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Abstract
The automatic identification and segmentation of edemas associated with diabetic macular edema (DME) constitutes a
crucial ophthalmological issue as they provide useful information for the evaluation of the disease severity. According to
clinical knowledge, the DME disorder can be categorized into three main pathological types: serous retinal detachment
(SRD), cystoid macular edema (CME), and diffuse retinal thickening (DRT). The implementation of computational systems
for their automatic extraction and characterization may help the clinicians in their daily clinical practice, adjusting the
diagnosis and therapies and consequently the life quality of the patients. In this context, this paper proposes a fully automatic
system for the identification, segmentation and characterization of the three ME types using optical coherence tomography
(OCT) images. In the case of SRD and CME edemas, different approaches were implemented adapting graph cuts and
active contours for their identification and precise delimitation. In the case of the DRT edemas, given their fuzzy regional
appearance that requires a complex extraction process, an exhaustive analysis using a learning strategy was designed,
exploiting intensity, texture, and clinical-based information. The different steps of this methodology were validated with
a heterogeneous set of 262 OCT images, using the manual labeling provided by an expert clinician. In general terms, the
system provided satisfactory results, reaching Dice coefficient scores of 0.8768, 0.7475, and 0.8913 for the segmentation of
SRD, CME, and DRT edemas, respectively.

Keywords Computer-aided diagnosis · Retinal imaging · Optical coherence tomography · Diabetic macular edema ·
Fluid segmentation

Introduction

The presence of macular edemas (ME) constitutes a retinal
disease that produces, as main symptoms, a blurred or
wavy central vision that could also induce a change in
the color perception of the visual acuity [24]. Different
medical studies reported that this eye disorder is caused
by damage in the retinal microvascularity that consequently
carries a problematic leak of blood within the retinal
tissues. The presence of this intraretinal fluid leads to a
significant deterioration of the morphology and architecture
of the retinal tissues (especially regarding its thickness),
reducing consequently the visual acuity of the patient.
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This eye fundus pathology is prevalent in advanced
stages of significant retinal diseases including diabetic
macular edema (DME) or age-related macular degeneration
(AMD). DME is considered one of the leading causes
of blindness and visual impairment among working-aged
adults in industrially developed countries [5]. Although few
clinical methods, such as anti-vascular endothelial growth
factor (AntiVEGF) therapy, are successfully applied with
patients with DME, the availability of robust and sensitive
imaging biomarkers may benefit the early diagnosis,
allowing consequently the prescription of more adjusted
treatments [4].

Computer-aided diagnosis (CAD) systems have gained
popularity over the recent years as auxiliary tools to
support the clinician’s diagnosis and evaluation of many
significative diseases. Many of them include, as source
of information, the input of different medical imaging
modalities. Actually, in ophthalmology, optical coherence
tomography (OCT) has became nowadays a valuable image
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modality for the analysis and diagnosis of many retinal
disorders, specially those that affects the retinal layers, as
the presence of intraretinal MEs. This imaging technique
offers an easy and direct visualization of the in vivo
histopathology of the retinal tissues in a contactless and
non-invasive capturing process. Given that, nowadays,
it is extensively used in the clinical practice of many
ophthalmological services for the diagnosis and follow-up
of patients with different eye disorders.

Using the OCT image modality as reference, Otani et
al. [29] established a novel clinical classification that char-
acterizes the abnormal intraretinal fluid accumulations. In
particular, this clinical classification enables the identifica-
tion and categorization of the MEs associated with DME
into 3 main pathological types: serous retinal detachment
(SRD), cystoid macular edema (CME), and diffuse retinal
thickening (DRT). In the OCT images, SRD edemas are typ-
ically recognized as a “dome-shape” hyporeflective region
that presents a significant contrast over the nearby tissue
(the photoreceptor layer). In the case of CME edemas, they
are clinically defined as a hyporeflective cystoid space sur-
rounded by highly reflective membranes that represent the
“cystoid-cavities.” Finally, DRT edemas typically prolifer-
ate in the outer retina layer with a “sponge-like” appearance.
This pattern results as consequence of the absence of lim-
iting membranes that constrain the fluid in this specific
retinal region. Posteriorly, this classification was extended
by Panozzo et al. [30], characterizing these 3 ME types
using additional criteria in a more precise classification.
In this study, the authors defined 5 clinical criteria: reti-
nal thickness, diffusion, volume, morphology, and presence
of vitreous traction [2]. Figure 1 includes the simultaneous
presence of the 3 ME types in a particular OCT image, illus-
trating the complexity and heterogeneity of the DME retinal
disorder.

Given the relevance of the disease, different works were
presented over the recent years related with this issue. Part
of them faced globally the identification of pathological

scenarios by the general presence of fluid accumulations
(addressing the cases that are typically more visible and
omitting any type of characterization). As reference, in the
work of Sidibé et al. [40], the authors proposed a strategy
that firstly models the appearance of normal OCT images
using Gaussian mixture models (GMM) to, then, detect
cases with the presence of intraretinal fluid as outliers. Roy
et al. [34] applied a convolutional architecture based on
the RelayNet network to simultaneously segment the retinal
layers as well as the fluid regions that may be present in the
OCT images. Montuoro et al. [25] proposed an automatic
method based on graph theory that simultaneously allows
the segmentation of the retinal layers and the existing fluid
regions. In particular, a probability map was used to perform
the initial surface segmentation to posteriorly extract several
context-based features.

