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Abstract

Despite the crucial roles of lipids in metabolism, we are still at the early stages of comprehensively 

annotating lipid species and their genetic basis. Mass spectrometry(MS)-based discovery 

lipidomics offers the potential to globally survey lipids and their relative abundances in various 

biological samples. To discover the genetics of lipid features obtained through high resolution LC-

MS/MS, we analyzed liver and plasma from 384 Diversity Outbred (DO) mice, and quantified 

3,283 molecular features. These features were mapped to 5,622 lipid quantitative trait loci (QTL) 

and compiled into a public web-resource termed LipidGenie. This data is cross-referenced to the 

human genome and offers a bridge between genetic associations in humans and mice. Harnessing 

this resource, we used genome-lipid association data as an additional aid to identify a number of 

lipids, for example gangliosides through their association with B4galnt1, and found evidence for a 

group of sex-specific phosphatidylcholines through their shared locus. Finally, LipidGenie’s 

ability to query either mass or gene-centric terms, suggests acyl chain-specific functions for 

proteins of the ABHD family.
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Beyond their roles in energy storage and membrane structure, lipids are central actors of 

myriad metabolic functions and molecular signaling.1,2 As our understanding of these 

diverse lipid functions grows, so too does our appreciation for the complexity of the 

lipidome of mammalian systems.3 Mass spectrometry has emerged as the central tool to 

dissect and quantify the myriad of lipid species beyond traditional clinical measures.4–6 

Specifically, using liquid chromatography (LC) coupled with high resolution tandem mass 

spectrometry (MS/MS), over one thousand unique lipid features from a complex mixture can 

be quantified in under an hour.7 A chromatographic feature in this context is defined by a 

unique combination of mass and retention time. From these features, hundreds of individual 

lipids are routinely identified; however, the majority of the features remain unannotated.8,9 

The result is that more often than not, the majority of mass spectrometry data are not 

leveraged.8,10,11

One strategy for lipid feature identification is to group compounds likely to be related. For 

example, members of a lipid class often (i) appear within a defined chromatographic 

retention time, (ii) occupy a characteristic mass range, and (iii) exhibit similar dissociation 

patterns when subjected to fragmentation.12 Most efforts to improve lipid identification rates 

exploit one or all of these steps3,13–15 - including our laboratories recent description of a 

software suite that constructs tailored MS/MS libraries for automated lipid spectral 

identification.16,17 Others have sought to build on this information by adding external 

complementary data, such as measurement of collisional cross section,10 or labile hydrogen 

counting, among others.18 All of these methods show great promise but share in the common 

theme that they incorporate lipid chemical properties into their identification inference.

In the field of shotgun proteomics, genome sequence data are used to identify experimental 

peptide tandem mass spectra. Given the success of this field we wondered whether genomic 

information could be leveraged similarly in the field of lipidomics. Unfortunately, it is not 

possible to directly predict lipid identities from genomic data; however, shared genetic 

regulation among lipids could provide key information to facilitate identification. For 

example, a recent large-scale multi-omic study of a knock-out yeast library demonstrated 

dramatic regulation of the lipidome,19 nuclear magnetic resonance (NMR)-based untargeted 

metabolomics identified disease-associated metabolites and genomic regions via quantitative 

trait loci (QTL) mapping,20,21 and in humans, data from genome wide association studies 

(GWAS) were used to assist in small molecule identifications from both MS and NMR data.
22–25 We thus aimed to create a global genome-lipid association map that would offer 

genetic location as a fourth (iv), orthogonal dimension of data to assist in lipid feature 

identification.

To construct a global genome-lipid association map we measured plasma and liver lipids 

from a mouse population using LC-MS/MS and performed QTL mapping.26–28 This study is 

carried out using Diversity Outbred (DO) mice, a multiparent population (MPP) derived 

from 8 highly diverse founder strains (Figure 1a).24,25,26 A key advantage of the MPP is that 

we can identify the additive genetic effects contributed by each founder strain at a 

quantitative trait locus (QTL). Unlike standard bi-parental crosses where the founder 

haplotype effects are either increasing or decreasing, the haplotype effects in a MPP are 
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complex and enable us to distinguish chance co-localization from pleiotropic effects. In 

addition, we can compare founder haplotype effects across different studies using DO mice 

to identify shared effects on traits that were not directly measured in only one group of DO 

mice. Specifically, we were able to use liver gene expression from a previously published 

study to propose candidate genes for the lipid features in this study.30 Further, each of the 

eight inbred DO founder mouse strains (129, A/J, B6, CAST, NOD, NZO, PWK, WSB) 

contributes to generate distinct allele effect patterns at each locus, thus providing an 

additional criterion for gene identification.31 Finally, careful control of external sources of 

variation such as diet and environmental conditions, allows the extraordinary phenotypic 

diversity of the DO32 to be directly attributed to genetic diversity. The DO population has 

already been used extensively to map clinical traits,33 transcripts,32 proteins,34 gut 

microbiota and bile acids35 providing a wealth of existing data to integrate with global 

genome-lipid associations.

Here we describe the first discovery lipidomics analysis on a cohort of DO mice. In doing 

so, we utilize QTL position as an independent piece of information to guide lipid 

identification and apply it to define unidentified mass spectral features. We demonstrate the 

utility of genome-lipid associations to assign identification or function in independent 

studies through a web-based resource - LipidGenie (http://lipidgenie.com/).

Results

QTL mapping connects lipids to their genetic regulators

To explore how global association of mass spectrometry data to genomic coordinates could 

assist lipid identification, we collected whole lipidome profiles of plasma and liver tissue 

from 64 FS and 384 DO mice using high resolution LC-MS/MS (Figure 1a). Altogether, we 

performed 894 LC-MS/MS discovery lipidomics experiments from which we extracted 

approximately 4,500,000 tandem mass spectra (Figure 1d). From the full scan mass 

spectrometry data (Figure 1c), we detected and quantified 19,636 molecular features; 12,429 

in plasma and 7,207 in liver (Figure 1b). Next, we applied the LipiDex algorithm16 to (1) 

match the tandem mass spectra to their respective features, (2) eliminate features derived 

from adduction, dimerization, in-source fragmentation, etc., and (3) to assign molecular 

identities when possible (Figure 1d). From the 3,283 distinct molecular features that 

remained, we identified 594 lipids (from 1,721 features) in plasma and 584 lipids (from 

1,562 features) in liver (see Methods: Lipidomics Data Analysis for details). This discovery 

approach allows for broad, untargeted lipidome coverage. However, we note that some lipid 

classes, including PS, LysoPS, PA, LysoPA, LysoPG, cholesterol, are either partially or 

wholly, missed by the current method. For instance, , RPLC-ESI-MS/MS poorly retains PA 

and PS species. Further, cholesterols and other sterols have poor electrospray ionization 

efficiencies.5,9,36,37 Extended Data Figure S2a–b and Table 1 provide an overview of the 

identified lipids that span roughly 30 lipid subclasses from five of the major classes: fatty 

acyls, glycerolipids, phospholipids, sphingolipids, and sterol lipids.38 For ~70% of these 

identifications we find MS/MS evidence to detail fatty acid composition, otherwise we 

report sum composition.
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Figure S1a and b present a bird’s-eye view of these plasma and liver lipidomes. Here each 

distinct molecular feature is plotted as a function of its m/z and chromatographic retention 

time. Identified lipids are colored by class; we note members of individual lipid classes 

group well, adding confidence to their identification. Triglycerides (TG),39 for example, as 

hydrophobic lipids with three fatty acids can be found at high m/z and late chromatographic 

retention. From this perspective, we observe that the unidentified molecular features, ⅔ of 

all detected species, are either clustered around identified lipid classes or exist on m/z and 

retention islands. We conclude that these data can be further interrogated to (1) expand 

existing lipid class coverage and (2) reveal the presence of additional lipid classes.

Next, we extracted quantitative information from all detected molecular features across all 

384 animals, creating a molecular trait for each feature. Figure 1e displays the quantitative 

values of two examples of individual molecular traits from plasma; one identified as a 

sphingolipid and one unidentified. Plasma HexCer[NS] d18:1_20:0 has a relative abundance 

dynamic range of ~15-fold across all 384 animals. For comparison, we plot the abundance of 

a molecular feature with a mass of 1252.8028 Da. Here we see an even greater dynamic 

range of ~75-fold, however, the feature was unidentified using our traditional data 

processing. Correlation to a candidate gene region ultimately led to the identification of the 

feature. To correlate these MS-derived lipid quantitative phenotypes (vide supra) with 

genomic variation we performed quantitative trait locus (QTL) mapping using R/qtl2.27.

