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Summary

Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors 

(ICI) can produce remarkably durable responses, most patients develop early disease progression. 

Furthermore, initial response assessment by conventional imaging is often unable to identify 

which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-

treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently 

associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in 

identification of patients who will achieve DCB. Integrating these determinants, we developed and 

validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy 

Response Estimation by immune profiling and ctDNA- On-treatment) that robustly predicts which 

patients will achieve DCB with higher accuracy than any individual feature. Taken together, these 

results demonstrate that integrated ctDNA and circulating immune cell profiling can provide 

accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving 

ICI.

Graphical Abstract
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In-brief

Multiparameter noninvasive models that integrate pre-treatment ctDNA and peripheral CD8+ T 

cell features, together with early on-treatment ctDNA dynamics, show promise in predicting 

durable clinical response to immune checkpoint blockade treatment in patients with non-small cell 

lung cancer.
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Introduction

Antibody-based blockade of programmed death 1 and programmed death-ligand 1 (PD-

[L]1) signaling has shown remarkable promise for treatment of advanced non-small lung 

cancer (NSCLC) (Reck et al., 2016; Socinski et al., 2018). Clinical trials combining PD-(L)1 

blockade with cytotoxic therapy or with other immune checkpoint inhibition (ICI) strategies 

have shown higher response rates at the risk of higher toxicity (Gandhi et al., 2018; 

Hellmann et al., 2018). However, only a minority of patients achieve durable benefit from 

ICI and reliable biomarkers that can accurately identify these patients before or early during 

treatment have thus far remained elusive (Camidge et al., 2019). The most heavily studied 

biomarkers for predicting response to PD-(L)1 blockade-based ICI prior to therapy include 

assessment of tumor PD-L1 expression and tumor mutational burden (TMB) (Cristescu et 

al., 2018; Reck et al., 2016). Moreover, PD-L1 has several major shortcomings as a 

predictive biomarker of durable benefit while TMB is continuing to be evaluated clinically 

(Camidge et al., 2019; Cristescu et al., 2018; Rizvi et al., 2018).
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Current practice in the US for front-line therapy of advanced, driver mutation negative 

NSCLC is to treat patients with PD-L1 ≤ 49% (percentage of PD-L1+ tumor cells by 

immunohistochemistry) with concurrent chemotherapy plus pembrolizumab, and those with 

PD-L1 ≥ 50% with pembrolizumab alone or with concurrent chemotherapy (Hanna et al., 

2020). However, a significant subset of patients whose tumors have ≤ 49% PD-L1 staining 

can respond to immunotherapy alone. For example, the KEYNOTE-042 trial which 

compared pembrolizumab versus chemotherapy in advanced non-squamous NSCLC 

demonstrated that pembrolizumab alone had an objective response rate of 16% in patients 

with PD-L1 1–49%, comprising of 32% of all objective responses observed (Mok et al., 

2019). Thus, PD-L1 staining alone is not sufficiently accurate to identify all potential 

responders to PD-(L)1 blockade-based ICI in NSCLC.

In the search for better biomarkers to predict which patients will respond to immunotherapy, 

several groups have recently demonstrated that multivariable models based on molecular 

analyses of tumor biopsy tissue collected prior to treatment can predict response to ICI 

(Anagnostou et al., 2020; Auslander et al., 2018; Cristescu et al., 2018; Jiang et al., 2018). 

Each of these methods achieves modest improvement for predicting benefit (area under the 

curve, [AUC]= 0.7–0.8) over PD-L1 expression (AUC = 0.6–0.7) (Mok et al., 2019) or TMB 

alone (AUC = 0.6–0.7) (Rizvi et al., 2018). Moreover, few studies have applied this type of 

approach to NSCLC. Additionally, the requirement for tumor tissue can be problematic in 

advanced NSCLC, where obtaining sufficient tissue for molecular analysis is not possible in 

a substantial subset of patients (Green et al., 2014; Lim et al., 2015). Reliance on single 

biopsy specimens also risks confounding of biomarker results due to intra-tumoral 

heterogeneity or low tumor content, leading to lower than desired inter-observer 

concordance (Camidge et al., 2019).

A separate approach for predicting ultimate clinical benefit of ICI would be early response 

assessment. Clinically, response is currently evaluated by conventional imaging, usually 

performed six to twelve weeks after treatment start. To assess how accurately the first on-

treatment imaging study identifies which patients ultimately achieve long-lasting clinical 

benefit from ICI, we analyzed response data from 273 NSCLC patients receiving PD-(L)1-

based ICI (αPD-(L)1, 75%; αPD-1+chemotherapy, 13%; αPD-(L)1+αCTLA-4, 12%). 

Strikingly, we found that among patients achieving stable disease (SD, n = 112) at the first 

scan, about half (51%; n=57) did not ultimately achieve durable clinical benefit (DCB), 

defined as progression-free survival (PFS) of at least 6 months (Fig. 1A) (Rizvi et al., 2015). 

We observed similar ultimate outcomes after initial stable scans irrespective of PD-(L)1 

blockade-based therapy regimen (Fig. S1A). Further, 39% of patients (35/90) who achieved 

SD as best overall response ultimately experienced DCB, suggesting objective responses 

assessed by imaging are not fully capturing patients that are benefitting. Therefore, there is 

considerable unmet need for early response assessment methods that more accurately 

identify who will achieve DCB or NDB.

One such potential approach, is comparison of circulating tumor DNA (ctDNA) levels 

before and after the start of treatment to assess treatment response. Indeed, several recent 

publications have demonstrated that ctDNA changes 4–8 weeks after therapy initiation can 

classify response to ICI in NSCLC with modest accuracy (AUC = 0.65–0.75) (Anagnostou 
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et al., 2019; Goldberg et al., 2018; Raja et al., 2018). Each of these studies used a different 

ctDNA change threshold and timepoint to assess molecular responses, leaving questions 

about the optimal approach. Furthermore, even earlier classification of ultimate clinical 

benefit is desirable to improve personalized medicine approaches.

We therefore set out to develop a noninvasive approach for early identification of which 

advanced NSCLC patients will achieve DCB upon treatment with PD-(L)1 blockade-based 

ICI. We hypothesized that both tumor and immune factors can contribute to PD-(L)1 

blockade-based ICI outcome prediction and can be measured noninvasively. Specifically, we 

integrated ctDNA profiling, which measures tumor properties, and analysis of circulating 

immune cells, which reflect the immune milieu, using pre- and early on-treatment blood 

samples. To combine these factors into a single biomarker, we applied a Bayesian 

framework for integrating diverse risk predictors that we recently demonstrated has 

significant advantages compare to Cox models for time-dependent biomarker development 

(Kurtz et al., 2019). Using a discovery and validation approach we demonstrate that 

integration of tumor-intrinsic and -extrinsic features assessable from noninvasive blood 

draws can robustly identify which NSCLC patients will achieve durable clinical benefit from 

ICI.

Results

Assembly of patient cohorts

To develop a multiparameter biomarker for predicting clinical benefit from ICIs in NSCLC, 

we assembled a cohort of 99 advanced NSCLC patients that received PD-(L)1 blockade-

based ICI. Tumors were characterized for PD-L1 expression and we analyzed ctDNA in pre-

treatment plasma specimens using CAPP-Seq (Fig. 1B, Tables S1–2) (Chabon et al., 2020; 

Newman et al., 2014, 2016). We performed CAPP-Seq on both cell-free DNA from plasma 

and cellular DNA from leukocytes to enable censoring of clonal hematopoiesis variants (see 

STAR Methods). To investigate the ability of circulating leukocyte profiles to predict ICI 

response, we also profiled available pre-treatment blood specimens for leukocyte immune 

composition using CIBERSORT (Newman et al., 2015, 2019), flow cytometry, or both. 

Lastly, we performed CAPP-Seq ctDNA analysis on early on-treatment plasma samples to 

allow incorporation of ctDNA responses. Of the 99 patients, 94 had detectable pre-treatment 

ctDNA by CAPP-Seq (95%, Tables S3–4). These 94 patients were split into 3 groups for 

downstream analyses: 1) 22 patients who did not have early on-treatment plasma samples or 

material for immune profiling available and were therefore only informative as part of 

feature-discovery analyses, 2) 34 patients that had all necessary samples (pre-treatment 

plasma, pre-treatment leukocytes, and early on-treatment plasma) and were used to train the 

multiparameter model (“DIREct Discovery Cohort”), and 3) 38 patients that had all 

necessary samples and constituted the DIREct Validation Cohort. The latter were held out 

from all analyses until utilized for validation of findings from (1) and (2) (Fig. S1B).

