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Abstract

Ultrasonography with fine-needle aspiration biopsy is commonly used to detect thyroid cancer. However, thyroid ultrasonogra-
phy is prone to subjective interpretations and interobserver variabilities. The objective of this study was to develop a thyroid
nodule classification system for ultrasonography using convolutional neural networks. Transverse and longitudinal ultrasono-
graphic thyroid images of 762 patients were used to create a deep learning model. After surgical biopsy, 325 cases were
confirmed to be benign and 437 cases were confirmed to be papillary thyroid carcinoma. Image annotation marks were removed,
and missing regions were recovered using neighboring parenchyme. To reduce overfitting of the deep learning model, we applied
data augmentation, global average pooling. And 4-fold cross-validation was performed to detect overfitting. We employed a
transfer learning method with the pretrained deep learning model VGG16. The average area under the curve of the model was
0.916, and its specificity and sensitivity were 0.70 and 0.92, respectively. Positive and negative predictive values were 0.90 and
0.75, respectively. We introduced a new fine-tuned deep learning model for classifying thyroid nodules in ultrasonography. We
expect that this model will help physicians diagnose thyroid nodules with ultrasonography.
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Background

The incidence of thyroid cancer has increased steeply world-
wide over the past few decades [1]. The National Cancer
Institute reported 56,870 new cases and 2010 thyroid
cancer—specific deaths in 2017.

According to the American Thyroid Association guide-
lines, ultrasonography with fine-needle aspiration biopsy is
the main method of thyroid cancer detection [2]. Thyroid ul-
trasonography is real-time and noninvasive; however, it is
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easily affected by echo perturbation and speckle noise.
Further, there are various echo patterns of each thyroid nod-
ule; thus, if ultrasonography is not performed by experienced
physicians, it is prone to subjective interpretations and inter-
observer variabilities. To reduce these limitations and facili-
tate communication with other physicians, the Thyroid
Imaging Reporting and Data System (TIRADS) was intro-
duced for classification using several features for identifica-
tion (composition, echogenicity, margins, calcifications, and
shape) [3, 4]. However, the use of TIRADS for thyroid nodule
evaluation is still time consuming and not consistently accu-
rate because it is solely based on a physician’s knowledge and
experience.

With the advance of machine learning technology, many
computer-aided diagnosis systems have been devised to re-
duce operator dependency and help physicians diagnose thy-
roid nodules correctly [3, 5-7]. Although these studies have
shown promising results, they mostly rely on handcrafted fea-
tures extracted from images after preprocessing [8].

To overcome the limitations of early machine learning,
researchers have started to apply deep learning for image iden-
tification. Through deep learning, artificial neural networks
automatically extract the most discriminative features from
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the data and return an answer. Among the various deep learn-
ing systems, the deep convolutional neural network (DCNN),
which mimics a biological neural network in the visual cortex,
is especially suitable for medical image recognition [9].
Recently, DCNNs have been used to classify various medical
images such as images of breast cancer histopathology, pul-
monary nodules, and lymph nodes [10-12]. However, there
have been few studies dealing with thyroid nodule identifica-
tion using DCNN [8, 13].

The objective of this study is to develop a thyroid nodule
classification system based on ultrasonography using a
DCNN. To evaluate the proposed system, its results are com-
pared with those of previous methods.

Methods
Patients and Datasets

In this study, transverse and longitudinal ultrasonographic
thyroid images of 762 patients from the Korea Institute of
Radiological & Medical Sciences were used for training and
testing a deep learning model. Of all the cases, 325 were
confirmed as benign (nodular hyperplasia, follicular adenoma,
or cyst), and 437 were confirmed as papillary thyroid carcino-
ma after surgical biopsy. Each image has only one thyroid
nodule, and an expert physician drew a rectangular region of
interest around the pathologic nodule. The images were ex-
tracted from thyroid ultrasound video sequences captured with
EPIQ 5G, HI VISION Ascendus, and EUB-7500 ultrasound
devices. The images were in JPEG format and ranged from
640 x 480 to 1024 x 768 pixels in size. All devices employed
12-MHz convex and linear transductor settings. The extracted
images were distributed into training, validation, and test sets
in a ratio of 6:2:2, as summarized in Table 1.