Figure 2a displays a hierarchically clustered heatmap of these quantitative results for all 

measured molecular traits (1,721 and 1,562 for plasma and liver, respectively) across all 384 

animals. Notably, we observe considerable clustering by lipid class, even across tissue type 

(y-axis). We detected 3,348 plasma lipid QTL for 1,405 of the 1,721 (81.6 %) traits 

(logarithm of odds (LOD) score > 6). 1,351 of these were from identified lipids, while 1,997 

were from unidentified features. Similarly, in liver, we detected 2,269 lipid QTL for 1,190 of 

the 1,562 (76.2 %) traits, of which 927 were from identified lipids while 1,342 were from 

unidentified features Figure 2b and Extended Data Figure S2c–d present the genetic 

correlations for this entire collection of significant QTL extracted in a Manhattan plot. We 

note that the unidentified molecular traits cluster among the various identified lipid classes, 

which provides further evidence that these features are of biological origin and amenable for 

further interrogation. Secondly, the unidentified features occupy additional distinct loci, 

implicating previously unidentified lipid classes.

QTL map recapitulates APOA2 biology and informs cholesteryl ester lipid identifications

Several genetic loci are strongly associated with lipids and appear as hotspots - locations on 

the genome where multiple lipid QTL co-map (Figure 2b and Extended Data Figure S2b). 

To better explore these regions, we asked whether these co-mapping lipid QTL shared a 

common genetic relationship to segregating alleles at the locus. One advantage of the DO 

mice is that shared founder strain allele effect patterns can be indicative of a common 

genetic regulator.28 Thus, we define a lipid QTL hotspot as multiple lipid QTL co-mapping 

(± 2 Mbp) with a shared founder strain allele effect pattern. We identified a number of 

hotspots; many of these are detailed in Supplementary Table 1 with their respective lipid 

class and likely candidate gene drivers. To garner additional support for founder strain 
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specific genetic effects on lipid abundance, we profiled plasma and liver lipids for each of 

the founder strains (4 males, 4 females, Supplementary Tables 10 and 11).

Figure 3a highlights a lipid QTL hotspot on chromosome 1:171 Mbp. Here, 255 lipid traits, 

all from plasma, co-localize with a shared allele effect pattern of upregulation associated 

with alleles derived from the founder strain 129 (Extended Data Figure S3a). The lipid with 

the highest LOD at this locus was a cholesteryl ester (CE 18:2), which was also elevated in 

founder strain 129 plasma (Extended Data Figure S3b). At 171 Mbp on chromosome 1, 

strain 129 possesses a missense SNP in Apoa2 gene (rs8258226), resulting in a 61Ala >Val 

substitution in the protein apolipoprotein-II.41 A prior DO study identified APOA2 protein 

and mRNA expression QTL in liver tissue but these displayed different allele effects than 

plasma lipid QTL, suggesting that the causal variants that modulate their respective levels 

differ (Extended Data Figure S3c).34 Notably, APOA2 protein is a major component of high 

density lipoprotein (HDL) particles in plasma, corroborated by human HDL traits mapping 

to APOA2 in GWAS,42 and is considered a principal genetic regulator of plasma HDL levels 

in mice.43,44,45,46 The other major components of HDL particles are phospholipids (35–

50%) and cholesteryl esters (30–40%) (Figure 3b).47 Consistent with this composition, 

seven sub-types of phospholipids and various cholesteryl esters (CE) map to the Apoa2 
locus (Figure 3c). Sphingolipids, a minor component of HDL particles, map in four different 

sub-classes to this Apoa2 locus. We conclude that this hotspot illuminates the molecular 

composition of HDL particles in mice, while also linking an additional 130 unidentified 

lipid features to this locus.

To test if a shared QTL would enable identification of additional lipids, we plotted the 255 

lipid traits that map to the Apoa2 locus as a function of chromatographic retention time, 

mass, and identification status (Figure 3d). A cluster of unidentified lipid features shared 

retention time with CEs, a class of lipids that are often devoid of informative fragments.48 

All CEs showed their major QTL at the Apoa2 locus (Figure 3e) providing greater 

confidence in their identification. The shared genetic regulation further allowed us to predict 

a CE identity for the cluster of unidentified co-mapping features. Examination of their total 

masses49 and tandem mass spectra supported the annotation of five additional CEs (Figure 

3f), while another 18 lipid features’ m/z and RT were consistent with technical artifacts of 

CEs: eleven heterodimers, four cholesterol adducts, and three in-source fragments.

QTL map provides an orthogonal tool for lipid identification

On chromosome 10, at 127 Mbp we observed a significant lipid QTL hotspot. At this site, 

over twenty-five plasma and liver lipid features mapped with the highest overall significance 

(Figure 4a). These features also shared a common allele dependence; i.e., NOD-driven and 

split between NOD high vs. low effect (Figure 4b). None of these lipid features were 

identified following our conventional data analysis strategy, which leverages retention time, 

mass, and tandem mass spectra. The features were observed in two distinct clusters based on 

m/z and RT, suggesting they could derive from two distinct lipid classes (Figure 4c). Given 

that these unidentified features (1) appeared as two defined lipid classes and (2) were high 

scoring at a genetic locus with opposite allele effects, we reasoned that identification of the 

causal gene may enable their identification.
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The genetic effects of SNPs and other genomic variants can influence lipid abundance. For 

example, SNPs in coding regions can affect protein product function. In the extreme, a 

missense variant in proteins involved in lipid metabolism could very likely affect lipid 

abundance. SNPs in non-coding regions, such as promoters and enhancers, can alter gene 

expression. To identify candidate SNPs, we analyzed the SNPs associated with the lipids by 

identifying those with the founder strain SNP database at each QTL (R/qtl2; scan1snps()27) 

and subsequently causing missense, frameshift, stop lost/gained, incomplete terminal 

codons, in-frame deletions/insertions, altering 3’ or 5’ UTR sequences, splice acceptor/

donor/region, predicated to cause nonsense-mediated decay, initiator codon or mature 

miRNA variants (according to the Sequence Ontology (SO) consortium)50. At the 

chromosome 10 hotspot we identified several candidate genes with potentially causal 

mutations (Figure 4d). We included in our analysis, but did not focus on genes with 

synonymous, stop retained, up-/downstream, intergenic, intron and non-coding transcript 

(exon) variants (which represent ~97% of all SNPs in the database).

In cases of altered gene expression, we further narrowed down the list of candidates by 

directly assessing transcriptomics data. While we did not profile hepatic gene expression in 

the DO cohort used for lipid QTL analysis, we surveyed a recently published hepatic QTL 

data set to match allele effects of mRNA expression and protein QTL that are within the 

location of the candidate gene (cis-eQTL and pQTL, respectively).34 We asked if any 

transcripts or proteins presented a similar NOD-driven allele effect at the lipid locus on 

chromosome 10. Of the protein coding genes within ±2 Mbp of the lipid QTL, 55 showed a 

cis-eQTL (Supplementary Table 2). However, the only cis-eQTL that was strongly and 

uniquely driven by NOD alleles was B4galnt1 (Extended Data Figure S4a). Furthermore, 16 

cis-pQTL were identified for genes within this region, including B4GALNT1 

(Supplementary Table 3). Similar to the cis-eQTL, the only pQTL that showed an NOD-

driven allele effect pattern was for B4GALNT1 (Extended Data Figure S4b). Consequently, 

the 3’ UTR variant in B4galnt1 SNP rs13462597 was our strongest candidate as the genetic 

regulation of hepatic B4galnt1 transcript and protein expression matches that of the 

unidentified lipids.

B4galnt1 encodes for β−1,4 N-acetylgalactosaminyltransferase 1, an enzyme that catalyzes 

the conversion of GM3 to GM2 gangliosides.51 With this candidate gene in mind, we 

investigated whether the unidentified lipids could be classified as gangliosides. Their 

precursor m/z and tandem mass spectra were consistent with monosialic gangliosides, which 

we further confirmed by comparison with a GM3 ganglioside standard (Figure 4e). In total, 

we confidently identified 26 lipid features as six unique GM2 and seven unique GM3 

species (Supplementary Table 4). Consistent with an NOD-driven effect, NOD mice have 

higher abundance of GM3 gangliosides in pancreas,52 and we confirmed NOD had higher 

abundance of GM3 in plasma in an independent lipidomic analysis of founder strain mice 

(Extended Data Figure S4c).

By identifying the features mapping to chromosome 10:127 Mbp as gangliosides, we 

recognized that ganglioside abundances, like the levels of most lipid species, were 

polygenic, that is regulated by multiple loci (Figure 4f). From the 26 identified ganglioside 

features we gain a total of 62 QTL annotations, describing more than 15 unique loci (at least 
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two ganglioside features with LOD > 6.0) on 10 chromosomes (Supplementary Table 5). 

