number of 

models built according to different performance thresholds and gene types is shown in 

Supplementary Table 1.

Associations of predicted gene expression in pancreas tissue with pancreatic cancer risk

Of the 8,433 genes tested, we identified 13 genes whose genetically predicted expression 

was associated with pancreatic cancer risk at P ≤ 8.00×10−5, a false discovery rate (FDR)-

corrected significance level (Tables 1 and 2; Figure 2). Of these, six were novel genes which 

have not been reported in previous studies (6q27: SFT2D1; 13q12.13: MTMR6; 14q24.3: 

ACOT2; 17q12: STARD3; 17q21.1: GSDMB; 20p13: ADAM33) (Table 1) and seven genes 

were previously reported (7p14.1: INHBA; 9q31.1: SMC2; 9q34.2: ABO; 13q12.2: PDX1; 

15q26.1: RCCD1; 16q23.1: CFDP1; 17q12: PGAP3) (Table 2). The 25 lambda pairs and the 

corresponding prediction performance in the tuning set for prediction models of the 13 

associated genes are shown in Supplementary Table 2.

Except for PDX1, ABO, and CFDP1, other ten genes are at least 500kb away from any risk 

variant reported in previous GWAS of pancreatic cancer (Table 3). An association between 

lower genetically predicted expression and increased pancreatic cancer risk was observed for 

INHBA (7p14.1), PDX1 (13q12.2), MTMR6 (13q12.13), and RCCD1 (15q26.1). 

Conversely, an association between higher genetically predicted expression and increased 

pancreatic cancer risk was identified for SFT2D1 (6q27), SMC2 (9q31.1), ABO (9q34.2), 

ACOT2 (14q24.3), CFDP1 (16q23.1), PGAP3 (17q12), STARD3 (17q12), GSDMB 
(17q21.1), and ADAM33 (20p13). Based on stratified analysis according to age (< 70 years 

old or ≥70 years old), association estimates of these 13 genes were largely consistent 

between the two groups (Table 4).

To determine whether the observed associations between genetically predicted gene 

expression and pancreatic cancer risk were independent of GWAS identified association 

signals, we performed individual level data analyses adjusting for GWAS-identified risk 

SNPs (4–7,22,23). For all six novel genes (SFT2D1, MTMR6, ACOT2, STARD3, GSDMB, 

and ADAM33) and four previously reported genes (SMC2, RCCD1, CFDP1 and PGAP3), 

the association remained significant (Tables 1 and 2). This suggests that the predicted 

expression of these genes may be associated with pancreatic cancer risk at least partially 

independent of the GWAS-identified risk variants. For three known genes (INHBA, ABO, 

and PDX1), their associations became insignificant after adjusting for known risk SNPs 

(Table 2), suggesting that their gene expression associations may be influenced by the 
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known risk SNPs. The associations of age, sex, top principle components, and known risk 

variants with pancreatic cancer risk in conditional analyses were shown in Supplementary 

Table 3.

We compared performance of the two models, PRS1 including age, sex, top principal 

components, and GWAS identified risk variants, and PRS2 which also included TWAS 

identified genes, for risk prediction of pancreatic cancer. Compared with PRS1 

(AUC=0.621), PRS2 (AUC=0.633) has a better performance, with AUC increased by 1.2% 

(Figure 3).

Discussion

Leveraging the largest available reference dataset for normal pancreas tissue transcriptome 

and a joint-tissue genetic modeling strategy for gene expression, we performed a 

comprehensive TWAS study to evaluate the relationship between genetically predicted gene 

expression in pancreas tissue and pancreatic cancer risk. We identified 13 genes whose 

genetically predicted expression was associated with pancreatic cancer risk (FDR ≤ 0.05), 

including six novel genes. Even after adjusting for risk SNPs identified in previous GWAS 

studies, the associations for ten genes (six novel genes and four reported genes) remained 

statistically significant. Our study provides substantial new information to improve the 

understanding of genetics and etiology for pancreatic cancer.

Several novel genes that we identified in this study have been shown to play potential roles 

in regulating lipid trafficking (StAR-related lipid transfer domain containing 3, STARD3), 

cancer progression (ADAM metallopeptidase domain 33, ADAM33), apoptosis (Gasdermin-

B, GSDMB; Myotubularin-related protein 6, MTMR6), and vesicle fusion (SFT2 domain 

containing 3, SFT2D3). StAR (steroidogenic acute regulatory protein) is a member of a 

subfamily of lipid trafficking protein which localizes to the membranes of late endosomes 

and is involved in cholesterol transport (28,29). STARD3 has been shown to be co-amplified 

with HER2/neu over-expression (30,31) and associated with shorter overall and disease-free 

survival in breast cancer patients (32). Vassilev B et al. suggested that STARD3 over-

expression resulted in increased cholesterol biosynthesis and Src kinase activity in breast 

cancer cells (33). Moreover, STARD3 is also over-expressed in the development of gastric 

cancer (34) and prostate cancer (35). The present study shows that increased genetically 

predicted expression of STARD3 was associated with increased risk of pancreatic cancer. 