Image Preprocessing
To remove annotations such as the caliper marks used to lo-

cate and measure nodule size as well as restore the gaps with
the textures surrounding the annotations after removal, the

Table 1 The distribution of benign and cancer cases in training,
validation, and test datasets with different ultrasound devices

Benign Cancer

Total A B C Total A B C

Training 199 108 52 39 260 101 8 73
Validation 64 39 13 12 94 35 34 25
Test 62 33 15 14 83 34 26 23

A EPIQ 5G, B HI VISION Ascendus, C EUB-7500

input ultrasonographic images were processed as follows
(Fig. 1a, b). All of the input images were rescaled to [0,1]
for standardization. The Roberts cross operator implemented
in the scikit-image library, which is a Python image-
processing module, was used to detect edges [14]. Then,
pixels greater than 0.25 in value were identified as artifacts.
The pixel values of the detected artifacts were deleted in the
original image, and the missing regions were recovered using
the “inpaint_biharmonic” function from the scikit-image li-
brary with the default parameters [15]. And the mean of each
image was set to zero using a Keras (version 2.1.5) built-in
operation.

Sample Augmentation

Our database consists of 1524 images in total, which is not
large enough to avoid overfitting when fine-tuning an existing
DCNN. Thus, the samples were augmented to enhance our
deep learning model’s prediction capability. When augment-
ing the samples, we included normal nearby structures such as
thyroid parenchyma and/or strap muscles because the
echogenicity of a nodule should be evaluated relative to that
of adjacent structures.

First, nodule-centered images were cropped to the largest
square shape in each of the original transverse and longitudi-
nal sonographic images. Two random-sized square images
including a nodule were cropped from each vertex. Thus,
eight square images including a nodule and one vertex were
cropped from the original images (Fig. 2). In addition, consid-
ering the bilateral symmetry of the thyroid, horizontal flip was
applied to these images. In summary, 18 transverse and 18
horizontal images per patient were created from the largest
square image plus the eight smaller square images.

All of patches were resized to 224 x 224 pixels using the
“resize” function from the scikit-image library with Gaussian
filter to suppress the artifacts. Furthermore, grayscale images
were converted to RGB; however, each RGB channel image
was equal to the others to conserve the grayscale image
values. This is because the input image size of the deep learn-
ing model used in this study is 224 x 224 x 3.

Contrast Limited Adaptive Histogram Equalization
(CLAHE)

Contrast limited adaptive histogram equalization (CLAHE) is
a contrast enhancement technique often used to reduce speck-
le noise in medical sonographic images [16, 17]. CLAHE was
applied to determine whether it improves the deep learning
prediction results. It was performed using the
“equalize_adapthist” function from the scikit-image library
with the default parameters.
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Fig. 1 Original ultrasonographic images before and after the removal of caliper marks. a Original image with caliper marks. b Image with caliper marks

removed and the missing region restored

Transfer Learning by Fine-Tuning Modified VGG16
Model

Because of the insufficient number of training samples, we
employed a transfer learning method with a pretrained deep
learning model. The model used in this study was VGG16,
which is known for its good classification results in the
ImageNet Large Scale Visual Recognition Challenge [18,
19]. We loaded a set of weights pretrained on ImageNet to
VGG16 and modified VGG16 by replacing the fully connect-
ed layer with global average pooling and sigmoid layers

(Fig. 3). The binary cross entropy function was used for the
loss function, and the network was minimized by an Adam
optimizer at an initial learning rate of 4 x 10°® with a decay
rate of 107°. The batch size was set to three. All layers in the
modified VGG16 were fine-tuned. The Keras (version 2.1.5)
wrapper deep learning library with TensorFlow (version 1.7)
was used as a backend with Python version 3.6.5 for
implementing the modified VGG16 deep learning model.
Our calculation was performed on a computer running 64-bit
Windows 10 and equipped with one Geforce 1080 Ti. Four-
fold cross-validation was performed to detect overfitting. The

Fig. 2 Process of cropping image and image augmentation. First, the
nodule-centered images were cropped to the largest square shape in each
original transverse and longitudinal sonographic image. Two random-
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sized square images including the nodule were cropped from each vertex.
Thus, eight square images including a nodule and one vertex were
cropped from the original images
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Fig.3 Architecture of the convolutional neural network used in this work. The VGG16 was modified by replacing the fully connected layer with global

average pooling and sigmoid layers

weights of the fine-tuned deep learning model were obtained
at the lowest validation loss. Figure 4 shows the detailed pro-
cess of fine-tuning the VGG16 model in this study.