Pre-treatment ctDNA features are associated with durable clinical benefit from ICI.

Responses induced by ICI and their durability are known to be influenced both by the 

burden of mutations as neoantigenic substrates for immune recognition as captured by TMB 
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(Mandal et al., 2019; Rizvi et al., 2015; Snyder et al., 2014) and by the total anatomic 

disease burden (Ito et al., 2019; Kaira et al., 2017). Prior studies have demonstrated that 

tissue-based TMB can be noninvasively estimated from ctDNA using sequencing panels of 

various sizes, as might be useful for predicting response to ICI (Chaudhuri et al., 2017; 

Gandara et al., 2018; Wang et al., 2019). To explore this further, we began by analyzing data 

from a recently published study of 853 advanced NSCLC patients treated with either the PD-

L1 inhibitor atezolizumab (POPLAR/OAK ICI Cohort, n = 429) or chemotherapy 

(POPLAR/OAK Chemo Cohort, n = 424), and examined whether ctDNA metrics and PD-L1 

expression could accurately classify DCB versus NDB (Fig. S1C) (Gandara et al., 2018). 

While high bTMB (≥14 mutations per megabase) was significantly associated with durable 

benefit from ICI, we found the strength of this association to be modest (Fig. 2A, 2D). 

Separately, we reasoned that pre-treatment ctDNA concentration may be associated with 

treatment benefit since it is a surrogate for total body disease burden (Chaudhuri et al., 2017; 

Ito et al., 2019). Indeed, patients ultimately achieving DCB had significantly lower ctDNA 

levels prior to ICI therapy (Fig. 2B, 2D). Furthermore, since these two blood-based 

measurements had reciprocal associations with DCB, we used their ratio to integrate them as 

ctDNA-normalized bTMB (normalized bTMB). Patients achieving DCB from ICI had 

significantly higher normalized bTMB (Fig. 2C–D). Accordingly, ICI-treated patients with 

higher normalized bTMB had significantly better ultimate clinical outcomes (Fig. 2E, P = 

0.001, PFS HR = 1.46). Moreover, when comparing hazard ratios of normalized bTMB to 

either bTMB or ctDNA alone, we find that normalized bTMB is superior to both individual 

metrics in ICI-treated patients (Fig. S2C).

To assess if normalized bTMB was predictive of durable benefit specifically for ICI, we 

separately analyzed its relationship to outcomes in patients who received chemotherapy 

alone (Fig. 2F–I). Interestingly, in chemotherapy treated patients, lower bTMB and lower 

ctDNA burden were individually associated with higher likelihood of DCB, such that 

normalized bTMB was not associated with outcome in the absence of ICI (P = 0.88, Fig. 

2F–I). As expected, tumor PD-L1 expression was also associated with DCB only in the 

setting of ICI (P < 0.01 for ICI; P = 0.41 for chemotherapy). Therefore, while ctDNA and 

bTMB were associated with outcomes in patients treated with either ICI or chemotherapy, 

ctDNA normalized bTMB was only predictive in the context of ICI.

Independent validation of normalized bTMB as a predictor of ICI response

Next we tested the validity of the association of ctDNA concentration and normalized bTMB 

with ultimate outcomes in response to single-agent PD-L1 blockade using an independent 

cohort of patients newly profiled in this study. We first determined the relationship between 

TMB measured in cell-free DNA by CAPP-Seq and tumor TMB measured by whole-exome 

sequencing using matched tissue samples (Fig. S2A–B). In patients treated with single-agent 

PD-(L)1 blockade, the associations between clinical benefit and ctDNA concentration or 

normalized bTMB in our cases mirrored those observed in the POPLAR/OAK ICI Cohort 

(Fig. S2D–G). Utilizing the normalized bTMB threshold defined in the POPLAR/OAK ICI 

Cohort to stratify patients in the validation cohort, patients with high normalized bTMB had 

significantly better outcomes (Fig 2J, P = 0.002, PFS HR = 3.54). Collectively, these data 

suggest that pre-treatment normalized bTMB can noninvasively identify patients most likely 
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to experience durable benefit in response to ICI. However, nearly one third of patients were 

misclassified using normalized bTMB alone: ~25% of patients predicted to have NDB 

nevertheless achieved PFS ≥6 months, and conversely, ~40% of patients predicted to have 

DCB had PFS < 6 months. This suggests that further improvement in predictive accuracy 

would be desirable.

Circulating immune profiles predict outcomes to PD-(L)1 blockade-based ICI.

We therefore explored other biomarkers as potential determinants of durable benefit from 

ICI. Specifically, we reasoned that the frequency and representation of circulating leukocyte 

subsets might vary between patients achieving or failing to achieve DCB from ICI. We 

therefore profiled leukocyte transcriptomes in patients with available specimens (excluding 

the DIREct Validation Cohort, Fig. S1B) using RNA-seq and applied CIBERSORTx 

(Newman et al., 2015, 2019) to quantify the relative proportions of major leukocyte 

subpopulations (Tables S5–6). We confirmed highly correlated composition estimates of 

leukocyte composition, whether using RNA-seq deconvolution or conventional flow 

cytometric immunophenotyping (Fig. S3A–B). Interestingly, we observed fewer circulating 

CD8 T cells prior to ICI therapy in patients ultimately achieving DCB—while no other cell 

type was significantly associated with clinical benefit (Fig. 3A–B, Fig. S3C). Indeed, CD8 T 

cell levels alone had comparable classification accuracy for predicting durable benefit 

(Accuracy = 70%), compared to other pre-treatment features including PD-L1 and 

normalized bTMB (Fig. 3C). Furthermore, there were no significant differences in pre-

treatment circulating CD8 T cell fractions based on prior receipt of chemotherapy, radiation, 

or corticosteroids (data not shown). Of note, none of the three pre-treatment biomarkers 

were correlated with each other, suggesting that they are independent and might therefore be 

useful in the context of a multiparameter predictor of ICI benefit (Fig. S3D).

Early on-treatment ctDNA dynamics classify durable benefit from PD-(L)1 blockade-based 
ICI

Recent studies have reported that ctDNA responses within 4–8 weeks after starting ICI 

correlate with best radiographic responses and modestly with DCB (Anagnostou et al., 2019; 

Goldberg et al., 2018; Raja et al., 2018). We therefore explored whether ctDNA kinetics 

within 4 weeks of starting treatment could help determine likelihood of durable benefit from 

ICI. We measured post-treatment ctDNA responses early after ICI therapy initiation in 46 

patients with available samples (excluding the DIREct Validation Cohort, Fig. S1B) with 

detectable ctDNA at baseline (Tables S3–4). The median time of blood collection from 

treatment start was 2.4 weeks and 98% (n=45) of patients had the sample collected after 

only a single cycle of ICI. Based on a prior study of intra-day ctDNA variation in untreated 

advanced NSCLC, we defined a threshold of 50% decrease in ctDNA concentration from 

pre-treatment as a “ctDNA molecular response” (Wang et al., 2017). Even at these early time 

points, ctDNA levels showed significant changes compared to baseline in most patients (Fig. 

3D). ctDNA burden dropped in 59% of patients achieving DCB while it did not meet the 

0.5-fold threshold in 95% of NDB patients (P < 0.0001; Fig. 3D–3E). Strikingly, ctDNA 

responses after a single cycle of ICI therapy distinguished the majority of DCB from NDB 

patients (Fig. 3E). Furthermore, early ctDNA dynamics outperformed all individual pre-

treatment factors (Fig. S3E, P < 0.05, Accuracy = 73%) and patients with ctDNA molecular 
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responses had significantly better clinical outcomes (Fig. 3F, P = 0.013, PFS HR = 2.28). 

Thus, early ctDNA molecular response after just one cycle of ICI appears to be a promising 

approach for early response assessment. However, given that over 25% of patients are 

incorrectly classified, further improvements in predicting ultimate clinical outcomes would 

be desirable.

Multiparameter models for predicting DCB after PD-(L)1 blockade-based ICI.