Interestingly, these newly annotated ganglioside QTL mapped to candidate genes of the 

ganglioside pathway (Sgms153, B3galt4, St3gal2, Cmah54), even more distant regulators of 

ganglioside metabolism (Slc9a655, Cog256, Trcp557, Cdh13), and regions of the genome 

with yet undescribed ganglioside regulation (Figure 4g).

LipidGenie identifies candidate genetic regulators for lipid features

To make these genome-lipid associations accessible to the community we created a web-

based resource; LipidGenie (http://lipidgenie.com). With LipidGenie, lipid features can be 

searched by m/z, lipid identifier, or lipid class. The search returns QTL of the matching 

features and allows the user to explore the genetic region, founder strain allele effects, and 

associated SNPs. In addition, with LipidGenie individual genes or gene regions can be 

queried for lipid associations.

To validate LipidGenie we explored sex-associated lipid features that were observed within 

the B6 founder strain. In this study we quantified 2,558 lipid features in B6 plasma and 

found 254 features that showed significantly different levels by sex (Figure 5a). As is 

common in LC-MS lipidomics, most of these sex-specific features were unidentified after 

the database search (n = 197). Utilizing LipidGenie’s m/z search parameter and a 10 ppm 

m/z window, we found significant genome-lipid associations for 127 of the sex-specific 

features, of which 79 were unidentified. Strikingly, a group of six unidentified lipids mapped 

to the same genetic locus on chromosome 6 at 91 Mbp (Figure 5b, Supplementary Table 6); 

all had similar allele effect patterns (Extended Data Figure S5a) and were elevated in males 

(Figure 5a and Extended Data Figure S5b). At the locus, a total of 12 out of 21 co-mapping 

features shared a lipid class-like behavior, i.e., clustered in m/z-RT space (Figure 5c). To 

further characterize these lipids, we collected additional tandem mass spectra in both 

positive and negative mode (Figure 5d–g).

The spectra showed shared fragmentation patterns consistent with a phosphatidylcholine 

(PC) class identity. Strikingly, one fatty acid seemed to be either FA 22:6 (Figure 5e) or FA 

16:0, but only MS3 spectra showed the presence of a second acyl chain expected for PCs 

(Figure 5f–g). These features also shared an m/z 522 fragment that matched the formula of 

LysoPC 19:0, C26H53NO7P−.

We next leveraged the LipidGenie associations to generate hypotheses about the nature of 

this lipid class. At chromosome 6 at 91 Mbp, we found SNPs with matching allele effects in 

several genes including Txnrd3, Vmn1r, Uroc1, Aldh1l1, Slc41a3, Grip2, and Trh (Figure 

5b). One possible candidate on chromosome 6 is Vmn1r, encoding for vomeronasal 

receptors, the organs that sense pheromones. Not only could this gene explain the observed 

sex difference, it also points us to PC estolides as a potential class identity. Estolides are 

lipids containing fatty acid esters of hydroxy fatty acids (FAHFAs). Consistent with the 

observed 16:0 or 22:6 fragments in MS2 spectra of the unidentified lipids, 16:0 and 22:6 can 

be esterified to hydroxy fatty acids to form FAHFAs.58 This hypothesis is further supported 

by accounts of FAHFAs as pheromones in spiders and TG estolides in mammalian scent 

glands.59 The potential estolide identity is intriguing, but definitive identification will 

require follow-up studies. Further evidence is likely contained in the genetic associations. 
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Similar to our earlier example with gangliosides, we observed co-mapping of these 12 lipids 

at other loci (e. g., Chr 10, at 84 Mbp, Chr 12, at 84 Mbp), thereby offering potential 

pathway information (Supplementary Table 7) and highlighting the power of genome-lipid 

associations obtained with LipidGenie.

We next explored whether LipidGenie would also offer insights when querying for identified 

lipid features. Recently, Parker et al. found an association between LysoPC 14:0 and 

chromosome 5 at 31 Mbp using multi-omic QTL mapping of the hybrid mouse diversity 

panel60. From these data, they postulated that the protein encoded by candidate gene Abhd1 
(alpha beta hydrolase domain containing 1) regulates plasma levels of LysoPCs. Note, 

ABHD1 has no annotated function. LipidGenie’s lipid search provides a direct means to test 

this putative functional annotation of ABHD1.

LipidGenie confirmed that plasma LysoPC 14:0 has a strong QTL at the abhd1 locus (Figure 

5h), and further found the B6 and NZO high allele effect consistent with the 3’ UTR variant 

rs29681817 (Extended Data Figure S5c). This observation is further supported by an 

independent measure of the founder strain mice and a hepatic cis-eQTL in Abhd1 with 

matching opposite allele effects (Extended Data Figure S5d–e). To connect the function of 

ABHD1 protein to LysoPCs, we asked whether other LysoPCs (n = 45) mapped to this gene 

region. However, we did not find general mapping of LysoPCs to this locus (Figure 5i), but 

instead found other lipids co-mapping on chromosome 5, at 31 Mbp, including PC 

14:0_16:0, PE 14:0_20:4, PE 14:0_22:6, PC 28:0, PC 30:0, and PC 30:1 (Figure 5h). These 

fatty acid signatures suggest a myristic acid (14:0) specific association. Given the high 

degree of lipid structural resolution contained within LipidGenie, we demonstrate that 14:0-

containing lipids (n = 30) have an enriched hotspot at the Abhd1 locus (Figure 5j). With 

these data we propose that ABHD1 is a phospholipase for myristic acid containing 

phospholipids; consistent with the function of a related and highly homologous gene, 

abhd3.61,62 14:0-containing phospholipids have also been mapped to ABHD3 in human 

GWAS.63 To validate this hypothesis, we overexpressed ABHD1 and ABHD3 in Hepa1-6 

cells (Extended Data Figure S6a–b) and measured their lipidome with respect to cells 

overexpressing GFP as control (Supplementary Table 12). Hierarchical clustering of the top 

49 features showed two clusters, one with increased levels in the mutants over control and 

the other one decreased (Extended Data Figure S6c). We noticed a majority of identified 

lipids among the most significantly different features, and when plotting the average fold 

change by lipid class, LysoPC and PC phospholipids stood out (Figure 5k). Upon closer 

look, we could confirm the predicted fatty acid dependency for both LysoPC and PC lipids, 

particularly prominent in 14:0 containing phospholipids (Figure 5l–m). While ABHD1 and 

ABHD3 mutants exhibited largely similar lipidomic profiles, differences as in PC 16:1_20:4 

that was only decreased in the Abhd3 mutant, may also point to differential functions. The 

14:0 specificity could be relevant to human health as plasma LysoPC 14:0 is a predictor of 

diabetes risk in humans. Finally, our proposed function might provide a clue to 

understanding why ABHD1 is associated with oxidative stress, a prominent hallmark of 

metabolic diseases. 61,64,65

Having documented the diverse utility of LipidGenie for lipid queries, we lastly tested its 

use for gene-based queries. ABHD2, another member of the alpha beta hydrolase domain 

Linke et al. Page 8

Nat Metab. Author manuscript; available in PMC 2021 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein family, acts on arachidonylglycerol, among other substrates.66,67 A LipidGenie 

query of Abhd2 does indeed provide evidence for this polyunsaturated fatty acid pathway 

specificity. Specifically, within 2 Mbp of Abhd2, LipiGenie returned ten liver phospholipids. 

Eight of these lipids shared an allele effect pattern, and contained poly-unsaturated fatty 

acids - i.e., 18:2, 18:3, 20:3, 20:4, and 22:6 (Extended Data Figure S5f–g). Further, ABHD2 

showed matching opposite WSB and CAST effects in both liver cis-eQTL and pQTL 

(Extended Data Figure S5h–i).34

Discussion

Discovery lipidomics presently relies on measurement of various chemical properties for 

lipid identification. These properties are most often hydrophobicity, mass, and fragmentation 

pattern. Unfortunately, application of only these strategies to complex mammalian lipid 

mixtures results in many unidentified lipid features. Here we investigated the power of 

genome-lipid associations to facilitate lipid identification.

To construct a large-scale map of genome-lipid associations, we performed QTL analysis for 

over 5,000 plasma and liver lipid QTL, of which over 60% stem from unidentified spectral 

features. To our knowledge, this QTL map is the broadest in scope and depth of lipids 

analyzed and QTL identified in mice.60,68,69 With these data, we first tested our hypothesis 

by analyzing one of several QTL hotspots; the Apoa2 locus. The identified lipids mapping to 

this locus belonged to 11 different classes and, together with APOA2, constitute the known 

components of HDL particles. With this association, 23 unidentified lipid features could be 

classified as cholesteryl esters and related features.

To further test the concept, we selected a second hotspot containing only unidentified lipid 

features (10:127 Mbp). Genetic mapping to B4galnt1 enabled their identification as GM3 

and GM2 gangliosides. In fact, the identification allowed for a comprehensive investigation 

of their complex polygenic regulation. We identified a total of eight candidate genes that 

likely contribute different functions in the pathway, including three (Slc9a6, Cog2, Trpc5) 

that exert indirect effects on ganglioside biosynthetic enzymes.