Other proposals faced partially the ME disease, extract-
ing particular pathological cases, mainly the most directly
identifiable, as the case of CME edemas. In that line, Girish
et al. [14] designed a methodology based on a marker-
controlled watershed method to segment existing CME
regions. In the works of Lee et al. [19] and Schlegl et al.
[39], similar strategies were proposed to segment CME ede-
mas using adapted CNNs. Venhuizen et al. [44] developed
a deep learning method for the automatic segmentation and
quantification of CME edemas using the FCNN architec-
ture. Rashno et al. [32] focused their study on the automatic
segmentation of CME regions using a neutrosophic trans-
formation and a graph-based shortest path method. Sun et
al. [43] presented a framework for the SRD edema seg-
mentation that combined AdaBoost classification and a
shape-constrained graph cut. Similarly, Lee et al. [20] pro-
posed a CNN method for the detection and quantification
of SRD cases. Novosel et al. [28] proposed a strategy based
on loosely coupled level set (LCLS) to simultaneously seg-
ment the retinal layers and the pathological structures that
are present in the OCT images, as drusen or SRD edemas.
Ding et al. [11] used a graph cut approach with a split

Fig. 1 OCT image with the
localization of the 3 defined
types of DME: SRD, CME, and
DRT
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Bregman-based segmentation method to delimit the fluid
regions. Then, a learning strategy was implemented, using
as reference the previously identified dark regions to clas-
sify each candidate as a case of SRD or CME. A similar
strategy was proposed by Zheng et al. [47], where the output
of a split Bregman-based segmentation method is compared
and validated with the manual delimitation of an expert.

Despite the existence of general or partial proposals that
faced the analysis of the DME disease, at present, only
the work of Samagaio et al. [35] addressed the automatic
localization of the 3 clinically defined edema types of DME
using OCT scans. To date, no other work faced the entire
process of simultaneous localization, characterization, and
also the segmentation of all the existing cases of the 3
defined DME types in OCT images.

Summarizing, the main contributions of the paper
include (i) a new methodology for the simultaneous
identification, characterization, and segmentation of the 3
defined types of edemas (SRD, CME, and DRT). In the
case of SRD and CME edemas, different approaches were
implemented adapting graph cuts and active contours for
their identification and precise delimitation. In the case of
the DRT edemas, given their fuzzy regional appearance
that requires a complex extraction process, an exhaustive
analysis using a learning strategy was designed, exploiting
intensity, texture, and clinical-based information; (ii) to
date, this work represents the only proposal that accurately
identifies, characterizes, and segments all the cases of the
ME types that are associated with DME, a significant
disease of great impact at the moment; (iii) this fully
automatic system provides crucial information that can
facilitate the early diagnosis of a relevant disease as is DME,
among the main causes of vision loss and blindness in the
developed countries.

The manuscript is organized as follows: “Methodology”
presents a detailed explanation about the steps that were
followed for the identification and subsequent segmentation
of the 3 ME types. “Results” includes the results and
validation of the main designed stages of the methodology.
“Discussion” exposes the discussion of the obtained results
and the main challenges that were faced in this work.
Finally, “Conclusions” depicts the general conclusions of
the study and the possible future lines of work.

Methodology

As illustrated in Fig. 2, the designed pipeline of the method
is composed of 3 main stages. Firstly, the system identifies
4 representative retinal layers that delimit the ROI where
the intraretinal fluid may appear. Posteriorly, this area is
sub-divided into 2 main regions: the inner and the outer
retinas. This ROI division facilitates the identification of
each ME type given their characteristic relative positions
within the retina. Regarding the identification stage, we
follow a similar strategy for the detection of the SRD
and CME edemas as in [35]. Then, the system exploits
an adjusted combination of pre-processing filter and
robust segmentation algorithms for their precise extraction.
In the case of the DRT edemas, a learning strategy
was implemented for the identification and subsequent
segmentation of this ME type. Each one of these stages is
going to be discussed next.

Delimitation of the Region of Interest

MEs are accumulated in typical relative positions within
the main retinal layers [29]. In particular, CMEs nor-

Fig. 2 Main stages of the proposed methodology for the identification and segmentation of the DME types: SRD, CME, and DRT
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mally start to manifest symptoms in the inner retina. In
contrast, SRD and DRT edemas typically appear in the
outer retina. In more severe pathological stages, CMEs
can also proliferate from the inner to the outer retina and
merge with the DRT edemas. Based on those premises,
two retinal regions were particularly segmented, facilitating
the posterior identification and analysis of the patholog-
ical regions that are associated with the DME disease,
with restricted and limited regions of interest for each
target case.

For this purpose, initially, the system detects 4 retinal
layers that delimit the entire region of analysis. Next, 2 sub-
retinal regions are identified to facilitate the extraction of
each ME type. This complete process is described with more
detail in the next subsections.

Retinal Layer Segmentation

The 4 retinal layers that provide the delimitation of the
entire search space are the following: the inner limiting
membrane (ILM), the outer plexiform layer (OPL), the
junction of inner and outer segments (ISOS), and the retinal
pigment epithelium (RPE). The identification of these
retinal layers initially follows the work of González-López
et al. [15]. To do that, firstly, we employed a noise filtering
strategy based on the Fourier Butterworth filter to not only
efficiently reduce the speckle noise but also preserve the
clinical information contained in the images [36]. Then,
an active contour-based model is used to segment and
extract the main retinal layers. Finally, different refinement
processes are implemented to correct existing segmentation
errors, improving the accuracy of the obtained results. In
this context, different anatomical knowledge was used, such
as the horizontal placement of the retinal layers and their
relative positions over the analyzed OCT images. Using this
strategy, we obtain the ILM, ISOS, and RPE layers.