Having identified tumor-cell intrinsic and extrinsic determinants of ICI therapeutic benefit, 

we next combined these into integrated multi-parametric models. We developed two related 

Bayesian biomarker models, one relying on pre-treatment factors alone, and another 

incorporating early on-treatment ctDNA dynamics (Fig. 4A). A Bayesian approach was 

chosen because we have previously demonstrated that it is a robust method for building risk-

based models that include dynamic ctDNA measurements (Kurtz et al., 2019). Four key 

features of the Bayesian approach that make it desirable are that it: 1) enables incorporation 

of prior knowledge from established biomarkers to guard against overfitting to our own 

discovery cohort, 2) allows for missing parameters in cases where a specific feature may be 

unavailable (e.g. assay failure), 3) is well suited to binary classification problems often faced 

in the clinic such as DCB versus NDB, and 4) requires fewer training samples before 

predictions stabilize (Kurtz et al., 2019).

We trained the models in a discovery cohort consisting of patients with available pre-

treatment and early on-treatment (≤4 weeks from start) blood samples (Fig. S1B, DIREct 

Discovery Cohort, n = 34 patients) and then validated these in an independent DIREct 

Validation Cohort (n=38 patients; Fig. S1B, Fig. 4A). The patients in the two cohorts were 

all treated PD-(L)1 blockade-based ICI (PD-1, n = 45; PD-L1, n = 2; PD-1+CTLA-4, n = 

13; PD-1+Chemotherapy, n = 12) and had an expected distribution of histology, smoking 

status, tumor PD-L1 expression, and mutations for advanced NSCLC patients receiving ICI 

(Fig 4B).

Hyperparameters for the Bayesian models were inferred in two ways. For tumor PD-L1 

expression and normalized bTMB the hyperparameters were empirically inferred from the 

independent POPLAR/OAK ICI Cohort. For parameters unique to this study (circulating 

CD8 T cell fraction and early ctDNA dynamics) hyperparameters were inferred in a leave-

one-out cross-validation framework (LOOCV) using the samples from the DIREct 

Discovery Cohort. The models were then trained in a LOOCV framework within the DIREct 

Discovery Cohort. For each patient, the models generate a distribution of the probability of 

achieving DCB and the median of this distribution is used for predicting ultimate outcomes. 

Receiver operating characteristic curve analysis was used to determine the optimum 

threshold for classification of DCB versus NDB. The models and thresholds were then 

locked and we tested the performance of each of the parameters, models, and thresholds in 

the independent DIREct Validation Cohort of 38 advanced NSCLC patients receiving PD-

(L)1 blockade-based ICI (DIREct Validation Cohort, Table S7).
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DIREct-Pre forecasts ultimate outcomes using only pre-treatment parameters.

Using the outlined approach, a model based on pre-treatment tumor PD-L1 expression, 

normalized bTMB, and circulating CD8 T cells (DIREct-Pre: Durable Immunotherapy 

Response Estimation by immune profiling and ctDNA- Pre-treatment) was trained in the 

DIREct Discovery Cohort. Cross-validation analyses revealed that the DIREct-Pre model 

achieved 88% sensitivity (classifying DCB), at 56% specificity (Accuracy = 71%, AUC = 

0.68, Precision = 64%, Recall = 88%, Fig. 5A, S4B). Patients with higher DIREct-Pre scores 

achieved significantly longer PFS (Fig. 5B, PFS HR = 2.66, P = 0.012, Table S7). DIREct-

Pre had similar classification performance in the validation cohort as in the discovery cohort 

(Accuracy = 74%, AUC = 0.74, Precision = 79%, Recall = 71%, Table S7). Moreover, 

patients with higher DIREct-Pre scores had significantly longer PFS than those with low 

DIREct-Pre scores (Fig. 5C, P = 0.03, PFS HR = 2.18).

Addition of ctDNA dynamics enable noninvasive classification of ultimate outcomes.

While promising, we reasoned that incorporation of early ctDNA dynamics would further 

improve response classification performance. Indeed, the addition of early ctDNA response 

to DIREct-Pre significantly improved classification accuracy (Fig. 5D). Furthermore, 

addition of early on-treatment ctDNA dynamics rendered tumor PD-L1 expression 

dispensable for outcome classification and therefore we removed it from our final model 

(DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and 

ctDNA- On-treatment, Fig. 5D, Fig. S4A–B). Cross-validation analyses revealed the 

DIREct-On model to achieve 94% sensitivity (classifying DCB) and 89% specificity in the 

DIREct Discovery Cohort (Fig. 5E, S4B). Patients with higher DIREct-On scores had 

substantially longer PFS than those with lower scores (Fig. 5F, P < 0.0001, HR = 8.93). 

Overall, DIREct-On achieved excellent classification performance across various 

performance metrics in the discovery cohort (Accuracy = 92%, AUC = 0.93, Precision = 

88%, Recall = 94%, Table S7). Importantly, application of the locked DIREct-On model and 

same threshold to the validation cohort demonstrated similarly excellent performance 

(Accuracy = 92%, AUC = 0.93, Precision = 95%, Recall = 90%, Table S7). As expected, 

patients in the validation cohort with high DIREct-On scores also had significantly longer 

PFS than those with low DIREct-On scores, with a median PFS of 8.1 months versus 2.1 

months, respectively (Fig. 5G, P < 0.0001, PFS HR = 7.11). Thus, DIREct-On is a fully non-

invasive multiparameter biomarker that robustly classifies ultimate outcomes to PD-(L)1 

blockade-based ICI.

DIREct-On outperforms ctDNA dynamics alone

To assess performance of DIREct-On compared to each individual feature, we compared 

accuracy of DCB versus NDB classification and hazard ratios of DIREct-On with that of 

individual features in the combined discovery and validation cohorts. DIREct-On had 

significantly better classification accuracy than each individual metric or tumor PD-L1 

expression (Fig. 5H). Moreover, comparison of hazard ratios also demonstrated that patients 

with high DIREct-On scores had a significantly lower risk of progression than patients with 

ctDNA molecular responses, low circulating CD8 T cells, high normalized bTMB, or high 

tumor PD-L1 expression (P < 0.0001). (Fig. S5A). Similarly, we also assessed the 
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superiority of DIREct-On to each of the individual features that comprise the model using 

Net Reclassification Improvement (NRI), which quantifies classification performance 

differences between models. DIREct-On was significantly superior to normalized bTMB 

(NRI = −1.48, P < 0.05), CD8 T cell fraction (NRI = −1.64, P < 0.01), and ctDNA dynamics 

(NRI = −1.13, P < 0.01) (Fig. 5I, top). Thus, the multiparameter DIREct-On model 

significantly outperforms each individual feature.

DIREct-On requires each feature for optimal classification efficacy

To explore the importance of all three features of the DIREct-On model we examined the 

ability of the other two features to correctly predict outcome when the third feature 

incorrectly predicts outcome. In each reclassification scenario, each feature was able to 

rescue classification in ≥45% of the cases (Fig. S5B–D). Notably, for the pre-treatment 

features, normalized bTMB and CD8 T cell fraction were able to correctly classify at least 

62% of their respective misclassifications (Fig. S5B–C).

To further assess if each of the features is required for optimal DIREct-On outcome 

classification, we constructed DIREct models that had each one of the parameters removed 

and compared the performance of these models to that of the full DIREct-On model. This 

enabled us to measure the impact of each feature on the overall performance of DIREct-On. 

We found that each feature that comprises DIREct-On is required for optimal performance 

(Fig. 5I, bottom). As expected, removal of ctDNA dynamics had the most detrimental effect 

(NRI = −1.60, P < 0.001), but removal of either normalized bTMB or CD8 T cell fractions 

also significantly decreased performance (NRI = −1.25, P < 0.001; NRI = −1.13, P < 0.001, 

respectively). Comparison of HRs for the full DIREct-On model and the versions with each 

parameter removed showed similar results (Fig. S5E). Thus, each feature is required for 

optimal response classification.

DIREct-On forecasts response to PD-(L)1 blockade-based ICI

We next tested calibration of DIREct-Pre and DIREct-On in the validation cohort to evaluate 

how accurately they forecast ultimate clinical outcomes (Steyerberg et al., 2010) and found 

that both models were well-calibrated (slope = 0.64, 0.98, respectively; Fig. S5F–G). 

Similarly, the DIREct-Pre and DIREct-On scores forecasted PFS as continuous variables in 

the validation cohort (Cox likelihood ratio test: PFS HR = 6.97, P = 0.007; PFS HR = 11.53, 

P < 0.0001, respectively).