Having confirmed the value of genome-lipid associations for lipid mass spectral data 

annotation, we built an interactive, query-able resource - LipidGenie. Using the lipid query 

function, we demonstrated LipidGenie’s ability to facilitate lipid identification and in one 

instance revealed a potentially new sub-class of PC lipids (PC-estolides). Beyond assisting 

lipid identification, LipidGenie can provide evidence for gene function, and when queried 

for either lipid ID or gene ID, LipidGenie revealed acyl-chain specificity for ABHD1 and 

ABHD2, respectively. We confirmed the putative phospholipase function of ABHD1 in cells 

overexpressing the mouse protein while comparing to ABHD3.

We envision the genome-lipid associations contained within LipidGenie to be a valuable 

resource for researchers across multiple fields. We anticipate it will be immediately useful 

for directed analysis of key unidentified features in exploratory lipidomics analyses and lead 

to recovery of more data for biological studies. A limitation of the approach is that lipid 

identification remains a manual process and this tool does not remove the requirement for 
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expert knowledge and care in spectral interpretation for its use. With all this said, we hope it 

will garner excitement for potentially novel genetic regulation of lipid metabolism. Finally, 

through integration with other large data resources, e.g., protein-protein interactions, 

pathway tools, tissue-specific QTL, GWAS data, etc., these genome-lipid associations will 

allow more global integration of lipid data into current knowledge bases. Especially the 

integration with human loci will allow for cross-validation to inform human health and 

disease.70,71

Methods

Animal Husbandry and Sample Collection.

All experiments involving mice were preapproved by an AAALAC-accredited Institutional 

Animal Care and Use Committee of the College of Agricultural Life Sciences (CALS) at the 

University of Wisconsin-Madison. The CALS Animal Care and Use Protocol number 

associated with the study is A005821, A.D. Attie, Principal Investigator. Equal numbers of 

male and female Diversity Outbred (DO) mice and the eight founder strains (C57BL/6J 

(B6), A/J, 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), PWK/PhJ (PWK), 

WSB/EiJ (WSB), and CAST/EiJ (CAST)) were all obtained from the Jackson Labs and have 

been previously described.32,33,72 Briefly, all mice were housed within the vivarium at the 

Biochemistry Department, University of Wisconsin-Madison, and maintained on a Western-

style high-fat/high-sucrose (HF/HS) diet (44.6% kcal fat, 34% carbohydrate and 17.3% 

protein) from Envigo Teklad (TD.08811) for 16 weeks. All mice were maintained in a 

temperature and humidity-controlled room on a 12 hr light/dark cycle (lights on at 6AM and 

off at 6PM), and provided water ad libitum. At ~22 weeks of age, mice were sacrificed 

following a 4 hr fast. Plasma and liver were collected from each mouse and flash frozen in 

liquid nitrogen. One sample from each tissue per mouse was used for lipidomic analyses.

Mouse Genotyping and Haplotype Reconstruction.

We collected tail biopsies for DNA extraction28 at 4 to 6 weeks of age when animals arrived 

at the University of Wisconsin and were assigned to single-housed pens. We shipped DNA 

to Neogen (Lincoln, NE) for genotyping using the Mouse Universal Genotyping Array 

(GigaMUGA; 143,259 markers). Genotype calls were subject to quality control as described 

in Broman et al.73 Genotypes were used to reconstruct the 8-founder haplotype mosaic of 

each DO mouse using the hidden Markov model in the R/qtl2 software package.27,32 The 

haplotype-reconstruction uses information at each genetic markers and its neighbors to 

assign an eight-state haplotype probability that accounts for both heterozygosity and 

uncertainty in haplotype assignments.26 We interpolated the founder haplotype probabilities 

onto an evenly spaced grid of 69,005 pseudo-markers for mapping analysis. Sample mix-ups 

(one pair of samples) were resolved using islet gene expression data as described in Keller et 

al. 2018.74

Plasmids and Cell Culture Expression.

Mouse Abhd1 (CMV6 promoter, Myc-DDK-tagged, MR206471) and mouse Abhd3 (CMV6 

promoter, Myc-DDK-tagged, MR206458) plasmids were obtained from Origene. 

Manufacturer’s sequencing primers were used to confirm plasmid insert. His-tagged CMV6-
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GFP plasmid was a gift from J. Simcox. All plasmids were transformed into E. coli 

(ThermoFisher Scientific, 18258012). Plasmids were maxiprepped according to 

manufacturer’s instructions (Qiagen, 12362).

5x105 Hepa1-6 cells (ATCC® CRL-1830) were seeded in 6-well plates with DMEM 

(ThermoFisher Scientific, 12100061). After 16 hours, cells were reconditioned with fresh 

media for 2 hours. Cells were transfected in triplicate with Lipofectamine2000 

(ThermoFisher Scientific, 11668019) according to manufacturer’s instructions. Transfection 

efficiency was confirmed by visualizing GFP. After 24 hours, media was replaced. 48 hours 

after transfection, cells were washed in cold 1X PBS and scraped to be released from the 

plate. Released cells were pelleted by centrifugation and snap-frozen in liquid nitrogen. The 

frozen cell pellets were stored at −80 °C until lysis. Hepa1-6 cells were a gift from J. 

Simcox.

For Western Blots, cell pellets were lysed in 2x SDS-PAGE loading buffer and boiled at 95C 

for 5 min. Samples were run on a 10% SDS-PAGE gel for 1.5 h at 120V, standard is 

Precision Plus Dual Color Protein Standards (Bio-Rad, 1610394). Samples were wet-

transferred onto PVDF membrane (Bio-Rad, 1620177) for 1.5 h at 100 V. Following 

transfer, membrane was blocked in 5% milk in TBST for 1 h at room temperature. 

Membrane was incubated overnight at 4C with 1:2000 rabbit anti-MYC antibody (CST, 

2278 clone 71D10) in blocking buffer. Primary antibody was removed by washing 3X with 

1X TBST. Membrane was incubated with 1:2000 goat anti-rabbit-HRP conjugated antibody 

(CST, 7074S) in blocking buffer. Samples were visualized with Clarity Western ECL 

Substrate (Bio-Rad, 1705060) on a ThermoFisher iBright FL1500 Imaging System. 

Uncropped and unprocessed scans are supplied in the Source Data file.

Lipidomics Sample Preparation. Plasma.

40 μL (30 μL for founder strains, FS) of plasma and 10 μL SPLASH Lipidomix internal 

standard mixture (Avanti Polar Lipids, Inc.) were aliquoted into a tube. Protein was 

precipitated by addition of 215 μL MeOH. Control samples comprised an aliquot of mixed 

male and female B6 plasma (Chow diet), extracted with each batch. After the mixture was 

vortexed for 10 s, 750 μL methyl tert-butyl ether (MTBE) were added as extraction solvent 

and the mixture was vortexed for 10 s and mixed on an orbital shaker for 6 min. Phase 

separation was induced by adding 187.5 μL of water followed by 20 s of vortexing. All steps 

were performed at 4 °C on ice. Finally, the mixture was centrifuged for 4 min at 14,000 x g 

at 4 °C and 150 μL of the lipophilic upper layer were transferred to glass vials and dried by 

vacuum centrifuge for 60 min. The dried extracts were re-suspended in 100 μL MeOH/

Toluene (9:1, v/v).

Lipidomics Sample Preparation. Liver.

20 (± 2) mg liver tissue, frozen in liquid nitrogen along with 20 μL SPLASH Lipidomix 

internal standard mixture were aliquoted into a tube with a metal bead and 1150 μL of 

MTBE/MeOH (10:3, v/v) were added for protein precipitation. Control samples for DO 

comprised aliquots of sample pooled from FS, extracted with each batch. All steps were 

performed at 4 °C on ice. The mixture was homogenized by bead beating for 4 min at 25 Hz 
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and shaking on an orbital shaker for 6 min. After bead removal, 225 μL of water were added 

to each tube and the mixture was vortexed for 20 s. Finally, the mixture was centrifuged for 

20 min at 13,000 x g at 4 °C after which 200 μL of the lipophilic upper layer were 

transferred to glass vials and dried by vacuum centrifuge for 60 min. The dried lipophilic 

extracts were re-suspended in 100 μL MeOH/Toluene (9:1, v/v).

Lipidomics Sample Preparation. Cells.

Hepa1-6 cells were scraped off of six well plates and transferred to 1.5 ml Eppendorf tubes. 

Cell pellets were kept frozen (less than −20 °C) until extraction. Cells were lysed and 

protein was precipitated by addition of 225 μL MeOH. 750 μL methyl tert-butyl ether 

(MTBE) were added as extraction solvent. The mixture was homogenized by vortexing for 

10 s and shaking on an orbital shaker for 6 min. Phase separation was induced by adding 

187.5 μL of water followed by 20 s of vortexing. All steps were performed at 4 °C on ice. 