The proliferation of pathological structures, as the MEs
in our case, carries a significant deterioration of the
retinal architecture and morphology [10]. Specifically, these
alterations impact drastically the intermediate intraretinal
layers, as the aimed OPL layer, hardening its identification
process. Figure 3 shows 2 representative examples of OCT
images of patients with non-pathological and pathological

conditions, illustrating a significative deterioration of the
OPL layer with the presence of the DME disease. Given that
the previous strategy does not offer satisfactory results with
this layer in pathological scenarios, the previous approach
is complemented with a specific strategy for the OPL
layer. In this case, the method uses the previous detected
ISOS layer as baseline for the application of a region
growing approach [48]. Over this layer, N initial points
were randomly generated and used as seeds for the region
growing approach, as shown in Fig. 4a. The number of
generated seeds is proportional to the image dimensionality,
representing an amount of 10% of the input OCT image
width. This way, we obtain the entire region over the ISOS
layer by intensity similarity. Hence, as illustrated in Fig. 4b,
the upper limits of the obtained region corresponds to the
target identification of the OPL layer.

Division of the ROI in Two Subregions: Inner and Outer
Retinas

As said, CME edemas begin to manifest in the inner layers
of the retina. However, in more advanced pathological
scenarios, these edemas proliferate to the outer retina,
merging with the DRT edemas. In opposition, the SRD
and DRT edemas present a characteristic relative position
in the outer retinal layers, without spreading to the upper
retinal region [29]. The identification of these retinal regions
simplifies the identification of each type of intraretinal fluid
accumulation, reducing significantly the search space for
each ME type.

Based on these clinical premises, 2 main subregions were
defined to facilitate the identification process: the inner and
the outer retinas. As illustrated in Fig. 4, the inner retina
(Fig. 4c) is delimited by the ILM and the OPL layers as
superior an inferior boundaries, whereas the outer retina
(Fig. 4d) presents the OPL and the RPE layers as limits,
respectively.

Identification of the SRD and CME Edemas

In this stage, 2 specific and individual strategies were
designed for the identification of the SRD and CME edemas
(see Fig. 2) as in [35]. In particular, the SRD edema is

Fig. 3 Representative examples
of OCT images. a Normal OCT
image without the presence of
DME. b OCT image with the
pathological presence of DME
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Fig. 4 Example of OCT image with the identification of the inner and outer retinal regions. a Identification of the ILM, ISOS, and RPE layers.
b Additional delimitation of the OPL layer. c Identified inner retina, between the ILM and the OPL layers. d Identified outer retina, between the
OPL and the RPE layers

searched in the outer retina, whereas the CME edemas are
verified in both retinal regions, with adapted approaches to
the image characteristics of each region.

SRD Detection

The system automatically identifies the SRD edemas
by the combination of clinical knowledge and image
processing techniques. The method firstly applies an
adaptive thresholding to segment the areas with identical
intensity profiles. Then, to decrease the false positive rates,
a list of clinical restrictions was implemented, using criteria
such as relative position, area, morphology, thickness of the
photoreceptor layer, or the intensity profile [35]. Figure 5
presents an illustrative example of an OCT image with the
identification of the existing SRD edema.

CME Detection

CME edemas are typically characterized as cystoid spaces
with a significant low-intensity profile in comparison with
the surrounding retinal tissues. These edemas present a
significant variability in terms of dimensions, shape, or
morphology, appearing from a cystoid to a petaloid-like
appearance. In the early stages of the disease, they typically
emerge in the inner retina (ILM/OPL), where the contrast
with the surrounding retinal tissue is significative. However,
in more severe clinical stages, they can also proliferate in the
outer retina (OPL/RPE). This region, with a low-intensity
profile, presents a reduced contrast with the edemas,
hardening significantly their identification. To detect the
CME edemas, we apply a similar strategy used for the
identification of the SRD edemas [35]. Firstly, an adaptive

Fig. 5 OCT image with the
identification of the SRD edema
(+) as well as the ILM, ISOS,
and RPE layers. ILM/RPE
delimits the entire ROI.
ISOS/RPE indicates the
photoreceptor layer
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Fig. 6 OCT image with the
identification of existing CME
edemas (identified with
asterisks)

thresholding is applied to identify all the CME candidates,
separately in the inner and the outer retinas. Then, a post-
processing stage based on a flooding process over the
image gradient was applied to merge partial identifications.
Finally, a list of clinical criteria was applied to filter any
existing false CME candidate: area size, major and minor
axes of the candidates, retinal thickness, and eccentricity
were used to preserve the true detections. Figure 6 includes
a representative example of an OCT image with the
identification of the visible CME edemas.

SRD and CME Precise Segmentation

Regarding the SRD and CME edemas, the proposed
system exploits an adjusted combination of pre-processing
filters and robust segmentation algorithms for the precise
extraction of these pathological fluid regions. Figure 7
exposes a representative example of OCT image including
SRD and CME edemas, illustrating their initial localizations
and their target regions.