Overall, in the cases that DIREct-On classified correctly, the second DIREct-On blood draw 

was performed on average 5.52 weeks prior to the first scan (Fig. 6). Moreover, DIREct-On 

correctly stratified patient outcomes on average 6.7 weeks prior to developing 

radiologically-defined progression in NDB cases (n = 35) and on average 24.5 weeks prior 

to the best overall radiographic response in DCB cases (n = 37), indicating significant lead 

times (Fig. 6). Moreover, DIREct-On stratified patients equally well whether the early on-

treatment blood draw was collected prior to 3 weeks or between 3 and 4 weeks (data not 

shown). Additionally, we assessed performance of age, ECOG performance status, line of 

therapy, and DIREct-On in a multivariable Cox proportional hazards model to test if 

DIREct-On was independent from clinical factors known to be associated with outcome. 
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DIREct-On was the only feature that was independently associated with PFS in this analysis 

(Fig. S6A, HR = 0.06, P < 0.0001).

We further assessed the ability of DIREct-On to classify responses to PD-(L)1 blockade-

based ICI in our cohort and found high accuracy for prediction of patients achieving 

objective responses (26/29 [90%] of patients achieving a complete response [CR] or partial 

response [PR] had high DIREct-On scores) or progressive disease (PD, 27/29 [93%] of 

patients who had PD as best overall response had DIREct-On low scores) (Fig. S6B–C). 

Thus, although DIREct-On was trained to distinguish between durable clinical benefit versus 

no durable benefit, it is also appears useful for predicting the likelihood of objective 

response. Furthermore, we found no significant difference in PFS between patients who 

achieved DCB or NDB versus those expected to do so by DIREct-On (Fig. 7A).

Additionally, we performed subset analyses to assess the performance of DIREct-On in 

various clinical contexts in our cohort. Although DIREct-On was primarily trained and 

validated on patients treated with single-agent PD-1 blockade, it performed equally well in 

all three types of treatment regimens included in our study (Table S7). Moreover, patients 

with high DIREct-On scores had similarly prolonged PFS regardless of treatment type, 

while patients with low DIREct-On scores had equally abbreviated PFS (Fig. 7B, Fig S7A–

C). Similarly, DIREct-On displayed similar classification efficacy in non-squamous or 

squamous tumors (Fig S7D–E, non-squamous, n = 7; squamous, n = 65). Therefore, 

DIREct-On appears to accurately stratify patient outcomes in PD-(L)1 blockade-based ICI 

strategies in NSCLC.

DIREct-On classifies patients with ambiguous imaging responses

Next, we explored the potential utility of DIREct-On for reconciling response status in 

patients with advanced lung cancer with ambiguous imaging results. First, we examined 

patients with a best overall response of stable disease (SD), meaning a change in the sum of 

the largest diameters (SLD) no greater than 20% increase or 30% decrease. In both the 

discovery and validation cohorts, DIREct-On accurately classified the durability of ICI 

response for 93% of patients (13/14) who achieved SD as their best radiographic response 

(Fig. 7C). We also tested if the presence of some shrinkage or growth that does not meet 

criteria for RECIST PR or PD could predict if a patient will achieve DCB or NDB. 

Interestingly – and highlighting the need for improved tools to adjudicate radiologically-

defined stable disease – whether the tumors grew or shrunk within the bounds of +20% to 

−30% did not reliably classify whether these patients achieved DCB or NDB (Fig. S7F, 

Fisher’s Exact Test P = 1.00) and did not stratify PFS (Fig. S7G).

Two vignettes from our cohort highlight the ability of DIREct-On to adjudicate stable 

disease (SD) evaluations at the first on-treatment scan. LUP857 had a high DIREct-On score 

after three weeks and stable disease at the first scan seven weeks after therapy initiation. As 

predicted by DIREct-On, this patient derived durable benefit from PD-1 blockade and 

maintained radiographic SD for over one year (Fig. 7D). Another exemplar patient, 

LUP1014 also had stable disease at the first scan seven weeks after therapy start, yet had a 

low DIREct-On score at three weeks. As predicted by DIREct-On, this patient progressed at 

the second scan at 14 weeks after therapy initiation. (Fig. 7E). Overall, in patients whose 
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first scan after treatment initiation was classified as stable, DIREct-On correctly identified 

94% of patients (17/18) ultimately achieving DCB (Fig. 7F). Therefore, DIREct-On allows 

early identification of patients with initially stable disease who are most likely to achieve 

durable clinical benefit from PD-(L)1 blockade-based ICI.

Discussion

Here, we describe parameters associated with durable clinical benefit from ICI in patients 

with advanced NSCLC that integrate both tumor-intrinsic and -extrinsic features and that can 

be measured noninvasively using blood. We found lower baseline circulating CD8 T cell 

levels in patients with lung cancer ultimately achieving durable benefit from ICI, a result 

consistent with observations in melanoma responders to immunotherapy (Krieg et al., 2018). 

We also demonstrate that a pre-treatment composite model (DIREct-Pre) combining tumor 

PD-L1 expression with pre-treatment ctDNA and circulating immune cell profiling 

accurately predicts outcomes.

Moreover, we developed DIREct-On, which is a fully noninvasive response classifier that 

incorporates pre-treatment ctDNA and immune profiling with early on-treatment ctDNA 

response assessment to most accurately classify the likelihood of durable benefit after one 

cycle of immunotherapy. We demonstrate that DIREct-On outperforms each of the 

individual features alone and that each of the features are required for optimal classification 

efficacy. Our results also highlight and contrast the predictive power of measurements taken 

before and after therapy. Additionally, we believe there is significant biological rationale for 

each of the components of DIREct-Pre and DIREct-On: 1) pre-treatment ctDNA: reflects 

total body tumor burden and patients with higher burden are known to respond less well to 

ICIs (Ito et al., 2019; Kaira et al., 2017); 2) tumor mutation burden: likely correlates with the 

number of tumor neoantigens and therefore higher values increase immunogenicity; 3) 

circulating CD8 T cell fraction: fewer CD8 T cells in circulation are associated with 

response and we speculate that this could reflect greater homing of CD8 T cells to tumor 

deposits in patients with immunogenic tumors; and 4) early ctDNA dynamics: reflects 

change in disease burden early during therapy and is a direct reflection of tumor response or 

resistance. We envision that either model could be further improved by exploring additional 

biomarkers of clinical benefit, such as deeper immunophenotyping.

DIREct-On allows for classification of ultimate clinical outcomes significantly earlier than 

previously reported ctDNA-based approaches (Anagnostou et al., 2019; Goldberg et al., 

2018; Raja et al., 2018). For on-treatment biomarkers, being able to assess response as early 

as possible is important since it would facilitate earlier changes in management. Moreover, 

we demonstrate that DIREct-On has significantly better performance than ctDNA dynamics 

alone. Therefore, the integration of pre-treatment parameters that can be measured 

noninvasively with on-treatment ctDNA dynamics allows for optimal classification of 

response. Furthermore, while cross-study comparisons of different techniques are fraught 

with caveats due to potential differences in patient cohorts, DIREct-On appears to 

outperform previously described integrative models relying on tumor RNA and/or DNA-seq 

(Anagnostou et al., 2020; Auslander et al., 2018; Cristescu et al., 2018; Jiang et al., 2018). 

The prior approaches were largely focused on melanoma rather than NSCLC and have 
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substantially inferior performance compared to DIREct-On (prior studies: HR = 0.30–0.37, 

AUC = 0.70–0.83; DIREct-On: HR = 0.04–0.11, AUC = 0.89–0.93).

The endpoints of DCB and NDB were utilized to enable a binary classification approach. 

Unlike standard RECIST-based overall response classification criteria, the definition of DCB 

is inclusive of patients with long-term stable disease and we have previously demonstrated 

that it robustly identifies patients with prolonged overall survival to PD-(L)1 blockade-based 

therapy (Rizvi et al., 2018). Overall, DIREct-On demonstrated robust, early, and noninvasive 

classification of DCB and progression-free survival in a discovery and validation approach. 