Finally, the mixture was centrifuged for 8 min at 14,000 x g at 4 °C and 200 μL of the 

lipophilic upper layer were transferred to glass vials and dried by vacuum centrifuge for 60+ 

min. The dried extracts were re-suspended in 100 μL MeOH/Toluene (9:1, v/v).

LC-MS/MS.

Sample analysis by LC-MS/MS, running data-dependent acquisition (DDA) with dynamic 

exclusion and polarity switching, was performed in randomized order on an Acquity CSH 

C18 column held at 50 °C (2.1 mm x 100 mm x 1.7 μm particle diameter; Waters) using an 

Ultimate 3000 RSLC Binary Pump (400 μL/min flow rate; Thermo Scientific) for plasma, 

while for the liver and cell samples a Vanquish Binary Pump (400 μL/min flow rate; Thermo 

Scientific) was used. Mobile phase A consisted of 10 mM ammonium acetate in ACN/H2O 

(70:30, v/v) containing 250 μL/L acetic acid. Mobile phase B consisted of 10 mM 

ammonium acetate in IPA/ACN (90:10, v/v) with the same additives. Mobile phase B was 

initially held at 2% for 2 min and then increased to 30% over 3 min. Mobile phase B was 

further increased to 50% over 1 min and 85% over 14 min and then raised to 95% over 1 

min and held for 7 min. The column was re-equilibrated for 2 min before the next injection.

Plasma.

Ten microliters of lipid extract were injected through SII for Xcalibur by an Ultimate 3000 

RSLC autosampler (Thermo Scientific). The LC system was coupled to a Q Exactive Focus 

mass spectrometer run by Tune software version 2.5.0.2042 (Thermo Scientific) by a HESI 

II heated ESI source kept at 300 °C (Thermo Scientific). The inlet capillary was kept at 300 

°C, sheath gas was set to 25 units, auxiliary gas to 10 units, and the spray voltage was set to 

5,000 V (+) and 4,000 V (−), respectively. The MS was operated in polarity switching mode 

acquiring positive and negative mode MS1 and MS2 spectra (Top2) during the same 

separation. MS acquisition parameters were 17,500 resolving power, 1 × 106 automatic gain 

control (AGC) target for MS1 and 1 × 105 AGC target for MS2 scans, 100-ms MS1 and 50-

ms MS2 ion accumulation time, 200- to 1,600-Th MS1 and 200- to 2,000-Th MS2 scan 

range, 1-Th isolation width for fragmentation, stepped HCD collision energy (20, 30, 40 

units), 1.0% under fill ratio, and 10-s dynamic exclusion.
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Liver.

One microliter of lipid extract was injected through SII for Xcalibur (Thermo Scientific) by 

a Vanquish Split Sampler HT autosampler (Thermo Scientific). The LC system was coupled 

to a Q Exactive HF mass spectrometer run by Tune software version 2.8.0.2688 (Thermo 

Scientific) by a HESI II heated ESI source kept at 300 °C (Thermo Scientific). The inlet 

capillary was kept at 300 °C, sheath gas was set to 25 units, auxiliary gas to 10 units, and the 

spray voltage was set to 4,000 V (+) and 3,500 V (−), respectively. The MS was operated in 

polarity switching dd-MS2 mode acquiring positive and negative mode MS1 and MS2 

spectra (Top2 for positive, Top3 for negative mode) during the same separation. MS 

acquisition parameters were 60,000 resolution and 3 × 106 automatic gain control (AGC) 

target for MS1 and 15,000 resolution and 5 × 105 AGC target for MS2 scans, 100-ms MS1 

and 35-ms MS2 ion accumulation time, 240 to 1,200-Th MS1 scan range for positive and to 

1,600-Th for negative mode, and 200- to 2,000-Th MS2 scan range, 1.4-Th isolation width 

for fragmentation, stepped HCD collision energy (20, 25 units for positive, 20,30 units for 

negative mode), and 10-s dynamic exclusion.

Cells.

Ten microliters of lipid extract were injected through SII for Xcalibur (Thermo Scientific) by 

a Vanquish Split Sampler HT autosampler (Thermo Scientific). The LC system was coupled 

to a Q Exactive HF mass spectrometer run by Tune software version 2.9.3.2948 (Thermo 

Scientific) by a HESI II heated ESI source kept at 300 °C (Thermo Scientific). The inlet 

capillary was kept at 300 °C, sheath gas was set to 25 units, auxiliary gas to 10 units, and the 

spray voltage was set to 4,000 V (+) and 3,500 V (−), respectively. The MS was operated in 

polarity switching mode acquiring positive and negative mode MS1 and MS2 spectra (Top2) 

during the same separation. MS acquisition parameters were 30,000 resolving power, 1 × 

106 automatic gain control (AGC) target for MS1 and 1 × 105 AGC target for MS2 scans, 

100-ms MS1 and 50-ms MS2 ion accumulation time, 200- to 1,600-Th MS1 scan range, 1-

Th isolation width for fragmentation, stepped HCD collision energy (20, 30, 40 units), 1.0% 

under fill ratio, and 10-s dynamic exclusion.

Lipidomics Data Analysis.

The resulting LC-MS lipidomics raw files were converted to mgf files via MSConvertGUI 

(ProteoWizard, Dr. Parag Mallick, Stanford University75) and processed using Compound 

Discoverer 2.0 (Thermo Fisher Scientific) and an in-house developed open-source software 

suite, LipiDex16. Briefly, these software tools use area under the peak intensity calculations 

to generate relative quantitation of each spectral feature as is typical for metabolomic 

analyses. All raw files were loaded into Compound Discoverer with blanks marked as such 

to generate two result files using the following Workflow Processing Nodes: Input Files, 

Select Spectra, Align Retention Times, Detect Unknown Compounds, Group Unknown 

Compounds, Fill Gaps and Mark Background Compounds for the so called “Aligned” result 

and solely Input Files, Select Spectra, and Detect Unknown Compounds for an “Unaligned” 

Result. Under Select Spectra, the retention time limits were set between 0.4 and 21 min, MS 

order as well as unrecognized MS order replacements were set to MS1. Under Align 

Retention Times the mass tolerance was set to 10 ppm and the maximum shift according to 
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the dataset to 0.5 min. Under Detect Unknown Compounds, the mass tolerance was also set 

to 10 ppm, with an S/N threshold of 3, and a minimum peak intensity of 5E5 (DO) or 1E5 

(FS, Cells). Further, [M+H]+1 and [M-H]-1 were selected as ions ([M+H]+1 and [M-H

+TFA]-1 for cells) and a maximum peak width of 0.75 min as well as a minimum number of 

scans per peak equaling 5 were set. Lastly, for Group Unknown Compounds as well as Fill 

Gaps, mass tolerance was set to 10 ppm and retention time tolerance to 0.2 minutes. For best 

compound selection rules #1 and #2 were set to unspecified, while MS1 was selected for 

preferred MS order and [M+H]+1 as the preferred ion. For everything else, the default 

settings were used. Resulting peak tables were exported as excel files in three levels of 

Compounds, Compound per File and Features (just Features for the “Unaligned”) and later 

saved as csvs. In LipiDex’ Spectrum Searcher “LipiDex_HCD_Acetate”, 

“LipiDex_HCD_Plants”, “LipiDex_Splash_ISTD_Acetate”, “LipiDex_HCD_ULCFA”, and 

“Ganglioside_20171205” were selected as libraries for the DO while 

“LipidBlast2_Reformatted_CoonLab”, “LB_cleaned” and 

“Lipid_Spectral_Library_20170523” were selected for the FS. For the cells 

“LipiDex_HCD_Acetate”, “LipiDex_HCD_Plants”, “LipiDex_HCD_ULCFA”, “FAHFA”, 

and “Ganglioside_20200206” were selected. Extended Data Figure S7 details the lipid 

classes searched for in these databases with their respective adducts. We further kept the 

defaults of 0.01-Th for MS1 and MS2 search tolerances, a maximum of 1 returned search 

result, and an MS2 low mass cutoff of 61-Th. Under the Peak Finder tab, Compound 

Discoverer was chosen as peak table type, and its “Aligned” and “Unaligned” results, as 

well as the MS/MS results from Spectrum Researcher uploaded. Features had to be 

identified in a minimum of 1 file (4 files for the FS), however, the average lipid ID was 

based on a much higher average of 344 features found in plasma and 310 features in the liver 

dataset. We kept the defaults of a minimum of 75% of lipid spectral purity, an MS2 search 

dot product of at least 500 and reverse dot product of at least 700, as well as a multiplier of 

2.0 (3.0 for FS) for FWHM window, a maximum 15 ppm mass difference, adduct/dimer and 

in-source fragment filtering, and a maximum RT M.A.D Factor of 3.5. As post-processing 

all features that were only found in 1 file and had no ID were deleted, and artifactual 

duplicates deleted.