Image Pre-Procesing for the Segmentation Process

Using as reference the preliminary identifications of
the SRD and CME edemas, we continue with the
precise segmentation of each case. The OCT images
are often affected by motion artifacts, speckle noise, or
poor soft tissues that makes the analysis of different
pathological structures difficult [37]. To eliminate the
noise and small artifacts while preserving and enhancing

the retinal structures and in order to facilitate the
segmentation process, we implemented the optimized
anisotropic diffusion filtering proposed by Kroon et al. [18].
This filter consists of an iterative method that enhances
the contrast between the pathological and non-pathological
retinal structures. In this way, the filter describes the local
image structure using the “second-moment matrix,” also
designed as a structure tensor. This descriptor is transformed
into the diffusion tensor D, which is commonly determined
in an iterative forward difference approximation, as follows:

δu

δt
= � × (D � u) (1)

Where u indicates the image and t the diffusion time.
In this filter, the parameters magnitude of diffusion and
direction are estimated and correlated.

Figure 8 illustrates a representative example of appli-
cation of the optimized anisotropic filter in a pathological
OCT image. As shown, this filter significantly reduces the
noise while preserving and simultaneously highlighting the
limiting boundaries of the SRD and CME edemas, therefore
facilitating the target segmentation process.

For the segmentation of the SRD and CME regions,
3 robust alternative strategies were adapted and analyzed
in this work, using as seed the initial extractions of the
localization process: (a) an approach based on graph cuts
[33]; (b) another based on a Chan-Vese active contour
model [7]; (c) a last one adapting a geodesic active contour
model [6].

Fig. 7 OCT image with the
SRD (plus sign) and CME
(asterisk) edemas

1340 J Digit Imaging (2020) 33:1335–1351



Fig. 8 Pre-processing stage. a
Input OCT image. b
Pre-processed OCT image after
applying the anisotropic
diffusion filter

Graph Cut Approach

We based our approach in the GrabCut proposal of Rother
et al. [33], given its suitability and adequate results for
similar segmentation problems [8, 13]. The main goal
of this segmentation strategy is to classify the pixels in
the OCT image into 2 categories, the foreground (the
pathological fluid regions) and the background. To do that,
as said, the algorithm, as the other studied approaches,
uses the initial extractions of the localization process as
a first approximation of the foreground region, as shown
in Fig. 9. Gaussian mixture models (GMMs) are created
for the initial foreground and background regions. Then,
each pixel of the OCT image is assigned to the most likely
Gaussian component in the background or the foreground
GMM. Finally, an interactive min-cut algorithm is applied
to achieve the target segmentation, precisely separating both
regions.

Chan-Vese Active Contour Model Approach

This active contour model proposed by Chan et al. [7] is
also considered as a powerful and flexible method, which
is able to perform segmentation tasks in a large variability
of image types. This method, based on the Mumford-
Shad function [26] and the level set approach [23], offered
satisfactory results in similar complex medical imaging
segmentation issues [9, 46]. In this line, the Chan-Vese
model assumes that the fluid regions and the background
present a Gaussian distribution with the same standard
deviation. Using this information as reference, the model
seeks a precise segmentation by minimizing the energy
function E( �C) based on the curve �C that represents the

limits of the fluid regions. In particular, the Chan-Vese
model is defined by:

E( �C) =
∫

�1

[I (x, y)−c1]2dx+
∫

�c
1

[I (x, y)−c2]2dx+α | �C |
(2)

where I represents the OCT image, �1 is the fluid region,
and �c

1 is the background region. In addition, c1 and c2

are the mean intensity values for the regions �1 and �c
1,

respectively. Moreover, α | �C | represents the smoothness
regularization term, where α is a weighting coefficient and
| �C | indicates the length of the curve �C. This level set
formulation facilitates the identification of regions with
similar image properties, as the case of the target edemas.

Geodesic Active Contour Model Approach

Caselles et al. [6] proposed a segmentation method based
on the relationship between active contours and the
computation of geodesics or minimal distance curves, the
geodesic model. This model was also applied in similar
strategies for the segmentation of pathological regions in
many fields of medical imaging [1, 16]. In particular, the
geodesic model is defined along a curve C(t) and minimized
by evolving the curve in the normal direction, as following:

C(t) = {I (x, y) | θ(t, x, y) = 0} (3)

where I represents the OCT image, t is a time parameter,
and θ(t, x, y) = 0 represents the zero level set of the
function θ . The level set function θ is selected to be a
signed distance function, being negative in the interior
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Fig. 9 Segmentation stage. a, d
OCT images with the presence
of CME edemas. b, e Seed
regions that were obtained in the
CME localization stage. c, f
Final CME segmentations

(the pathological fluid regions) and positive in the exterior
(background) of the zero level set.

DRT Identification and Segmentation

Finally, we identify the presence of the DRT edemas and
segment its constituent region without any pre-processing
stage. DRT edemas are characterized by a “sponge-like”
appearance due to swelling of the surrounding retinal
tissues. This swelling is normally produced by the fluid
accumulations in the OPL/ISOS region, as illustrated in
Fig. 10.

Figure 11 illustrates a schematic representation of the
designed strategy for the detection of the DRT edemas,
analyzing its presence by columns in a process that is com-
posed of 3 main steps: feature extraction, use of classifiers

to identify the DRT presence, and post-processing stages to
complete and refine the final segmented region.