Moreover, DIREct-On had excellent performance in various subsets of patients such as those 

receiving PD-(L)1 blockade with other ICI or chemotherapy, squamous versus non-

squamous histology, and crucially, those without objective responses or progression at the 

first scan. Of note, we do not envision that DIREct-On would replace radiologic surveillance 

of NSCLC patients treated with PD-(L)1 blockade since in patients predicted to develop 

early progression the anatomic distribution of progressing lesions could inform subsequent 

therapy (e.g. systemic therapy for progression in many sites versus local therapy such as 

radiotherapy for progression in a limited number of sites).

To test the clinical utility of DIREct-On, prospective clinical trials will be required. One 

potential treatment strategy for patients with driver mutation negative Stage IV NSCLC that 

could be tested in clinical trials is to treat with single-agent PD-(L)1 blockade for one cycle 

(irrespective of PD-L1 expression) and to personalize subsequent cycles based on DIREct-

On measured at 2–3 weeks after treatment start. Patients with high DIREct-On scores 

(expected durable benefit) could remain on single-agent PD-(L)1 blockade whereas patients 

with low DIREct-On scores (expected lack of benefit) could be treated with several options 

including 1) adding chemotherapy to PD-(L)1 blockade, 2) adding an additional ICI such as 

CTLA-4 blockade for potential synergy, or 3) stopping the current ICI and changing to 

another agent/regimen (Fig. 7G). If successful, such a trial could optimize the number of 

patients receiving immunotherapy alone and reserve combination therapy for patients who 

are destined not to respond to single-agent immunotherapy.

Limitations of our study include that it was retrospective and that patients were treated with 

somewhat heterogeneous PD-(L)1 regimens. Nevertheless, we found that DIREct-On 

performed similarly well regardless of type of PD-(L)1 regimen. Furthermore, since our 

training and validation cohorts were derived from patients receiving immunotherapy as part 

of standard-of-care management, they were different than the cohorts from the randomized 

POPLAR/OAK studies used for training some of the model parameters. Separately, while 

we validated the DIREct models in a held out patient cohort, this cohort was relatively small, 

resulting in relatively broad confidence intervals. While further validation in larger cohorts 

and prospective clinical trials will therefore be necessary, our data suggest that DIREct-On 

has strong prognostic power in real-world clinical settings. An additional limitation is that 

our cohort included few patients with targetable driver alterations (n=9, 13%) including 

EGFR (L858R n=4, Del19 n=2) and BRAF (V600E n=3), since these patients did not 

routinely receive immunotherapy during the time period of sample collection. Our cohort 

also did not include patients with active central nervous system disease. Therefore, it 
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remains unclear how DIREct-On would perform in these important subsets of patients and 

further exploration is warranted.

Finally, we anticipate that our models could also have utility for predicting response to ICI 

in other tumor types since similar tumor-intrinsic and –extrinsic features have been 

identified to associate with response to ICI in other cancers (Cristescu et al., 2018; Krieg et 

al., 2018). Given the difficultly to date of developing robust predictive biomarkers for 

immunotherapy, approaches based on early response assessment could help fill the unmet 

need of improving personalization of therapy for patients treated with ICIs.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Maximilian Diehn (diehn@stanford.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The code to apply DIREct-On, model coefficients, and 

patient-level parameters for the discovery and validation cohorts are available for download 

at direct.stanford.edu. Clinical and demographic data for the cohorts generated as part of this 

study, sample timing information, ctDNA analysis metrics, transcripts per million quantified 

RNA sequencing data, immune profiling results, as well as parameter and model 

performance metrics are provided in the Supplemental Tables. Due to restrictions related to 

dissemination of germline sequence information included in the informed consent forms 

used to enroll study subjects, we are unable to provide access to the raw cfDNA, germline 

DNA, or RNA sequencing data because germline sequence information could be gleaned 

from these. Requests for additional data such as additional patient-level clinical or 

demographic data will be reviewed by the Lead Contact to determine whether they can be 

fulfilled in accordance with these privacy restrictions.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

PD-(L)1 blockade-based Immune checkpoint inhibitor treated patients—All 

patients had stage IV non-small cell lung cancer (NSCLC) and were treated with PD-(L)1 

blockade-based ICI (PD-(L)1 blockade alone or in combination with CTLA-4 blockade or 

chemotherapy) at Stanford University Cancer Center or Memorial Sloan Kettering Cancer 

Center (Tables S1–2). All patients consented to Institutional Review Board-approved 

protocols permitting specimen collection and genetic sequencing for analysis of tumor 

biopsies, leukocytes, and cfDNA.

Clinical efficacy analysis—Response was quantified in a blinded fashion by thoracic 

radiologists using RECIST v1.1 (Eisenhauer et al., 2009). Stable disease was defined by 

RECIST 1.1 criteria, meaning not significant shrinkage of the target lesions to be classified 

as partial response (≤30% decrease) or significant growth to be classified as progressive 

disease (≥20%). Durable clinical benefit (DCB) was defined as confirmed absence of 

progressive disease for at least 6 months after ICI; whereas, no durable benefit (NDB) was 
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defined as patients experiencing progression or death within 6 months (Rizvi et al., 2015). 

Progression-free survival was determined from the start of PD-(L)1 blockade, with outcomes 

determined or censored as of the 01/22/2019 database lock.

Tumor samples—Thirty of 82 patients had tumor tissue available for whole-exome 

sequencing. All tumor tissue was obtained prior to treatment with immunotherapy. Tumor 

PD-L1 expression was assessed by clinical immunohistochemistry and the percentage of 

PD-L1 positive tumor cells was used as input into the relevant Bayesian models.

Plasma and leukocyte samples—Plasma was processed from whole blood samples 

collected in EDTA tubes. Tubes were centrifuged at 2500 × g at room temperature for 10 

minutes. The plasma supernatant was collected and the remaining plasma-depleted whole 

blood was collected for DNA and/or RNA purification. In indicated cases, density gradient 

centrifugation was used to collect PBMC for flow cytometry, DNA, and/or RNA isolation. 

Early on-treatment blood samples were collected using the first available on-treatment 

samples. In the majority of patients (96%) this specimen was collected at the time of the 

second immunotherapy infusion. The earliest collection timepoint for any patient as 12 days 

after initiation of therapy (median = 18.5; range = 12–28 days).

METHOD DETAILS

cfDNA extraction—Cell-free DNA was extracted from three to six mL of plasma utilizing 

the QiaAmp Circulating Nucleic Acid Kit per manufacturer’s instructions. DNA was 

quantified using the Qubit dsDNA High Sensitivity Kit and quality and size was assessed by 

the Agilent 5400 Fragment Analyzer. For samples collected in CPT tubes, cfDNA was 

treated with Heparinase II (Sigma) for 2 hours at 37°C and re-purified by 1.8X Ampure XP 

bead selection prior to quantitation and size analysis.

Germline DNA extraction—Germline DNA was extracted from 100μL of PDWB or 

~30,000 PBMCs with the QiaAmp DNA Micro Kit per manufacturer’s instructions. 100–

1000ng of genomic DNA was then sheared using the Covaris S2 Focused-ultrasonicator 

using the following settings: 10% duty cycle, intensity level 5, 200 cycles per burst, and 2 

minute duration. After sonication, sheared DNA was re-purified using the QiaQuick PCR 

Purification Kit per manufacturer’s instructions.

CAPP-Seq—CAPP-Seq was performed as previously described (Newman et al., 2014, 

2016). Briefly, a 20–55ng of cfDNA or sheared genomic DNA was utilized for library 

preparation with the KAPA HyperPrep Kit with some modifications to the manufacturer’s 

instructions, as described (Chabon et al., 2016; Chaudhuri et al., 2017). After library 

preparation, custom-designed biotinylated DNA oligonucleotides were utilized for 

hybridization and subsequent enrichment with a capture panel covering 355 kb and targeting 

270 genes could. Following hybridization capture, samples were sequenced on an Illumina 

HiSeq4000 as 2 × 150bp lanes of 8–12 samples multiplexed per lane yielding ~40 million 

paired-end reads with a median deduped depth of 3037X per case (Table S4). Data were then 

processed using a custom bioinformatics pipeline (Newman et al., 2014, 2016).
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To abrogate the need for invasive biopsies, the CAPP-Seq analyses performed in this study 

were completed in a tumor-naïve manner. For tumor naïve calling we: 1) limited variants to 

coding positions, 2) removed any variants with greater than 1 reads in the matched germline 

samples, 3) removed variants with more than 2 reads in 5% of healthy control plasma 

samples (n = 54), 4) removed variants present in ≥0.05% of samples in the Genome 

Aggregation Database (Lek et al., 2016). For monitoring of these variants in early on-

treatment samples we used a previously described Monte Carlo-based ctDNA detection 

index with a significance cut-point of P ≤ 0.05 (Newman et al., 2014). ctDNA fold change 

was calculated by dividing the ctDNA concentration at an on-treatment timepoint by the pre-

treatment ctDNA concentration. In on-treatment cases where ctDNA was undetectable, the 

limit of detection for that sample was used as the ctDNA concentration, as described 

previously (Moding et al., 2020). To define the threshold for a ctDNA molecular response 

we analyzed previously published data from 23 treatment-naïve advanced NSCLC patients 

who had three plasma collections over the course of 6 hours. The maximum deviation from 

the average ctDNA concentration amount these patients was 1.87-fold (Wang et al., 2017). 