This direction of effect with pancreatic cancer is consistent with the patterns for breast, 

gastric and prostate cancer. ADAM33 encodes a protein that is a type I transmembrane 

glycoprotein. Members of ADAM family are membrane-immobilized proteins that are 

related to snake venom double integrin structurally. The protein is involved in cell adhesion 

and plays an important role in cancer progression (36). The over-expression of ADAM33 
was found to contribute to the pathogenesis of sinonasal inverted papillomas (37), laryngeal 

carcinoma (38), and gastric cancer (39). Interestingly, in other work, reduced ADAM33 gene 

expression was associated with increased risk of breast cancer (40), triple-negative breast 

cancer and basal-like markers, as well as shorter metastasis-free survival and overall survival 

of breast cancer (41). GSDMB (17q21.1) encodes a member of the gasdermin-domain 

containing protein family that is potentially involved in the regulation of apoptosis in cancer 
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(42,43). Human GSDMB is transcribed in proliferating normal epithelial cells. Over-

expression of GSDMB is associated with reduced survival and increased metastasis in breast 

cancer patients (44,45), and correlated with carcinogenesis and progression of uterine cervix 

cancer (46). It was also identified as a potential oncogene for esophageal squamous cell 

carcinoma and gastric cancer (47). MTMR6 (13q12.13) encodes Myotubularin-related 

protein 6 which is a catalytically active member of the myotubularin (MTM) family. The 

formation of the MTMR6-MTMR9 complex could regulate DNA damage-induced apoptosis 

(48). The expression of MTMR6 was higher in ovarian tumor tissues compared with tumor-

adjacent normal tissues (48). SFT2D1 (6q27) encodes SFT2 domain-containing protein 1. 

SFT2 is a non-essential membrane protein and localized to late-Golgi compartment. SFT2 

plays an important role in the process of vesicle fusion with the Golgi complex. Low 

SFT2D1 gene expression predicted poor outcome in high-risk neuroblastoma patients (49).

Seven genes showing a significant association in our study have been reported in an earlier 

TWAS for pancreatic cancer risk (18). The directions of their associations of genetically 

predicted expression were consistent. Some earlier studies have suggested that five of them 

are potentially associated with pancreatic cancer. PDX1 (pancreatic and duodenal homeobox 

1) is a “master regulator” of pancreas development. PDX1 is a crucial product of the 

developing pancreas, and plays a crucial role in preventing pancreatic intraepithelial 

neoplasia that precedes pancreatic ductal adenocarcinoma (50,51). Previous research has 

identified rs3818626 in SMC2 (structural maintenance of chromosomes 2) to be associated 

with pancreatic cancer risk (52). ABO (alpha 1–3-N-acetylgalactosaminyltransferase and 

alpha 1–3-galactosyltransferase) located at the 9q34 region and its encoding protein was the 

basis of the ABO blood group system which was biosynthesized by A and B-transferases 

(53). Multiple studies have suggested ABO to be associated with risk of pancreatic cancer 

(5,54). The gene PGAP3 (post-GPI attachment to proteins phospholipase 3) encodes a 

glycosylphosphatidylinositol (GPI)-specific phospholipase that primarily localizes to the 

Golgi apparatus. The tethering of proteins to plasma membranes via posttranslational GPI-

anchoring plays a key role in protein sorting and trafficking (55). Walsh N et al. identified 

three PGAP3 polymorphisms to be potentially relevant to risk of pancreatic ductal 

adenocarcinoma (6). INHBA (inhibin subunit beta A) encodes a member of the TGF-beta 

(transforming growth factor-beta) superfamily of proteins, and the encoded protein is 

processed to generate a subunit of the dimeric activin and inhibin protein complexes 

proteolytically (56). It was identified that INHBA was over-expressed in pancreatic tumors 

and associated with reduced patient survival (57). Although based on literature search we 

did not identify studies reporting link between two other genes (INHBA and RCC1 domain-

containing protein 1(RCCD1) and pancreatic cancer, they have been reported to be 

potentially related to several other tumors (Supplementary Table 4).