For the FS liver dataset, peak areas were normalized to the 15:0–18:1(d7)-PC internal 

standard by dividing each peak area by the internal standards’ peak area of that sample and 

multiplying the result with the median of all internal standard peak areas. The quantification 

of the internal standard was obtained through TraceFinder 4.0 (Thermo Fisher Scientific). 

FS plasma results were normalized by dividing each peak area by the feature’s average batch 

control and multiplying with the median feature’s peak area over average batch controls. 

Reported is the log2 of all normalized values. Note that there is no data available for two 

CAST females as one animal died before sacrifice (CAST-4) and for another there was not 

enough plasma (CAST-3). For the cell experiments, peak areas were normalized to the sum 

of identified lipids, and log2-transformed.

QTL Mapping.

Note while the much smaller FS dataset was normalized to the internal PC standard; for the 

entire DO dataset, where many more LC-MS runs were collected, we used a batch correction 
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approach (ComBat) to achieve normalization. In short, the ComBat method provided 

superior performance, especially in the case of the liver dataset. Specifically, the batch 

effects that occurred were easily and effectively corrected by application of the ComBat 

adjustment.

Prior to mapping analysis, the lipid metabolite data were adjusted for batch effects using the 

Combat algorithm76 as implemented in the R/sva software package.77 Batches correspond to 

sets of ~32 samples each that were run on the same day on the mass spectrometer. 

Effectiveness of batch correction was confirmed by visualization of the first few principal 

components. We note that batch adjustment substantially increased the yield of QTL, even 

though no genotype information is used in the correction process.

QTL mapping involves “scanning” the genome and testing for association between the 8-

state haplotype probabilities and the batch corrected MS feature levels. The genome scans 

were performed for each lipid metabolite feature using the scan1() function in R/qtl2.23 This 

software fits a linear mixed with sex and DO breeding generation as additive covariates and 

random effect to account for the kinship structure of the DO mice and computes a log10 

likelihood ratio statistic (LOD) to evaluate the significance of the genetic effect at each 

pseudo-marker locus. Sex-specific genetic associations were identified using a separate set 

of genome scans that included a sex x genotype interaction in the linear mixed model. We 

identified suggestive QTL at LOD > 6.0 and significant QTL at LOD > 7.4. These threshold 

values were estimated by permutation analysis to obtain a family-wise error correction for 

genome-wide QTL search.68 The family-wise error rate ensures that the maximum LOD 

score across the genome-wide search when applied to a trait with no QTL (i.e., a permuted 

trait) will exceed the threshold with a fixed probability. For the lenient threshold 6.0, the 

genome-wide probability of false QTL detection is 0.20. For the stringent threshold 7.4, the 

genome-wide error rate is controlled at 0.05. The lenient threshold is used to identify the 

almost-significant associations that co-localize on the genome in hotspots.

Data analysis and plotting.

Data analysis was largely performed using R79 in RStudio80. Data formatting was performed 

utilizing R/dplyr_0.8.381, R/tidyr_1.0.082 and R/reshape2_1.4.383 and visualizations were 

created using R/ggplot2_3.2.184, R/RColorBrewer_1.1–285, and for exploratory analysis, R/

plotly_4.9.086. Heatmaps were generated using R/pheatmap_1.0.1287 and manhattan plots 

were generated based on code accessible via the R graph gallery.88 All boxplots were 

generated by ggplot2:geom_boxplot with the first and third quartiles (25th and 75th 

percentile) for lower and upper hinges, 1.5x interquartile range for the length of the 

whiskers, center line at median (50% quantile), and all raw data points, including outliers 

shown. Statistical t-test calculations were performed with MetaboAnalyst 4.0.89 A 95% 

Bayesian confidence interval (CI) for each QTL was calculated using the function 

find_peaks() in R/qtl2.27 Human Mouse homologues were obtained from the MGI 

homology database (available here: http://www.informatics.jax.org/downloads/reports/

HOM_MouseHumanSequence.rpt).

Allele effects for each QTL were generated using the scan1blup() function of R/qtl2.27 SNP 

associations were performed using the scan1snps() function in R/qtl2_0.2027 accessing 
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variants from the database cc_variants.sqlite (available here: https://

ndownloader.figshare.com/files/18533342) and genes from mouse_genes_mgi.sqlite 

(available here: https://ndownloader.figshare.com/files/17609252) via R/RSQLite_2.1.2.90

To nominate candidate gene drivers at lipid-associated QTL, we integrated the lipid data 

collected in the present study, with hepatic gene expression data previously obtained from a 

separate cohort of DO mice.34 We reasoned a locus that demonstrated a hepatic cis-eQTL 

and a lipid-associated QTL with a similar allele effect patterns is likely to be driving the two 

phenotypes. We focused on cis-eQTL, as these are expression traits responding to local 

genetic variation. We computed the Pearson’s correlation between the allele effect patterns 

for all cis-eQTL at a locus to which one or more lipids co-mapped. We performed the same 

calculation for hepatic cis-pQTL identified in the previous study.34 For example, at the Chr 

10 locus, we identified >25 QTL of unknown lipids in plasma and liver, all of which showed 

a strong NOD-driven allele effect pattern. About half of these QTL showed NOD as the high 

allele and half showed NOD as the low allele. We first computed the average allele effect 

pattern for the NOD-high lipids and the NOD-low lipids. We then identified 55 cis-eQTL 

and 16 cis-pQTL that were within ±2 Mbp of the lipid QTL at ~127 Mbp on Chr 10, and 

calculated the correlation between their allele effect patterns and the NOD-high and NOD-

low lipid QTL. One gene showed a very strong correlation; B4galnt1. The overall correlation 

between the allele effects of the lipid QTL and the cis-eQTL or cis-pQTL was very low 

(e.g., 0), suggesting that the vast majority expression traits are responding to genetic variants 

different than the lipid traits. However, the correlation between the lipid traits and either the 

expression or protein level for B4galnt1 was >|0.97|. As B4galnt1 is a known gangliosidase, 

we then asked if the MS fragmentation pattern for the unknown lipids is consistent with 

gangliosides. It is worth noting that GM3 ganglioside standard (Cayman Chemicals, Ann 

Arbor, MI, Item No. 15587) contained N-acetyl-neuraminidate (NANA) - the only sialic acid 

made by humans. All gangliosides observed in the DO samples contain N-glycolyl-

neuraminidate (NGNA), a major sialic acid in mice.91,92 This powerful approach enabled us 

to combine the lipid data from one DO study with the gene expression and proteomic data of 

another DO study to nominate one candidate gene.

Reporting summary.

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Data Availability.

Genotypes and additional phenotype data associated with the DO mouse population have 

been deposited with Dryad (doi:10.5061/dryad.pj105; data files: Attie Islet eQTL data) (see 

Keller et al. 2018 for details).32 In addition, the data reported here are available for 

download and interactive web-based analysis at https://churchilllab.jax.org/qtlviewer/attie/

islets. Genotyping used the Mouse Universal Genotyping Array (GigaMUGA; 143,259 

markers).

Mass spectrometry data have been deposited in Chorus (http://chorusproject.org/) under ID 

1610 (direct links to cell experiments https://chorusproject.org/anonymous/download/
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experiment/4984245205453479277, DO liver https://chorusproject.org/anonymous/

download/experiment/a639bcc5602c441c9a1df94f4340d626, DO plasma https://

chorusproject.org/anonymous/download/experiment/f8b273d222364f2a9d92cfdd0eb601b6, 

FS liver https://chorusproject.org/anonymous/download/experiment/

c930cd419eb34dfebda7f53508c6969e, and FS plasma https://chorusproject.org/anonymous/

download/experiment/9d4d025df0114687924d4075f3c927ca). Human Mouse homologues 

were obtained from the MGI homology database (available here: http://

www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt). SNP 

associations were performed accessing variants from the database cc_variants.sqlite 

(available here: https://ndownloader.figshare.com/files/18533342) and genes from 

mouse_genes_mgi.sqlite (available here: https://ndownloader.figshare.com/files/

17609252).Figures 1, 2, 3, 4, 5 and Extended Data Figures S1, S2, S3, S4, S5 and S6 have 

associated raw data.

Code Availability.