Therefore, we considered a ctDNA molecular response as a ≤0.5-fold decrease from the pre-

treatment time point.

Tumor mutation burden estimation by CAPP-Seq—Tumor mutation burden was 

estimated by CAPP-Seq by identifying the relationship between the number of 

nonsynonymous mutations identified in pre-treatment tumors by whole-exome sequencing 

per megabase of coding exome captured to the number of coding mutations 

(nonsynonymous and synonymous) identified in the pre-treatment cfDNA by CAPP-Seq per 

megabase of coding exome captured in a discovery cohort of 24 patients (Figure S2B). We 

derived a linear regression model in a leave-one-out cross validation (LOOCV) framework 

in the discovery cohort 24 patients and found that TMB measured in cell-free DNA was 

significantly correlated with tissue TMB (Figure S2B, R = 0.86, P < 0.0001). This resulted 

in the following relationship:

bTMBestimated
nonsynonymous mutations

MB = 0.840 * ( # CAPP − Seq coding mutations) + 0.598

We then validated this model in the independent group of patients and again observed strong 

correlation (Figure S2C, R = 0.99, P < 0.001, n=6).

RNA extraction—We did not have access to viably preserved peripheral blood 

mononuclear cells (PBMCs) amenable to flow cytometry for most patients but did have 

frozen plasma depleted whole blood (PDWB) containing leukocyte RNA for the majority of 

our cohort. Leukocyte RNA was extracted from either PDWB or PBMCs. For PDWB, RNA 

was extracted from 200μL of PDWB by mixing with 600μL TRIzol LS Reagent 

(ThermoFisher), 200μL of chloroform was used for phase separation. For PBMCs, pellets 

were lysed with 600μL of TRIzol Reagent and 150μL of chloroform was used for phase 

separation. For both starting materials, the aqueous phase from the initial phase separation 

was then mixed with equal volume of 100% ethanol, then loaded onto columns for the 

RNeasy Micro Kit (Qiagen) and the protocol was followed per manufacturer’s instruction, 

including on-column DNase treatment. The GLOBINclear Kit (ThermoFisher) was utilized 

Nabet et al. Page 16

Cell. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to deplete globin mRNA per the manufacturer’s instructions in the PDWB samples. Before 

proceeding to RNA-seq, RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit 

(ThermoFisher) and quality was confirmed by DV200 and RIN after RNA Pico Bioanalyzer 

Analysis. All RNA samples sequenced had DV200 ≥ 80%.

RNA-seq—The Illumina TruSeq RNA Exome kit was used for RNA-seq library 

preparation with 20ng of input PBMC RNA or globin-depleted PDWB RNA per 

manufacturer’s instructions. In brief, RNA was fragmented and stranded cDNA libraries 

were created per the manufacturer’s protocol. The RNA libraries were then enriched for the 

coding transcriptome by exon capture. Hybridization captures were then pooled and samples 

were sequenced on an Illumina HiSeq4000 as 2 × 150bp lanes of 16–20 samples per lane, 

yielding ~20 million paired-end reads per case. After demultiplexing the data were aligned 

and expression levels summarized using Salmon to Gencode version 27 transcript models 

(Patro et al., 2017). Expression levels per gene were summarized as transcripts per million 

(TPM), and then used as input for CIBERSORTx for deconvolution with the LM22 

signature matrix with B-mode batch correction (Newman et al., 2019).

Tumor whole-exome sequencing—Whole-exome libraries were prepared using the 

Agilent SureSelect Human All Exon v2.0, v4.0, or the Illumina Rapid Capture Exome Kit, 

as described previously (Hellmann et al., 2020). Captured exome libraries for tumor and 

germline DNA were sequenced to equivalent depths on HiSeq2000, HiSeq2500, or 

HiSeq4000 platforms as 2×75bp or 2×150bp reads and aligned to the hg19 human genome 

build using the Burrows-Wheeler Aligner (Li and Durbin, 2009). Further indel realignment, 

base-quality score recalibration, and duplicate-read removal were performed utilizing the 

Genome Analysis Toolkit (DePristo et al., 2011). Single nucleotide variants were identified 

using Mutect with default parameters (Cibulskis et al., 2013). Tumor mutational burden per 

megabase for bTMB estimation was calculated by dividing the total number of 

nonsynonymous mutations by the coding region of each respective capture kit (Agilent 

SureSelect Human All Exon v2.0 = 29.9MB, Agilent SureSelect Human All Exon v4.0 = 

34.2 MB, Illumina Rapid Capture Exome Kit = 42.7MB).

Flow cytometry—Flow cytometry was used to confirm the fidelity of CIBERSORTx 

estimates for the major lymphoid and myeloid lineages among the cellular subsets captured 

by the LM22 signature matrix, whether viable or nonviable leukocytes were used as input 

RNA for sequencing and subsequent transcriptome deconvolution. To do so, single cell 

suspensions were prepared from viably frozen PBMC aliquots. Live/dead cell discrimination 

was performed using 7-AAD Viability Staining Solution (BioLegend). Human Fc receptors 

were blocked using Human TruStain FcX (BioLegend). Cell surface staining was performed 

for 30 min at 4°C with the following antibodies: CD14 (Clone: M5E2, Color: BV421, BD 

Biosciences), CD3 (Clone: UCHT1, Color: PE, BioLegend), CD4 (Clone: RPA-T4, Color: 

PerCP-Cy5.5, BD Biosciences), CD8 (Clone: RPA-T8, Color: FITC, BD Biosciences), 

CD19 (Clone: SJ25C1, Color: BV711, BD Biosciences), and CD56 (Clone: HCD56, Color: 

PE-Cy7,BioLegend). All data acquisition was done using a FACS Aria Fusion (BD 

Biosciences) or a CytoFLEX Flow Cytometer (Beckman Coulter) and analyses were 

performed using FlowJo v10. CD4 T cells were gated by CD14−, CD19−, CD3+, CD8−, 
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CD4+; CD8 T cells were gated by CD14−, CD19−, CD3+, CD8+, CD4−; monocytes were 

gated by CD56−, CD3−, CD19−, CD14+; B cells were gated by CD3−, CD19+; and NK 

cells were gated by CD14−, CD3−, CD19−, CD56+.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—The Wilcoxon test was used to compare groups where indicated. 

Fisher’s exact test was used to compare bTMB high versus bTMB low in the normalized 

bTMB Discovery and Validation cohort. Receiver operating characteristic curves were used 

to generate area under the curve (AUC), and 95% confidence intervals for AUCs were 

generated by bootstrapping (Robin et al., 2011). Significance analysis of performance 

evaluation metrics (AUC, NRI, hazard ratio, and accuracy) were also computed by 

bootstrapping, where the difference in the metrics curves for each bootstrap replicate is 

computed and compared across conditions to generate an empiric P-value (Kurtz et al., 

2019).

For progression-free survival analysis, the log-rank test was used to compare Kaplan-Meier 

survival curves. Cox proportional hazards regression models were used to generate hazard 

ratios as stratified relative to cut-points defined in each figure, as captured in corresponding 

legends. Stratification thresholds were determined using optimal cut-point selection by ROC 

analysis only within the discovery cohorts. For ctDNA dynamics, the cut-point was not 

optimized and 0.5 was used as the cut-point in both discovery and validation cohorts. For 

PFS analysis of the validation cohorts, the cut-points from the discovery cohorts were 

applied to the respective validation sets to stratify response. DIREct-Pre and DIREct-On 

were also tested as continuous variables in the validation cohort by Cox likelihood ratio test. 