Of the other 18 genes identified in Zhong et al., for six of them (CELA3B, SMUG1, 

BTBD6, SUPT4H1, PGPEP1 and ZDHHC11B), we were able to build their corresponding 

genetic prediction models (18). Of these, SMUG1, BTBD6, and PGPEP1 were also 

nominally significant at P<0.05 with the direction consistent with that reported in Zhong et 
al., and the P=0.10 for SUPT4H1 with the same direction (Supplementary Table 5). For the 

12 remaining genes, we were not able to build genetic prediction models with R2≥ 0.01 

using the UTMOST method. It is worth noting that, for six of these 12 genes, namely, 
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TERT, CLPTM1L, SMC2-AS1, RP11–80H5.9, BCAR1, and TMEM170A, their 

associations identified in Zhong et al. were based on prediction models in non-pancreas 

tissues. For several others, the associations were identified based on prediction models built 

using data from tumor-adjacent normal pancreas tissue from cancer patients instead of 

normal pancreas tissue from healthy subjects. As we noted in the Introduction, some gene 

expression traits might be substantially altered in tumor-adjacent normal tissues due to the 

somatic changes. Further research is warranted to better characterize the associations of 

these genes with pancreatic cancer.

Compared with many other existing methods, the joint-tissue strategy of UTMOST confers 

significant advantages. Many other methods, such as PrediXcan and TWAS/FUSION, do not 

take into consideration the similarity of genetic regulation for many genes across different 

human tissues (58,59), thereby posing a challenge when the effective number of the 

corresponding tissue samples is low (60). UTMOST is a powerful method to jointly analyze 

data from multiple genetically-correlated tissues, thus significantly improving the accuracy 

of expression imputation in available tissues to enhance power for gene discovery. Based on 

assessments in internal cross validation and external validation, the gene expression 

imputation accuracy can be significantly improved for the UTMOST strategy compared with 

PrediXcan method, as well as the Bayesian Sparse Linear Mixed-effects Model (BSLMM), a 

method used in TWAS/FUSION (14). In the previous pancreatic cancer TWAS, PrediXcan 

and TWAS/FUSION methods were used to develop gene expression prediction models for 

pancreas and individual non-pancreas tissues (18).

The sample size for association analysis in this study was large, which could provide high 

statistical power to detect associations for genes with a relatively high cis-heritability (h2). 

For example, our study has 80% statistical power to detect an association with pancreatic 

cancer risk at P < 8.00×10−5 (similar to FDR < 0.05) with an OR of 1.28 or higher per one 

standard deviation increase (or decrease) in the expression level of genes with an h2 of 0.1 or 

higher. The design of using genetic instruments reduces selection bias and potential 

influence due to reverse causation. On the other hand, several potential limitations need to be 

acknowledged. First, the associations identified in this study do not necessarily imply 

causality. Aligned with other reports, although TWAS is useful for prioritizing causal genes, 

false positive findings could exist for some of the identified associations (61). Several 

reasons can potentially induce these, including correlated expression across individuals, 

correlated predicted expression, as well as shared variants (61). In our study, two identified 

genes, STARD3 and PGAP3, are both located in region 17q12. Future functional 

investigation will better characterize whether the identified genes play a causal role in 

pancreatic tumorigenesis. Second, in TWAS design the estimated genetically regulated 

component of gene expression but not the overall expression is evaluated, thus the 

relationship between overall gene expression and diseases cannot be directly inferred from 

TWAS and need to be assessed in different studies. Third, in the current study for the 

identified associated genes, we are not able to evaluate whether their associations with 

pancreatic cancer risk differ according to family history of pancreatic cancer and tumor 

stage/grade due to a lack of relevant information. Future work investigating this is needed to 

better understand the associations.
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Besides improving understanding of genetics and etiology of pancreatic cancer, the 

identification of candidate susceptibility genes may also improve risk prediction of this 

deadly malignancy. In our evaluation, the prediction model incorporating TWAS identified 

genes confers an improved performance compared with a model without such TWAS 

identified genes (Figure 3). On the other hand, the current prediction model only serves for 

illustration purpose and additional work is needed to better evaluate performance of the 

model incorporating TWAS identified genes for predicting pancreatic cancer risk. For 

example, additional risk factors for pancreatic cancer, such as smoking, heavy alcohol 

consumption, obesity, chronic pancreatitis, type 2 diabetes, and family history of pancreatic 

cancer can be further included in such a model. Secondly, in the current study we only 

applied the intuitive logistic regression model. More sophisticated models can be explored to 

evaluate whether new models can be developed with improved performance. Thirdly, we 

used the PanScan/PanC4 data, based on which the associated genes and risk variants were 

identified, for evaluating model performance. Ideally, the performance of such a prediction 

model could be assessed in independent datasets that have not been used for the 

identification of these genes and variants to provide an unbiased assessment.