The data preparation and QTL mapping analysis are reproducibly documented in UNIX 

shell and R scripts posted on github (https://github.com/dmgatti/AttieMetabolomics). Code 

for data analysis and plotting is available at https://github.com/vanilink/DOLipids/ with 

input from Supplementary Tables 8 and 9. The genome-lipid associations are also accessible 

through an interactive web-based analysis tool that will allow users to replicate the analyses 

reported here (http://lipidgenie.com/). The source code for this resource can be found at 

https://github.com/coongroup/LipidGenie.
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Extended Data

Extended Data Fig. 1. Identified lipids and unidentified features occupy characteristic regions in 
the m/z vs. RT space
a, In plasma, we quantified 1,721 lipidomic features, 621 of which were identified, and b, In 

liver, we quantified 1,562 lipidomic features, 615 of which were identified. Abbreviations: 

m/z (mass-to-charge), RT (retention time).
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Extended Data Fig. 2. Lipid profiling and subsequent QTL mapping reveals clusters of 
associated lipids
a, Lipid class distribution of all 1,721 plasma and b, 1,562 liver lipidomic features. c, 1,405 

plasma and d, 1,190 lipid features showed at least one QTL with an LOD > 6 as displayed in 

a Manhattan plot (n = 3,353 and 2,269 total QTL, respectively). Hierarchical clustering of 

these features against the 69,005 markers on the mouse genome, resulted in clustering of 

lipid class based on hotspots at the genetic level. Abbreviations: Chr (chromosome), DO 

(diversity outbred), QTL (quantitative trait loci), LOD (logarithm of odds).
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Extended Data Fig. 3. Apoa2 as the candidate gene at the largest lipid hotspot
a, 255 plasma (black) features mapping to the apoa2 locus on chromosome 1 share an allele 

effect pattern with upregulation in the 129 allele, while 2 mapping liver features (white) do 

not share the pattern (based on hierarchical clustering on allele effects, with a Euclidean 

distance cutoff of h = 1.5). b, The allele effect is exemplary replicated in an independent 

experiment of founder strain plasma CE(18:2) levels (n = 4 for each sex and strain, boxplots 

are defined with the first and third quartiles (25th and 75th percentile) for lower and upper 

hinges, 1.5x interquartile range for the length of the whiskers, center line at median (50% 

quantile)). c, The same pattern was not visible in previously reported34 Apoa2 liver protein 

and RNA allele effects. Abbreviations: CE (cholesteryl ester), FS (founder strain).
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Extended Data Fig. 4. B4galnt1 as the candidate gene at the hotspot with the largest LOD
a, The selection of B4galnt1 as the candidate gene for the chromosome 10:127 Mbp locus 

was corroborated by NOD-specific allele effects in previously reported liver eQTL and b, 

pQTL.34 c, The allele effect patterns of the later as gangliosides identified features mapping 

to the B4galnt1 locus could further be validated in an independent experiment of founder 

strain mice (exemplar GM3 pattern, n = 4 for each sex and strain, boxplots are defined with 

the first and third quartiles (25th and 75th percentile) for lower and upper hinges, 1.5x 
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interquartile range for the length of the whiskers, center line at median (50% quantile)). 

Abbreviations: FS (founder strain), Mbp (megabase pair).

Extended Data Fig. 5. Allele effects characterize genome-lipid hotspots
a, Hierarchical clustering of allele effects at Chr 6:91 Mbp resulted in 21 features with 

matching A/J down effect (main cluster featuring the six B6 male specific features (red) after 

row-scaling and Ward clustering, cutoff at h=5). b, Consistently, the pattern of male >> 

female was observed for each of the FS except for A/J as visible in the example for m/z 
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1130 (n = 4 for each sex and strain, boxplots are defined with the first and third quartiles 

(25th and 75th percentile) for lower and upper hinges, 1.5x interquartile range for the length 

of the whiskers, center line at median (50% quantile).) c, Hierarchical clustering of allele 

effects at Chr 5:31 Mbp locus resulted in 10 features with matching B6 and NZO up effect 

(main cluster featuring LysoPC 14:0 (turquoise) after row-scaling and Ward clustering, 

cutoff at h=8). d, This pattern could be replicated in the FS (n = 4 for each sex and strain, 

boxplots are defined with the first and third quartiles (25th and 75th percentile) for lower 

and upper hinges, 1.5x interquartile range for the length of the whiskers, center line at 

median (50% quantile)), as shown for LysoPC 14:0, as well as e, in opposite directionality in 

a liver eQTL.34 f, Hierarchical clustering of allele effects at Chr 7:79 Mbp locus resulted in 

8 features with matching WSB down effect (main cluster featuring PUFA-containing 

phospholipids (turquoise) after row-scaling and Ward clustering, cutoff at h=2.5). g, The 

mapping phospholipids contained polyunsaturated fatty acids such as 20:4 and 22:6. h-i, 

Abhd2 liver RNA and protein allele effects34 matched with an opposite WSB high effect. 

Abbreviations: DO (diversity outbred), FS (founder strain), Chr (chromosome), Mbp 

(megabase pair), PC (phosphatidylcholine), PUFA (polyunsaturated fatty acid).
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Extended Data Fig. 6. Overexpressing ABHD1 and ABHD3 results in distinct phospholipid 
signature
a, Experimental design of the validation experiment featuring three technical and four 

biological replicates of Hepa1-6 cells either untransfected (CTL), transfected with a His-tag 

GFP control (GFP), or transfected with MYC-tagged ABHD1 or ABHD3. b, Western blot of 

Hepa1-6 overexpression of ABHD1 and ABHD3. Shown is an overlay of membrane and 

ECL blot for MYC-tag. c, Heatmap of top 49 features from discovery lipidomics experiment 

with p < 0.05 (ANOVA, Fisher’s LSD post-hoc). Features were sum-normalized and log2-

transformed. Hierarchical clustering (Ward clustering, Euclidean distance) shows two 
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clusters with opposite fold changes distinguishing between ABHD1 and ABHD3 and the 

GFP control.

Extended Data Fig. 7. Lipid class abbreviations and identifications with respective adduct types
As searched for in LipiDex databases (see Methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LC-MS/MSL lipidomics and QTL mapping as ways to lipid identification.
a, A modified MTBE lipid extraction40 was performed on plasma and liver from 64 FS and 

384 DO mice. b-d, Lipid extracts were analyzed by LC-MS/MS. Identifications were 

obtained through LipiDex16 based on retention time window (b), exact mass (c), retention 

time window and tandem mass fragmentation (d). e, Quantitative values over large dynamic 

ranges for both identified and unidentified features were obtained. f, All lipidomic features 

(identified and unidentified) were then mapped onto the mouse genome via QTL mapping, 

revealing genomic position and founder strain allele effect pattern as results for each QTL. 
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This additional information enabled identification of otherwise unidentified features. 

Abbreviations: MTBE (methyl-tert-butyl ether), FS (founder strains), DO (diversity 

outbred), LC-MS/MS (liquid chromatography - tandem mass spectrometry), QTL 

(quantitative trait loci), m/z (mass-to-charge), RT (retention time), LOD (logarithm of odds).

Linke et al. Page 32

Nat Metab. Author manuscript; available in PMC 2021 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Large scale lipid quantitative profiling and subsequent QTL mapping reveals hotspots 
of associated lipids.
a, In plasma, we quantified 1,721 lipidomic features, 621 of which were identified, and in 

liver, we quantified 1,562 lipidomic features, 615 of which were identified. Hierarchical 

clustering of all 3,283 lipidomic features’ intensities by the 384 DO mice resulted in distinct 

clustering by lipid class, notably across tissue type. b, When mapped onto the mouse 

genome, 1,405 plasma and 1,190 liver features showed at least one QTL with an LOD > 6 as 

displayed in a Manhattan plot (n = 3,353 + 2,269 = 5,622 total QTL). A number of lipid 

hotspots are shared by identified lipids and unidentified features (e. g. at Apoa2), while 
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others only appear among the unidentified features (e. g. at B4galnt1). Abbreviations: 

MTBE (methyl-tert-butyl ether), Chr (chromosome), DO (diversity outbred), ESI 

(electrospray ionization), LC-MS/MS (liquid chromatography - tandem mass spectrometry), 

QTL (quantitative trait loci), m/z (mass-to-charge), RT (retention time), LOD (logarithm of 

odds).