When comparing performance of individual biomarkers to each other or to Bayesian probit 

models analyses were restricted to patients with all data types available, as described in the 

corresponding legends. All analyses were conducted using R v.3.5.1 using the pROC, 

survminer, MCMCpack, survIDINRI, and survival packages.

Bayesian probit models—To classify DCB versus NDB we utilized a Bayesian probit 

approach (Figure 4A). In brief, patients were split into the DIREct Discovery (n = 34) and 

DIREct Validation Cohort (n = 38). Features that associated with ultimate outcomes were 

identified in the DIREct Discovery Cohort. For the Bayesian probit models, hyperparameters 

without prior knowledge in publicly available data were inferred using a LOOCV framework 

in the DIREct Discovery Cohort samples (CD8 T cell fraction and early ctDNA dynamics). 

For features with publicly available data available (tumor PD-L1 expression and normalized 

bTMB), hyperparameters were empirically inferred from the POPLAR/OAK ICI Cohort (n 

= 424). The models were then trained in the DIREct Discovery Cohort and DCB versus 

NDB was stratified based on the best threshold (Youden’s J). Based on the performance of 

DIREct-On in the discovery cohort, a validation cohort of >20 provides >99% power to 

detect a similar difference between the two groups (one-sided two-arm binomial with alpha 

= 0.05). The models and thresholds were then applied to the DIREct Validation Cohort.

Specifically, likelihood of DCB for each sample is modeled as probabilityDCB=Φ(xTβ), 

where Φ(.) denotes the cumulative distribution function of a standard normal variable, x 

Nabet et al. Page 18

Cell. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



denotes the feature vector (i.e., normalized bTMB, PD-L1, and CD8 fraction for DIREct-Pre 

and normalized bTMB, CD8 fraction, and ΔctDNA for DIREct-On), and β denotes the 

model parameters from prior knowledge derived from the literature or from our discovery 

cohort (as described below). The model parameters were assumed to be governed by a 

Gaussian distribution, i.e. β N β0, Λ0
−1 , where β0 and Λ0

−1 denote the mean and covariance 

matrix of the distribution, respectively. This approach allows for uncertainty in the 

underlying distributions (as might be expected for example between different ctDNA 

profiling techniques or patient populations) and therefore expected to be more generalizable 

for response prediction.

Construction of Bayes priors from public data—To identify the parameters of the 

Gaussian distribution governing the probit coefficients, we denoted the features from the 

POPLAR/OAK ICI Cohort (Gandara et al., 2018), by Xprior and the corresponding labels 

(DCB/NDB) by Yprior. Here, we subsampled of n=100 cases for m = 2000 times. For each 

iteration and for each set of covariates (e.g., PD-L1 and normalized bTMB), we solved a 

probit regression model to generate a matrix of associated coefficients (β). We used this 

matrix as a random realization of this multi-variable normal distribution, and then estimated 

the Bayes prior probability parameters (i.e., hyper-parameters).

Prior construction within LOOCV and Markov-Chain Monte Carlo (MCMC)—We 

used a LOOCV framework to fully exploit the available data, and for the features not 

estimated by Xprior (e.g., CD8 T cell fraction). Specifically, we used n − 1 samples to find 

the hyperparameters as described above. We then derived the final full prior probability 

distributions by concatenating two components: (1) the prior knowledge-based priors, and 

(2) the priors derived from our DIREct Discovery Cohort, such that 

β = βprior, βourcoℎort
T N β0, prior, β0, ourcoℎort

T ,
Λ0, prior

−1 0

0 Λ0, ourcoℎort
−1  where β0,prior and 

β0,ourcohort are the mean vectors of the variables, estimated from the prior set and our 

cohort, respectively. Similarly Λ0, prior
−1  and Λ0, ourcoℎort

−1  denote the covariance matrices. We 

then used the same n − 1 samples with all available covariates in a MCMC step to calculate 

the posterior probabilities (i.e., updated prior probabilities). In cases where tumor PD-L1 

expression was unavailable (DIREct Discovery Cohort, n = 8; DIREct Validation Cohort, n 

= 4), this parameter was left out.

Final prediction score for both DIREct models—To generate a single score 

representing the probability of DCB, we used the MCMC posterior samples, and generated 

10,000 pseudo-samples with 1000 initial burn-in. These realizations of the β vectors (i.e. 

{ β1, β2,…,β10000 } along with the sample feature vector, x) were then used to calculate 

10,000 realizations of the DCB score, such that Φ(xTβi) for i ∈ {1,…,10000}. We then used 

the median of these realizations as the final prediction score.

Threshold selection for DIREct models—To select the optimal thresholds in the 

discovery cohort for the DIREct-Pre and DIREct-On scores, we used the optimal ROC 

corner point approach (Youden’s J) for classification of DCB, where the optimality was 
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defined as the point with maximal unweighted accuracy, i.e. specificity plus sensitivity 

(Youden, 1950). These cut-points were then applied to the validation set for calculation of 

precision and survival analyses.

Calibration testing of DIREct models—We evaluated DIREct predictions for 

quantitative accuracy via model calibration regression (Steyerberg et al., 2010). To test 

calibration of the DIREct-Pre and DIREct-On models we performed a bootstrap resampling 

with n=2000 and reported the “true event rate”, estimated via the Kaplan-Meier maximum 

likelihood estimates of observed events versus expected events from our models’ 

predictions. A perfect calibration leads to a slope of 1, i.e. the predicted probability of the 

model is in fact representative of the true event rate in the population.

ADDITIONAL RESOURCES

We have created a web resource for the DIREct-On model described in this study. Here, 

readers can input parameters to generated DIREct-On scores and predictions for individual 

and batched samples and download the code used to generate the model. URL: https://

direct.stanford.edu

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Pre-treatment ctDNA features are associated with checkpoint blockade 

response

• Pre-treatment peripheral T cell levels are associated with checkpoint blockade 

response

• Early on-treatment ctDNA dynamics are associated with checkpoint blockade 

response

• Multiparameter noninvasive models can predict checkpoint blockade response 

in NSCLC
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Figure 1: Association of radiologic response and durable clinical benefit in NSCLC.
A) Rate of DCB or NDB in advanced NSCLC patients receiving PD-(L)1 blockade-based 

ICI achieving partial response (PR), stable disease (SD), or progressive disease (PD) at the 

first scan by RECIST v1.1 criteria.

B) Study schematic. Pre-treatment blood from NSCLC patients receiving PD-(L)1 blockade-

based ICI was collected and fractionated for ctDNA analysis and RNA-seq for immune 

profiling. Pre-treatment tumor biopsies were used to assess PD-L1 expression. Early on-

treatment blood was collected within 4 weeks for ctDNA monitoring. Tumor and immune 

features were tested for their association with ultimate outcomes. See also Figure S1.
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Figure 2: Pre-treatment ctDNA-normalized tumor mutation burden predicts response to ICI.
A) Outcomes of PD-L1 blockade treated patients from the POPLAR/OAK Cohort (Gandara 

et al., 2018) (POPLAR/OAK ICI Cohort) stratified by high bTMB/MB (≥14) and low 

bTMB/MB (<14). P-value calculated by two-sided Fisher’s Exact Test (DCB n = 139; NDB 

n = 290).

B) Pre-treatment ctDNA concentration (haploid genome equivalents per mL of plasma, 

hGE/mL) and C) ctDNA-normalized bTMB (norm. bTMB) in POPLAR/OAK ICI Cohort. 

P-values were calculating using a Wilcoxon test.

D) Area under the curve (AUC) for individual parameters in immunotherapy patients 

generated by leave-one-out cross-validation (LOOCV) ROC analysis.

E) Probability of PFS for high norm. bTMB (median = 4.14 mo.) and low norm. bTMB 

(median = 2.16 mo.) PD-L1 blockade patients stratified by the LOOCV-identified optimal 

cut-point in the POPLAR OAK ICI Cohort (n = 429).

F) Outcomes of chemotherapy treated patients from the POPLAR/OAK Cohort (Gandara et 

al., 2018) (POPLAR/OAK Chemo Cohort) stratified by high bTMB/MB (≥14) and low 

bTMB/MB (<14). P-value calculated by two-sided Fisher’s Exact Test (DCB n=118; NDB n 

= 306).

G) Pre-treatment ctDNA concentration and H) norm. bTMB (POPLAR/OAK Chemo 

Cohort) in chemotherapy patients. P-values were calculated using a Wilcoxon test.