Firstly, to characterize each analyzed region as DRT or
non-DRT, we exploit the information contained in each
column within the search space (the OPL/ISOS region),
where this DME type usually appears. To do that, we use
a window of a defined size that is centered in each column
under analysis, as illustrated in the input image of Fig. 11.
Besides, considering that the thickness of the OPL/ISOS
region is not constant, the height of the window varies
according to the analyzed column in that region, being
adjusted to the OPL/ISOS height. In this way, we extract the
set of features that better discriminate the presence of the
DRT edemas. Given that, a suitable combination of features
based on intensity, texture, and clinical-based information
was analyzed. In fact, a total of 354 features were

Fig. 10 OCT image with the
presence of the DRT edema
(dash-dot-dash)

1342 J Digit Imaging (2020) 33:1335–1351



Fig. 11 Schematic
representation of the designed
strategy for the identification
and segmentation of the DRT
edemas

extracted from the analyzed regions (listed and described in
Table 1).

Given the high dimensionality of the feature set, we
applied different feature selectors to avoid irrelevant and
redundant features as well as measure their potential of
discrimination. In particular, we used 3 selection strategies:
sequential forward selection (SFS) [41], robust feature
selection (RFS) [27], and SVM-forward selector (SVM-FS)
[3]. Generally, the SFS selector adds each feature to the
selected subset by an incremental importance feature order.
In the case of the RFS selector, it identifies the features by
the use of an emphasizing joint �2,1-norm regularization,
selecting those with joint sparsity. Finally, the SVM-FS
selector uses a linear �1-norm SVM to select the features
and a non-linear �1-norm SVM to predict the best subset.

Using the selected feature sets as input, 7 representative
classifiers were trained and tested: the naive Bayes classifier
[12], k-nearest neighbors (kNN) [45], Parzen [21], the
quadratic Bayes normal classifier (QDC) [42], the support
vector machine (SVM) [17], the linear Bayes normal
classifier (LDC) [22], and the decision tree classifier (DTC)
[31]. In the case of the kNN classifier, 3 configurations were
tested, using values of k = [3, 5, 7]. For the refinement of the
DRT segmentation, we use as reference the detected DRT
columns and the thickness of the OPL/ISOS region.

Furthermore, the isolated classifications of all the
columns produce irregularities and discontinuities over the
DRT extraction. Given the consistent and regional appear-
ance of the DRT edemas, we introduced 2 independent
post-processing approaches [38] with 2 specific targets of

Table 1 List of the defined set of 354 features to identify the DRT presence

No. of features Category Features

[1 − 15] Global intensity-based features (GIBS) Maximum, minimum, mean, median, std, variance, 25th percentile, 75th percentile,
skewness, and maximum likelihood estimates for normal distribution

[16 − 20] Gray-level intensity histogram (GLIH) Obliquity, kurtosis, energy, and entropy

[21 − 36] Gray-level co-occurrence matrix (GLCM) Contrast, energy, correlation, and homogeneity

[37 − 117] Histogram of oriented gradients (HOG) 9 windows per bound box and 9 histogram bins

[118 − 245] Gabor Mean and std. orientations = 8 and scale = 8

[246 − 309] Local binary pattern (LBP) Mean and std. number of neighbors = (4, 8, 12, 16) and filter radius: 1–8

[310 − 337] LAWS A collection of convolutional kernels that search for characteristic texture patterns

[338 − 340] Fractal dimension (FD) Mean, std, and lacunarity

[341 − 347] Gray-level run length image (GLRLI) SRE, LRE, GLN, RP, RLN, LGRE, and HGRE

[348 − 354] Retinal thickness analysis The maximum height of the OPL/ISOS, ILM/ISOS, ILM/RPE, and the ratio
between these regions

SRE short run emphasis, LRE long run emphasis, GLN gray-level non-uniformity, RP run percentage, RLN run length non-uniformity, LGRE low
gray-level run emphasis, HGRE high gray-level emphasis
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removing spurious detections and joining partial DRT iden-
tifications. This way, we exploit these regional characteris-
tics, improving the performance of the proposed method:

– The first post-processing approach aims at reducing the
false positive (FP) rates, typically as false detections
that are introduced by the presence of other retinal
structures. In this way, the system analyzes the
minimum width of each DRT region and the distance
to the next closest DRT region, removing small and
isolated DRT detections.

– The second post-processing approach analyzes the
influence of the misclassified regions, with the aim of
reducing the false negative (FN) rates. To do that, we
implemented an aggregation factor (d) that connects
2 consecutive significative detected DRT regions if
the distance between them is smaller than the defined
value of the aggregation factor, considering that those
significantly nearby regions belong to the same global
DRT region.

Results

The proposed methodology was validated using a dataset
composed of 262 OCT images. These images were captured
with a Spectralis® OCT capture device from Heidelberg
Engineering. The OCT scans were obtained using a 7
Line Rater scan configuration with a 30◦ × 5◦ of angle
of capture and with a space of 240μm. These images
are centered on the macula and present a variability of
resolutions ranging from 361 × 1285 to 480 × 1023
pixels. The images were captured from both left and right
eyes of different individuals, presenting a varying degree
of the analyzed DME types in a single scan. This study
was approved by the local ethics committee. To ensure the
anonymity of the patients that participated in the study,
the corresponding images were renamed by the specialists
before being provided for the validation of the proposed
system.

In order to test the performance of the proposed method-
ology, the OCT images were labeled by an expert clinician,
identifying, and categorizing the presence of pathological
regions of the 3 edema types of DME. The performance
of this system was validated using statistical metrics that
are commonly used in the state-of-the-art to measure the
performance of similar computational proposals. In partic-
ular, precision, recall, and Dice coefficients were measured
for the quantitative validation of the results. Mathemati-
cally, these metrics are formulated as indicated in Eqs. 4, 5,

and 6, where TP, TN, FP, and FN indicate true positives, true
negatives, false positives, and false negatives, respectively.