Linke et al. Page 34

Nat Metab. Author manuscript; available in PMC 2021 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Co-mapping of lipids at the Apoa2 locus facilitated identification of additional 
cholesteryl esters.
a, One lipid hotspot on chromosome 1 at 171 Mbp is shared by 255 plasma lipid features co-

mapping with a common 129 high allele effect (Extended Data Figure S3a). b, The 

candidate gene at this locus is Apoa2, which encodes for apolipoprotein II, which is carried 

on HDL cholesterol particles along with c, a variety of lipid classes, mostly phospho- and 

sphingolipids, which mapped to the locus. d, When plotting all 255 Apoa2-specific lipid 

features in the m/z-RT plane, a group of unidentified features sharing the RT region with 
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CEs stood out. e, Notably, all six CEs show their primary QTL at this locus, as visible from 

their individual LOD plots. f, Subsets of the unidentified features could subsequently be 

identified as CE-related features, including heterodimers, cholesterol-adducts and in-source 

fragments. Abbreviations: HDL (high-density lipoprotein), CE (cholesteryl ester), QTL 

(quantitative trait loci), LOD (logarithm of odds), m/z (mass-to-charge), RT (retention time), 

FA (fatty acid), PC (phosphatidylcholine), PE (phosphatidylethanolamine), PI 

(phosphatidylinositol), SM (sphingomyelin), Cer (ceramide), AC (acylcarnitine), RKMD 

(referenced Kendrick mass defect).49
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Figure 4. Lipid features mapping to B4galnt1 lead to identification of GM2 and GM3 
gangliosides.
a, A hotspot of solely unidentified features with exceptionally strong correlation was 

composed of 11 liver and 15 plasma features mapping to chromosome 10:127 Mbp with b, a 

similar NOD-driver allele pattern (two main clusters from hierarchical clustering, row-

scaled, Euclidean cutoff of h=2.5). Two groups of lipid features (circles vs. triangles) 

emerged as distinct in strength of LOD (a), directionality of allele effect (b), and m/z space 

(c). d, The candidate gene B4galnt1 pointed us to the putative identifications of GM3 
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(circles) and GM2 (triangles) gangliosides, which were confirmed by e, spectral matching 

with a human GM3 standard. f, Secondary QTL for these gangliosides, as exemplary shown 

for GM2 d18:1_22:0, mapped to eight additional candidate genes within 4 Mbp of the 15 

total ganglioside hotpots that were previously linked to ganglioside metabolism. g, The 

various candidate genes influencing GM3 and GM2 levels span well-known enzymes (e. g. 

B3galt4) but also include indirect affectors including Cog2 and Slc9a6. Abbreviations: NOD 

(non-obese diabetic mouse strain NOD/ShiLtJ), Mbp (megabase pair), LOD (logarithm of 

odds), QTL (quantitative trait loci), Chr (chromosome), m/z (mass-to-charge), RT (retention 

time), Glc (glucose), GalNAc (N-acetylgalactosamine), Gal (galactose), SM 

(sphingomyelin), Cer (ceramide), NGNA (N-glycolylneuraminic acid), NANA (N-

acetylneuraminic acid).
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Figure 5. Web resource LipidGenie guides exploration of genome-lipid connections.
a, We quantified 2,558 features in B6 plasma (n=4 for each sex). 254 features were sex-

specific (FC > 1.0, p < 0.05, non-paired, two-sided Student’s t-test). Precursor m/z (±10 

ppm) matching to our DO database provided genetic information for ⅓ of the otherwise 

unidentified features. b, Six male-specific unidentified features (red) share a QTL on Chr 

6:91 Mbp with a common A/J down effect (Extended Data Figure S5a). c, The features 

further clustered in m/z-RT space. d-g, Targeted fragmentation spectra (exemplary spectra 

for two species ([M+H]+ m/z 1156 and 1158) in positive (MS2) and negative (MS2 and 
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MS3) mode) exhibited signals consistent with a lipid class built of a PC headgroup and three 

FAs. h, The DO database further confirmed LysoPC 14:0 mapping to Abhd160 with j, an 

enrichment of FA 14:0 containing lipids k, We compare Hepa1-6 overexpressing ABHD1 

and ABHD3 versus a control overexpressing GFP (n=12 for each, 4 biological x 3 technical 

replicates, boxplots are defined with first and third quartiles for lower and upper hinges, 1.5x 

interquartile range for the length of the whiskers, center line at median). The boxplots show 

absolute FC of each mutant over GFP by lipid class; the dashed line is at FC=0.4 l, The 

lowest (negative) FC for both is observed for LysoPC 14:0; isomers are summed. m, All 

14:0 containing PCs exhibit a negative FC for ABHD1 and ABHD3 mutants consistently, 

while 18:0 containing species are showing opposing positive FC. Plotted are sum-

normalized, log2-transformed FC means with error bars representing 95% confidence 

interval, significance indicated by * (p < 0.05), ** (p < 0.01), *** (p < 0.001) of non-paired 

two-sided Student’s t-test, equal variance, n=12 for each, details in source data. 

Abbreviations: DO (diversity outbred), FC (fold change), m/z (mass-to-charge), QTL 

(quantitative trait loci), Chr (chromosome), Mbp (megabase pair), SNP (single nucleotide 

polymorphism), PC (phosphatidylcholine), F/M (female-to-male), RT (retention time), FA 

(fatty acid), PE (phosphatidylethanolamine), GFP (green fluorescent protein)
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Table 1.

Breakdown of lipid identifications in plasma and liver samples by one of 31 classes. “Molecular Level” refers 

to lipids identified with individual fatty acid rather than as a sum composition.

Plasma Liver

Lipid 
Category

Lipid Class Abbreviation(s) Count % of 
IDd

Molecular 
Level

% of 
Class

Count % of 
IDd

Molecular 
Level

% of 
Class

Fatty Acyl 29 4.6% 29 100.0% 37 5.9% 37 100.0%

Acyl Carnitine AC 2 0.3% 2 100.0% 6 1.0% 6 100.0%

Fatty Acid* FA 27 4.3% 27 100.0% 31 5.0% 31 100.0%

Glycerolipid 210 33.1% 165 78.6% 185 29.7% 111 60.0%

Diglyceride DG, Alkenyl-
DG

2 0.3% 2 100.0% 17 2.7% 15 88.2%

Triglyceride TG, Alkanyl-
TG, Alkenyl-
TG

208 32.8% 163 78.4% 168 27.0% 96 57.1%

Phospholipid 287 45.3% 194 67.6% 303 48.6% 238 78.5%

Cardiolipin CL 0 0.0% 9 1.4% 8 88.9%

Lyso-Phosphocholine Lyso-PC 27 4.3% 27 100.0% 18 2.9% 18 100.0%

Lyso-
Phosphoethanolamine

Lyso-PE 5 0.8% 5 100.0% 10 1.6% 10 100.0%

Lyso-Phosphoinositol Lyso-PI 1 0.2% 1 100.0% 3 0.5% 3 100.0%

Phosphocholine PC 129 20.3% 69 53.5% 88 14.1% 62 70.5%

Phosphoethanolamine PE, PE-NMe2 24 3.8% 22 91.7% 80 12.8% 57 71.3%

Phosphoglycerol PG 2 0.3% 2 100.0% 26 4.2% 26 100.0%

Phosphoinositol PI 23 3.6% 19 82.6% 23 3.7% 21 91.3%

Plasmalogen Plasmanyl-PC, 
Plasmenyl-PE, 
Plasmanyl-PE, 
Plasmenyl-PC

76 12.0% 49 64.5% 46 7.4% 33 71.7%

Sphingolipid 102 16.1% 41 40.2% 96 15.4% 46 47.9%

Ceramide Cer[NS], 
HexCer[NS], 
HexCer[AP], 
Cer[NP], 
Cer[AS], 
Cer[AP]

40 6.3% 34 85.0% 58 9.3% 39 67.2%

Ganglioside* GM2/GM3 13 2.1% 7 53.8% 8 1.3% 6 75.0%

Sphingomyelin SM 49 7.7% 0 0.0% 29 4.7% 0 0.0%

Sphingosine SP 0 0.0% 1 0.2% 1 100.0%

Sterol Lipid 6 0.9% 6 100.0% 2 0.3% 2 100.0%

Cholesteryl Ester CE 6 0.9% 6 100.0% 2 0.3% 2 100.0%

* hand-identified Count % of 
Total

Molecular 
Level

% of 
IDd

Count % of 
Total

Molecular 
Level

% of 
IDd

Identified 634 36.8% 435 68.6% 623 39.9% 434 69.7%

Unidentified 1087 63.2% 939 60.1%

Total 1721 100.0% 1562 100.0%

Nat Metab. Author manuscript; available in PMC 2021 March 21.


	Abstract
	Results
	QTL mapping connects lipids to their genetic regulators
	QTL map recapitulates APOA2 biology and informs cholesteryl ester lipid identifications
	QTL map provides an orthogonal tool for lipid identification
	LipidGenie identifies candidate genetic regulators for lipid features

	Discussion
	Methods
	Animal Husbandry and Sample Collection.
	Mouse Genotyping and Haplotype Reconstruction.
	Plasmids and Cell Culture Expression.
	Lipidomics Sample Preparation. Plasma.
	Lipidomics Sample Preparation. Liver.
	Lipidomics Sample Preparation. Cells.
	LC-MS/MS.
	Plasma.
	Liver.
	Cells.
	Lipidomics Data Analysis.
	QTL Mapping.
	Data analysis and plotting.
	Reporting summary.
	Data Availability.
	Code Availability.

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