I) Probability of PFS for high norm. bTMB (median = 3.25 mo.) and low norm. bTMB 

(median = 4.00 mo.) chemotherapy patients stratified by the LOOCV-identified optimal cut-

point in the POPLAR/OAK Chemo Cohort (n = 424).
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J) Probability of PFS for high norm. bTMB (median = 16.49 mo.) and low norm. bTMB 

(median = 1.92 mo.) patients who received single-agent PD-(L)1 blockade in this study, 

exclusive of the DIREct Validation Cohort (n = 37) stratified by the cut-point of norm. 

bTMB identified in the POPLAR/OAK ICI Cohort. See also Figure S2.
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Figure 3: Pre-treatment circulating immune profiles and early on-treatment ctDNA dynamics 
predict outcomes to PD-(L)1 blockade-based ICI.
A) Comparison of pre-treatment circulating immune cell populations by CIBERSORTx 

restricted to those with >1% median frequency in patients achieving DCB (n = 20) vs. NBD 

(n = 17). Shown are AUCs and 95% confidence intervals (CIs) generated by bootstrapping 

for classifying DCB versus NDB by each cell population. Shown on the top is the median 

relative abundance of each cell type in these patients.

B) Pre-treatment relative CD8 T cell fraction in circulation of ICI DCB (n = 20) and NDB (n 

= 17) with available CIBERSORTx immune profiling. P-value was calculating using a 

Wilcoxon test.

C) Bootstrapping-generated accuracy of outcome classification using the indicated pre-

treatment tumor, ctDNA, and/or immune parameters in cases with all data types available (n 

= 27).

D) Early on-treatment (≤4 weeks) ctDNA concentration normalized to pre-treatment ctDNA 

concentration (median = 2.4 weeks, n = 46, DCB = 27, NDB = 19). Colors indicate the 

ultimate clinical outcome. The dashed line indicates 50% of pre-treatment ctDNA 

concentration (ctDNA molecular response).

E) Early on-treatment ctDNA concentration at the first timepoint after the first cycle of ICI 

normalized to pre-treatment ctDNA concentration, stratified by ultimate clinical outcome. 

Colors indicate if the sample was collected ≤2 or 2–3.3 weeks after treatment initiation. The 

dashed line indicates ctDNA molecular response.
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F) Probability of PFS in patients with at least a 0.5-fold ctDNA drop from baseline (median 

= 22.4 mo.) and those without at least a 0.5-fold ctDNA drop (median = 2.30 mo.) within 4 

weeks of treatment start. See also Figure S3.
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Figure 4: Multiparameter Bayesian frameworks for noninvasive outcome classification.
A) Schematic depicting the discovery and validation approach for generating and testing the 

DIREct models.

B) Patient characteristics. Each column represents an individual patient. Tumor histology, 

smoking status, best overall response, tumor PD-L1 expression, and PD-(L)1 blockade-

based ICI therapy type (PD-(L)1 blockade alone; PD-(L)1 blockade with either CTLA-4 or 

chemotherapy) are indicated. PFS is shown in months, where asterisks signify ongoing 

responses. TMB is presented as the number of nonsynonymous mutations per megabase of 

the coding exome captured, measured in the blood (See Figure S2A–B). Mutations in the 

most recurrently mutated genes in TCGA NSCLC cases that also overlapped the NSCLC-

focused CAPP-Seq selector in our cohort are shown at the bottom. See also Figure S4.
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Figure 5: DIREct-On enables fully noninvasive outcome classification.
A) Proportion of patients expected to achieve DCB (blue) or NDB (orange) by the DIREct-

Pre model stratified by clinical outcome determined by RECIST in the DIREct Discovery 

Cohort (n = 34).

B) Probability of PFS for high DIREct-Pre score (median = 8.2 mo.) and low DIREct-Pre 

score (median = 2.0 mo.) patients in the DIREct Discovery Cohort, using the optimal cut-

point identified by LOOCV analysis (n = 34).

C) Probability of PFS for high DIREct-Pre score (median = 8.4 mo.) and low DIREct-Pre 

score (median = 2.6 mo.) patients in the DIREct Validation Cohort using the cut-point 

defined in the DIREct Discovery Cohort (n = 38).

D) Hazard ratio (top) or accuracy (bottom) for low scores (below LOOCV-generated cut-

point) of each model with the indicated parameters only considering patients with all 

parameters available in the DIREct Discovery Cohort (n = 26). Error bars represent the 95% 

CIs generated by bootstrapping. NS = not significant, ** = P < 0.01.

E) Proportion of patients expected to achieve DCB (blue) or NDB (orange) by DIREct-On 

stratified by clinical outcome determined by RECIST in the DIREct Discovery Cohort (n = 

34).
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F) Probability of PFS for high DIREct-On score (median = 16.5 mo.) and low DIREct-On 

score (median = 1.9 mo.) patients in the DIREct Discovery Cohort, using the optimal cut-

point identified by LOOCV analysis (n = 34).

G) Probability of PFS for high DIREct-On score (median = 8.5 mo.) and low DIREct-On 

score (median = 2.1 mo.) patients in the DIREct Validation Cohort using the cut-point 

defined in the DIREct Discovery Cohort (n = 38).

H) Accuracy for each individual parameter and DIREct-On in the combined DIREct 

Discovery and Validation Cohorts for those cases with all data types available, using the cut-

points identified the DIREct Discovery Cohort (n = 58). Error bars represent 95% CIs 

generated by bootstrapping. ** = P < 0.01, *** = P < 0.001.

I) Net reclassification improvement of DIREct-On compared to each individual feature (top) 

and DIREct-On compared to Bayesian models with each feature that comprises DIREct-On 

removed (bottom). Errors bars represent 95% CIs generated by bootstrapping. * = P < 0.01, 

** = P < 0.01. See also Figure S5.
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Figure 6: Clinical course for patients in the DIREct Discovery and Validation Cohorts.
Swimmers chart for patients with high (left) or low (right) DIREct-on scores. Chart depicts 

timing of on-treatment blood draw for DIREct-On results (triangles), RECIST v1.1 status at 

the first scan (squares without outline) and the scan demonstrating the best overall response 

(squares with outline). In cases where the first scan was also the best overall response scan 

only the first scan is shown. Progression events or time of censoring is shown (red circle = 

progression, open circle = no progression at last follow-up). Last infusion date is depicted as 

a vertical line (black = treatment finished, pink = treatment ongoing). Patients belonging to 

the DIREct Discovery (purple) or Validation Cohort (tan) are indicated by diamonds. See 

also Figure S6.
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Figure 7: DIREct-On enables early forecasting of ultimate outcomes.
A) Probability of PFS for high DIREct-On score (median = 11.69 mo.) patients, actual DCB 

patients measured by RECIST (median = 11.69 mo.), low DIREct-On score (median = 1.94 

mo.) patients, and actual NDB patients measured by RECIST (median = 1.94 mo.) in the 

combined DIREct Discovery and Validation cohorts (n = 72).

B) Probability of PFS from start of therapy stratified by DIREct-On score (solid line = 

expected DCB, dashed lines = expected NDB) in patients in the DIREct Discovery and 

Validation Cohorts treated with PD-1/PD-L1 single-agent blockade (purple), PD-1 and 

CTLA-4 combination therapy (orange), or the combination of PD-1 and chemotherapy 

(green).

C) DIREct-On score in the combined DIREct Discovery and Validation Cohorts (indicated 

by shape and color) stratified by response measured by RECIST and DCB versus NDB. The 

horizontal line indicates the threshold identified in the discovery cohort to best classify DCB 

versus NDB.

D) Vignette for patient with high DIREct-On score and stable disease at the first scan.

E) Vignette for patient with low DIREct-On score and stable disease at the first scan.
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F) Probability of PFS for high DIREct-On score (median = 10.26 mo.) and low DIREct-On 

score (median = 3.62 mo.), in those patients with RECIST stable disease at the first available 

scan in the combined DIREct Discovery and Validation Cohorts (n = 18).

G) Potential application of DIREct-On to personalize immunotherapy in front-line treatment 

of advanced NSCLC. Patients could begin by receiving single agent PD-(L)1 blockade for 

one cycle and could then either remain on PD-(L)1 blockade if DIREct-On forecasts durable 

response or undergo treatment adaptation or escalation if DIREct-On forecasts lack of 

durable benefit. See also Figure S7.
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