Precision = T P

T P + FP
(4)

Recall = T P

T P + FN
(5)

Dice = 2 × T P

2 × T P + FP + FN
(6)

SRD edemas are considered a particular and less frequent
ME type that commonly affects a reduced group of patients
[29]. Additionally, in each OCT image, it is only possible
to verify the existence, if present, of a single SRD edema.
Given that context, in the analyzed dataset, 22 SRD edemas
were present, being correctly identified in all the cases
by the system. Regarding the segmentation performance,
Table 2 shows the achieved results of the proposed
methodology for the segmentation of the SRD edemas with
and without the explained pre-processing stage that employs
the anisotropic diffusion filter. Using a best configuration of
pre-processing filter and Chan-Vese approach, the proposed
strategy reached an accurate value of 0.8768 for the Dice
coefficient as well as values of 91.16% and 87.48% for
precision and recall, respectively.

Regarding the CME edemas, a total of 829 cases were
identified by the specialist in the entire image dataset.
In this experiments, once again, we analyzed the best
combination of the 3 segmentation approaches with and
without the use of the anisotropic diffusion filter. As
shown in Table 3, the best results were provided by the
combination of pre-processing and Chan-Vese approach,
returning values of 0.7475, 85.22%, and 73.46% for the
Dice coefficient, precision, and recall, respectively. Despite
that the Geodesic approach presents better results than the
Chan-Vese approach without the pre-processing stage, the
combination of pre-processing and Chan-Vese approach
significantly increased the performance of the proposed

Table 2 Results of the SRD segmentation stage using Dice, precision,
and recall metrics

Method Dice Precision Recall

Chan-Vese 0.8705 90.63 86.62

Geodesic 0.7157 78.10% 76.11%

Grabcut 0.6761 80.35% 68.63%

Pre-processing and Chan-Vese 0.8768 91.16% 87.48%

Pre-processing and Geodesic 0.7316 78.40% 78.29%

Pre-processing and Grabcut 0.6703 79.52% 68.83%
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Table 3 Results of the CME segmentation stage using Dice, precision,
and recall metrics

Method Dice Precision Recall

Chan-Vese 0.6604 90.13% 58.97%

Geodesic 0.6975 74.06% 76.45%

Grabcut 0.6178 91.38% 53.77%

Pre-processing and Chan-Vese 0.7475 85.22% 73.46%

Pre-processing and geodesic 0.7264 71,16% 82,37%

Pre-processing and Grabcut 0.6290 91.03% 55.40%

system. This provided by the characteristics of the pre-
processing filter, as it generates images with a higher
homogeneity in terms of intensities over the analyzed retinal
layers. This scenario benefits the Chan-Vese approach that
often achieves better segmentation results in images with
intensity homogeneity [7].

Regarding the DRT edemas, we analyzed the perfor-
mance of the proposed methodology in 3 main steps:
firstly, we tested the detection of the columns contain-
ing DRT edemas; then, we determined the best combina-
tion between feature selectors and classifiers for the DRT
segmentation. Finally, we analyzed the post-processing
approaches to determine their influence and impact in the
reduction of the FP and FN rates, using the best-trained
configuration.

To do that, using the labeled regions that were identified
by the specialist as DRT columns, we constructed a set of
features by the extraction of the defined 354 features from
2576 samples with non-DRT and DRT edema presence. The
constructed set was randomly divided into 2 subsets with
the same size, one for training and other for testing. Then, to
ensure the accuracy of the global performance, we trained
the classifiers using a 10-fold cross-validation with a total of
50 repetitions, being calculated the mean error/accuracy to
measure the final performance of the method. Then, using
the best configuration of each classifier, we validated the
performance of the proposed system with 92,571 columns
containing DRT and 52,845 non-DRT columns that were
obtained from 131 OCT images.

Regarding the DRT detection, we analyzed the per-
formance of the proposed method using different feature
selectors and classifiers, as shown in Table 4. Firstly, to
determine the subset of features that better discriminate the
presence of this ME type, as said, 3 feature selectors were
applied: RFS, SVM-FS, and SFS. In this analysis, gener-
ally, a majority of the selected features were taken from
Gabor, LBP, HOG, and LAWS as they present the highest
capacity of differentiation between the DRT and non-DRT
patterns supporting the discrimination on the characteris-
tic gradients and textures of this pathological presence.
As we can observe in Table 4, the best configuration was

Table 4 Accuracy results that were obtained with the tested classifiers
for the DRT detection using different feature set sizes

Classifiers Properties SFS RFS SVM-FS

DTC
No. of features 19 51 23

Accuracy 0.8538 0.8446 0.8461

3-kNN
No. of features 74 139 31

Accuracy 0.8867 0.8920 0.8570

5-kNN
No. of features 69 112 80

Accuracy 0.8858 0.8904 0.8635

7-kNN
No. of features 64 112 80

Accuracy 0.8835 0.8904 0.8635

LDC
No. of features 76 140 83

Accuracy 0.9031 0.8802 0.8710

Naive Bayes
No. of features 8 141 6

Accuracy 0.8339 0.8297 0.8349

Parzen
No. of features 18 92 69

Accuracy 0.8936 0.8954 0.8712

QDC
No. of features 26 124 65

Accuracy 0.8870 0.8612 0.8609

SVM
No. of features 75 142 53

Accuracy 0.8989 0.8973 0.8801

achieved by the LDC classifier combined with the char-
acteristics that were indicated by the SFS feature selector.
In particular, a total of 76 features were selected in this
best combination, achieving an accuracy of 90.31%. In
opposition, the naive Bayes classifier with the RFS fea-
ture selector obtained the lowest rates, with an accuracy of
82.97%.