In conclusion, in this large-scale TWAS study of pancreatic cancer, we identified 13 genes 

whose genetically predicted expression was associated with pancreatic cancer risk, including 

six novel genes. Ten of these genes remained statistically significant after adjusting for risk 

SNPs identified in previous GWAS studies. Further investigation of these genes will provide 

new insights into the biology and genetics of pancreatic cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance:

A Transcriptome-wide association analysis identifies seven previously reported and six 

novel candidate susceptibility genes for pancreatic cancer risk.
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Figure 1. 
Study design flow chart
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Figure 2. 
Manhattan plot of association results from the pancreatic cancer transcriptome-wide 

association study. The horizon line represents P = 8.00 × 10−5 (FDR-corrected P value ≤ 

0.05). Each dot represents the genetically predicted expression of one specific gene by 

pancreatic tissue prediction models. The x axis represents the genomic position of the 

corresponding gene, and the y axis represents the negative logarithm of the association P 
value.
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Figure 3. 
Performance of prediction models with and without incorporating TWAS identified genes in 

pancreatic cancer risk prediction. The dash line represents the PRS1 including age, sex, top 

principal components, and GWAS identified risk variants. The solid line represents PRS2 

which also included TWAS identified genes. The AUC for PRS1 and PRS2 are 0.621 and 

0.633, respectively.
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Table 3.

Distances between TWAS identified associated genes and closest risk SNPs

TWAS identified genes

Closest risk SNP on the same Chr Position (build37) Distance to the risk SNP (kb)Gene name Chr Position (build37)

SFT2D1 6 166733516–166755991 – – –

INHBA 7 41728601–41742706 rs78417682 47488903 5,746

ABO 9 136130563–136150630 rs505922 136149229 1

SMC2 9 106856213–106903700 rs505922 136149229 29,246

MTMR6 13 25820339–25861704 rs9581943 28493997 2,632

PDX1 13 28494168–28500451 rs9581943 28493997 0.17

ACOT2 14 74034324–74042362 rs9543325 73916628 118

RCCD1 15 91498106–91506355 – – –

CFDP1 16 75327608–75467387 rs7190458 75263661 70

STARD3 17 37793333–37820454 rs4795218 36078510 1,715

GSDMB 17 38060848–38074903 rs4795218 36078510 1,982

PGAP3 17 37827375–37844310 rs4795218 36078510 1,749

ADAM33 20 3648620–3662755 – – –
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Table 4.

Associations of TWAS identified genes and pancreatic cancer risk stratified by age

Gene name

<70 years old a ≥70 years old a P value for interaction

OR 95% CI P value OR 95% CI P value

SFT2D1 1.38 1.03–1.85 0.032 1.90 1.29–2.79 1.21 × 10−3 0.16

MTMR6 0.82 0.70–0.96 0.013 0.73 0.59–0.90 3.61 × 10−3 0.35

ACOT2 1.39 1.15–1.68 5.71 × 10−4 1.35 1.05–1.74 0.019 0.73

STARD3 6.59 2.18–19.87 8.67 × 10−4 3.09 0.73–13.04 0.13 0.39

GSDMB 1.90 1.28–2.81 1.45 × 10−3 2.22 1.31–3.76 3.05 × 10−3 0.63

ADAM33 1.52 1.21–1.91 2.92 × 10−4 1.41 1.05–1.89 0.024 0.64

INHBA 0.54 0.40–0.71 2.10 × 10−5 0.62 0.42–0.90 0.013 0.66

SMC2 2.61 1.63–4.18 7.03 × 10−5 3.18 1.72–5.89 2.43 × 10−4 0.69

ABO 1.20 1.09–1.32 2.29 × 10−4 1.35 1.19–1.53 4.74 × 10−6 0.14

PDX1 0.46 0.35–0.60 2.14 × 10−8 0.59 0.41–0.84 3.46 × 10−3 0.25

RCCD1 0.87 0.78–0.97 0.015 0.81 0.70–0.94 5.16 × 10−3 0.42

CFDP1 1.46 1.21–1.77 9.74 × 10−5 1.62 1.25–2.09 2.73 × 10−4 0.60

PGAP3 1.23 1.09–1.38 5.64 × 10−4 1.11 0.95–1.29 0.19 0.30
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