Results

The sigmoid function results of all images from one patient
were averaged and the performance of the model was evalu-
ated for the test data set (145 patients) using the receiver op-
erating characteristic curve, area under the curve, positive pre-
dictive value, negative predictive value, sensitivity, and spec-
ificity. Table 2 shows the performance of the fine-tuned deep
learning model. Figures 5 and 6 show the four receiver oper-
ating characteristic curves of each fold and confusion matrix,
respectively. The average area under the curve was 0.916
[0.907-0.922], and specificity and sensitivity were 0.70 and
0.92, respectively, for the test dataset. The area under the
curve result of the CLAHE-preprocessed images was 0.873
[0.854-0.888].

PPV positive predictive value, NPV negative predictive
value

Discussion
In this study, we described a new fine-tuned deep learning

model for identifying thyroid malignancy in ultrasonographic
images. We employed a DCNN in this research because it is a

specialized machine learning model for identifying patterns of
images. Compared to the traditional computer-aided diagnosis
system using handcrafted feature extraction methods, a
DCNN has several advantages: (1) it can automatically learn
effective features for classifying images; (2) detection and
identification with DCNNSs are very powerful even when im-
ages have distortions from the camera lens, light source, angle,
and other factors; and (3) the computational power, time, and
cost are relatively low because the same coefficients are cal-
culated repeatedly across the input images. Hence, DCNNs
are being widely applied and modified for the analysis of
medical images such as those obtained using computed to-
mography, magnetic resonance imaging, and ultrasonography
[20-22].

We combined data from different devices into a single
dataset because we found that performance results from com-
bined dataset and those from datasets of each devices were not
so different.

There are a few previously proposed thyroid nodular clas-
sification systems that use deep learning methods. A thyroid
ultrasonographic image classification system that uses a ran-
dom forest classifier by fine-tuning a pretrained ImageNet
deep learning model has been proposed [13]. It obtained good
results; however, its output data were in the TIRADS classi-
fication system format, which categorizes the thyroid nodule
images subjectively according to the probability of malignan-
cy, not the exact surgical pathology. They used binary classi-
fiers, positive (TI-RAD 3, 4a, 4b, 5) and negative (TI-RAD 1
or 2). From the TI-RAD system, physician gets a help to

Transverse,
longitudinal images —»
from a patient

Pre-processed
Images

Split Images to
6:2:2 (training:

Make 4-fold cross

> validation

validation:test)

samples

Evaluate ROC
curve and AUC

Obtain average

prediction value

of a patient for
test samples

Fine-tune the

«| modified VGG16

with each train
samples

Fig. 4 Process of fine-tuning VGG16. The images were preprocessed and split into training, validation, and test sets. Then, we performed 4-fold cross-
validation, fine-tuned the VGG16 with each training sample, and evaluated the performance using receiver operating characteristic curves
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Table 2 Performance

Area under the curve Sensitivity Specificity PPV NPV
0.916 0.92 0.70 0.79 0.87
[0.907-0.922] [0.83-0.96] [0.61-0.89] [0.71-0.88] [0.84-0.94]

identify a probability of final surgical pathology to be malig-
nant or benign before surgery. TI-RAD category 3 stands for
1.7% of malignant surgical pathology probability, category 4,
3.3 ~72.4%, and category 5, 87.5% [2]. We believe that their
classifier includes too broad spectrum of probability of malig-
nancy respectively. Moreover, their model predicts only sub-
jective physician’s findings. On the contrary, we trained our
model to output the corresponding final surgical pathologies,
malignancy or benignancy which all physicians want to pre-
dict with ultrasonography before surgery. We assume that
surgical pathology is mandatory output for this kind of deep
learning model to have a valuable clinical significance.