Regarding the DRT segmentation refinement, we ana-
lyzed the best configuration (LDC classifier and SFS feature
selector) that was obtained for the DRT detection using
the thickness of the OPL/ISOS region. Table 5 lists the
obtained results for the DRT segmentation before any post-
processing refinement using again Dice coefficient, preci-
sion, and recall. The proposed strategy achieved a Dice
coefficient of 0.8369 as well as values of 95.69% and
74.20% for precision and recall, respectively.

Using these results as baseline, next, we tested the
capabilities of the designed post-processing approaches.
Thus, Table 6 presents a comparative analysis for the
application of both designed strategies. As we can observe,
the first post-processing approach achieved an improvement

Table 5 Results of the DRT segmentation process before the post-
processing stage

No post-processing

Classifier Dice Precision Recall

LDC 0.8369 0.9569 0.7420
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Table 6 Results of the DRT segmentation process after the first and second post-processing approaches

First post-processing Second post-processing

Classifier Wmin dmin Dice Precision Recall d Dice Precision Recall

LDC 33 1 0.8441 0.9538 0.7570 47 0.8913 0.9080 0.8784

in the Dice coefficient of 1%. On the other hand, the
best increment in the accuracy results was obtained using
the second post-processing approach with the aggregation
factor (d). In this case, the best performance was obtained
with a value of d = 47, reaching a Dice coefficient
of 0.8913. This strategy leads to an improvement over
5% of the Dice coefficient. With disparity in their
relevance, we can conclude that the application of the
post-processing approaches refines and improves the
segmentation performance of the extracted DRT regions.

Discussion

Over the recent years, the OCT image modality was
established as an accurate source of information for a
precise retinal cross-sectional visualization and analysis
of different eye anatomical structures, facilitating the
diagnosis of many diseases, specially those that proliferate
among the retinal layers, as represents the case of the
DME disease. Globally, DME is a leading cause of
vision impairment that constitutes a serious health problem,
affecting approximately 10% of the people with diabetes.
This pathology is caused by the fluid accumulations that
proliferate in the macular region. In this context, these
fluid accumulations typically present a great variability
and heterogeneity within the retinal tissues, characterizing
different ME types. Despite this complex and challenging

scenario, the proposed system is able to efficiently identify
and segment the hypothetical presence of each ME type,
even when they appear simultaneously.

As said, SRD edemas are less frequent than the other
2 DME types, given that this case affects a reduced
group of patients. Moreover, when present, only one SRD
edema appears in each individual. The proposed system
for the segmentation of this ME type achieved satisfactory
identification and segmentation results, providing accurate
extractions as the case that is illustrated in Fig. 12. In
particular, the combination of the anisotropic diffusion
filter with the Chan-Vese approach offered the best
results, presenting a precise segmentation of the SRD
regions.

Regarding the SRD and CME edemas, we want to
highlight that we use as a reference their respective pre-
liminary identifications to make the precise segmentation.
In this line, the segmentation performance was evaluated
even when the preliminary identifications were not correctly
obtained (as happens in some CME cases), being therefore
the general performance of the proposed method penal-
ized. If the performance analysis would have been measured
only over the correct localizations, the performance metrics
would offer even better results.

Regarding the methodological novelty and potential
relevance of the proposed method with respect to other
similar approaches, we would like to point out that in
the literature, to date, there is no existing methodology

Fig. 12 Examples of results of the SRD segmentation stage. a, d Original OCT images. b, e Segmented SRD regions. c, b OCT images with the
segmented SRD regions
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Table 7 SRD segmentation performance comparison of the state-of-
the-art methods and the proposed approach

Method Dice Precision Recall

Schlegl et al. [39] – 90.00% 67.00%

Lee et al. [20] 0.82 – –

Novosel et al. [28] 0.89 – –

Proposed 0.88 91.16% 87.48%

specifically designed for the automatic segmentation and
characterization of all the existing pathological cases of
DME, following the clinical classification of reference in
the ophthalmological field [29].

In terms of a comparative analysis, we have to consider
that, to date, there is no other entire dataset that was labeled
simultaneously with the 3 types of ME. In particular, in the
case of SRD and CME edemas, the existing state-of-the-art
method was validated with different datasets, without any
specifications about the selected cases that were used in the
study and under different settings (pixel-level resolution,
quality, OCT device, image size, signal averaging, image
acquisition protocol, labelling of different clinical experts,
enhanced depth, etc.).

Table 7 exposes a comparative analysis between the
few existing proposals of the literature that faced the
automatic segmentation of the SRD edemas and our
proposed approach. As said, we have to consider that
the presented methods were tested using different private
datasets. Considering this, in any case, our method shows
a competitive performance compared with the rest of the
proposals.

In the case of the CME edemas, the proposed system
was capable of satisfactorily delimiting the area occupied
by these edemas, as illustrated in the examples of Fig. 13.
Despite their high variability in terms of shape, size,
and low contrast with the surrounding tissue of many

Table 8 CME segmentation performance comparison of the state-of-
the-art methods and the proposed approach

Method Dice Precision Recall

Lee et al. [19] 0.73 – –

Venhuizen et al. [44] 0.75 – –

Girish et al. [14] 0.71 79.00% 66.00%

Rashno et al. [32] 0.71 73.89% 88.85%

Proposed 0.75 85.22% 73.46%

cases, as said, the proposed system achieved satisfactory
results.

Complementarily, Table 8 lists a comparative analysis
between different representative works of the literature that
faced the specific segmentation of CME edemas and our
proposed system. In the same way as for the SRD cases, this
comparison presents some limitations given that each work
performed their study using a different dataset, without any
specifications about the selected cases that were used in
the study. Additionally, we consider that our dataset fits
the real conditions that are commonly faced by the expert
clinicians, including the simultaneous presence of different
types of ME. In this context, the proposed system shows a
competitive performance compared with the current state of
the art.

In the case of the DRT edemas, to date, no scientific study
proposed a strategy that automatically segments the region
occupied by this ME type. This challenge is related to the
absence of limiting membranes, as well as to the significant
difficulties of pattern variability for the correct delimitation
of the pathological tissues that are affected by this ME type.
Furthermore, to improve the performance of the proposed
method, two independent post-processing approaches were
included and analyzed. Figure 14b shows an example of
OCT image after the application of the first post-processing
approach. As we can see, the presence of artifacts in the

Fig. 13 Examples of results of the CME segmentation stage. b, d Original OCT images. b, e Segmented CME regions. c, f OCT images with the
segmented CME regions
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Fig. 14 Example of results of
the DRT segmentation process.
a DRT segmentation without the
application of any
post-processing approach. b
DRT segmentation after the
application of the first
post-processing approach. c
DRT segmentation after the
application of the second
post-processing approach

outer retina may produce wrong detections. In this context,
the first post-processing aims at the reduction of the FP
rates. On the other hand, as illustrated in Fig. 14c, the
application of the second post-processing approach further
provided the unification of non-DRT regions, reducing the
FN rates. The proposed method achieved the best results
with a Dice coefficient of 0.8913 after applying the second
post-processing approach with an aggregation factor of d =
47 using the LDC classifier.

In general, as we can observe in the literature, most of
the presented methods only aimed at the partial analysis
of CME or SRD regions and, therefore, addressed only
the pathological scenarios of DME that are typically more
visible and structurally well-defined. Contrary to the other
types, DRT edemas were barely faced. In addition, to date,
our contribution represents the only one that accurately
identifies, characterizes, and segments all the cases of the
ME types that are associated with DME, even when they
appear simultaneously.

Conclusions

In this work, we propose a complete methodology for
the identification, characterization, and segmentation of
the 3 defined types of edemas (SRD, CME, and DRT)
in OCT images that are associated with the DME
disease by the clinical classification of reference in
the ophthalmological field. This fully automatic system

provides crucial information that facilitates the diagnostic
process and monitoring of the patients with DME.

For this purpose, firstly, we restricted the search space of
these edemas using, as reference, 4 principal retinal layers
that are initially segmented: ILM, OPL, ISOS, and RPE
layers. These layers enable the delimitation of the ROI
and the posterior sub-division in the inner and the outer
retinas. Regarding the SRD and CME edemas, different
specific approaches were designed and analyzed for the
localization and the subsequent segmentation of the area
that is affected by these 2 types of MEs. In the case of the
DRT edemas, given their fuzzy presence and not clearly
defined boundaries, a learning strategy was implemented
and applied only in the OPL/ISOS region where this edema
typically appears. The experimental results showed that the
proposed system achieved satisfactory results, even with the
simultaneous appearance of several edemas of the different
analyzed DME types.

Summarizing, in the segmentation of the SRD and
CME edemas, the system achieved Dice coefficient val-
ues of 0.8768 and 0.7475, respectively. Regarding the
DRT edemas, the system was capable to successfully
localize and segment this DME type, reaching a value
of 0.8913 also for the Dice coefficient. In this way,
despite the high variability and heterogeneity of the ede-
mas in terms of size, morphology, contrast, and localization
of each type, the proposed system satisfactorily identi-
fies and segments the pathological areas of each consid-
ered ME disorder. Therefore, the proposed methodology
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offers an auxiliary tool for the ophthalmologists, facil-
itating the visualization, diagnosis, and monitoring of
the DME disease, adjusting the treatments options and
consequently improving significantly the life quality of
the patients.

As future work, we plan to extend the dataset in a
meaningful way for the application of convolutional neural
networks (CNNs). Given the potential existence of other
structures, we also plan to extend the proposed methodology
for the automatic segmentation of other relevant eye
diseases, such as age-related macular degeneration, central
serous retinopathy, and peripheral retinal holes, among
others. In this way, it will be possible to detect more
precisely the disease condition, specially in early stages.

Funding Information This work is supported by the Instituto de
Salud Carlos III, Government of Spain, and FEDER funds through
the DTS18/00136 research project and by Ministerio de Ciencia,
Innovación y Universidades, Government of Spain through the
DPI2015-69948-R and RTI2018-095894-B-I00 research projects.
Also, this work has received financial support from the European
Union (European Regional Development Fund - ERDF) and the
Xunta de Galicia, Centro de Investigación del Sistema Universitário
de Galicia, Ref. ED431G 2019/01; and Grupos de Referencia
Competitiva, Ref. ED431C 2016-047.

References
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