Another deep learning classification system to predict thy-
roid pathology uses an ensemble of two DCNN results with a
softmax function, support vector machine classifier, and 10-
fold cross-validation [8]. Its performance was good with an
average area under the curve of 0.893 with the softmax clas-
sifier. However, we found that overfitting was possible be-
cause the validation and test datasets were not separated.
Additionally, the input image data were only the thyroid nod-
ules themselves and did not include the surrounding normal
structures, which can be a cue to diagnosis. Hypoechogenicity,
which is the most important feature for predicting thyroid ma-
lignancy, should be compared with nearby thyroid normal pa-
renchyma. Moreover, annotations such as caliper marks were
not removed during preprocessing.

ROC curve for thyroid cancer classifier
e

— auc=0.922
— auc=0.907
— auc=0.916
—— auc=0.918

True Positive Rate (Sensitivity)

0.2 1

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (1 - Specificity)

Fig. 5 Receiver operating characteristic curves. Four receiver operating

characteristic curves and the corresponding area under curve values of

each fold
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To overcome the limitations of previous methods, we set
the surgical pathology as the ground truth for each nodule;
strictly divided the data into training, validation, and test
datasets; included surrounding structures in input images;
and removed artifacts such as caliper marks. To our best
knowledge, although there have been a few studies regarding
deep learning ultrasonographic image classification, our mod-
el has the strictest and clearest clinical settings and image data.

To reduce the overfitting of the deep learning model, we
applied data augmentation, global average pooling. And 4-
fold cross-validation was performed to detect overfitting.
First, it has been reported that image augmentation improves
the classification performance of a deep learning model [23].
The TIRADS and Korean TIRADS classify thyroid nodules
using features such as composition, echogenicity, shape, ori-
entation, margin, and calcification [24]. To take into account
echogenicity, it was necessary to include nearby structures
(the thyroid parenchyma and/or anterior neck muscle) in the
preprocessed images because the evaluation of the
echogenicity of a nodule should be relative to adjacent struc-
tures. Furthermore, the geometric transformations that are
widely employed in augmentation, such as rotation and elastic
transformation, were not used in this study because they can
distort features such as the orientation and margins. In this
research, data augmentation was performed by cropping and
horizontal flipping of the square patches of the entire medical

Confusion matrix with normalization

0.9
0.8
benign

0.7

0.6

-0.5

True label

0.4

cancer - r0.3
0.2

0.1

Predicted label

Fig. 6 Confusion matrix. Confusion matrix of the result of the proposed
deep learning model
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image to preserve these ultrasonographic features. Second, the
global average pooling layer is known as a regularizer to re-
duce the overfitting of deep learning models, and it can re-
place the conventional fully connected layer [25]. Thus, the
top layer of the original VGG16 was replaced by a global
average pooling layer in this work (Fig. 3). Finally, we per-
formed 4-fold cross-validation, which is a well-known valida-
tion technique in deep learning to evaluate the generalization
ability of our deep learning model. We chose 4-folds due to
the limited size of the dataset.

In this research, there are several limitations. First, we need
more image samples with consequent surgical pathology. We
were forced to fine-tune the pretrained transfer learning model
VGG16 because of a lack of sufficient number of samples.
However, if we had enough samples, we could make a
completely new deep learning model suitable for the aims of
this research after trialing some different models. Second, we
included only papillary thyroid carcinoma and benign condi-
tions such as nodular hyperplasia, follicular adenoma, and
cyst. There are other pathologies such as follicular thyroid
carcinoma, poorly differentiated carcinoma, and anaplastic
thyroid carcinoma that were not considered. However, papil-
lary thyroid carcinoma comprises most thyroid carcinoma,
and nodules with other carcinoma exhibit features completely
different from those of papillary cancer. Hence, relevant im-
age samples with other pathologies are relatively difficult to
collect and hard to analyze together with papillary thyroid
carcinoma in this type of deep learning. In the future, if larger
quantities of image samples with various pathologies are col-
lected, we should try to train a model to classify each pathol-
ogy. Third, validation with more images from different ultra-
sonographic devices obtained by other operators is necessary.
Because ultrasonography is well known for its machine and
operator dependency, we need to collaborate with other hos-
pitals to validate the proposed system.

Currently, we are working to automate the process of find-
ing nodules and drawing the regions of interest automatically.
We anticipate the automation of preprocessing will improve
the workload in this type of research.

Conclusion

In conclusion, we introduced a new fine-tuned deep transfer
learning model for classifying thyroid nodules in ultrasonog-
raphy. We expect this model will help physicians diagnose
thyroid nodules with ultrasonography.
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