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Abstract
Melanoma is deadly skin cancer. There is a high similarity between different kinds of skin lesions, which lead to incorrect
classification. Accurate classification of a skin lesion in its early stages saves human life. In this paper, a highly accurate method
proposed for the skin lesion classification process. The proposed method utilized transfer learning with pre-trained AlexNet. The
parameters of the original model used as initial values, where we randomly initialize the weights of the last three replaced layers.
The proposedmethodwas tested using the most recent public dataset, ISIC 2018. Based on the obtained results, we could say that
the proposed method achieved a great success where it accurately classifies the skin lesions into seven classes. These classes are
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma, and vascular lesion.
The achieved percentages are 98.70%, 95.60%, 99.27%, and 95.06% for accuracy, sensitivity, specificity, and precision,
respectively.
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Introduction

Detection and accurate classification of skin lesions using
computer-aided systems are steadily growing as a challenging
scientific topic. Physicians can classify skin lesions into dif-
ferent kinds such as benign or non-malignant (nevus), cancer-
ous (melanoma), pigmented benign keratosis (BKL), basal
cell carcinoma (BCC), and squamous cell carcinoma (SCC).
Dermatologists reported that melanoma is able to propagate to
different places and organs of the human body [1]. Therefore,
melanoma is the most aggressive type of skin cancer. For this
reason, it is far responsible for the highest mortality rate de-
spite its low occurrence [2]. The increased rate of skin cancer

originates from direct and continuous exposure to the sun,
which causes benign and malignant tumors. Both melanoma
and nevus are regarded as melanocytic tumor types, which
leads to the wrong distinction between these two types by
the naked eyes of the dermatologist. Among the different
types of skin cancer, despite its low incidence, melanoma is
the most dangerous because it can spread to other places in the
body, even if it was small [3]. There is a big chance of curing
in the initial stages of the disease, so it is necessary to have a
prior diagnosis. However, visual factors of humans, for exam-
ple, eye fatigue, can hamper diagnosis, which regularly leads
to wrong lesion detection [4]. In the other side, there are types
of the lesion may be less deadly than melanocytic lesions like
SCC and BCC; however, these lesions can spread through and
behind the skin to other body places and parts that can cause
disfigure, as well as threaten life [5].

Therefore, dermatologists have to use specific indications
or signs for classifying and distinguishing melanoma aside
from benign lesions—Digital Image Processing (DIP) tech-
niques used to classify different types of skin cancer [6]. The
DIP methods will increase the agility and reliability of lesion
diagnosis than those dermatologists that have high skills. In
the DIP methods, the contained information in the images was
extracted and used in analysis and interpretation [7].

Dermoscopy techniques used to improve the performance
of melanoma diagnosis [8]. According to its non-invasive
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imaging, dermoscopy can determine the skin lesions by mag-
nifying and increase the illumination of the suspected spots
[9]. It is a tedious and challenging task because of its varia-
tions in color, shape, location, texture, size, and intra-class.
Besides, it has a high degree of similarity between malignant
and non-malignant lesions, as well as other environmental
conditions.

Many attempts made to overcome these challenges.
Researchers used low-level handcrafted features to differenti-
ate non-melanoma from melanoma lesions [10]. Other re-
searchers tried to remove unwanted elements and back-
grounds and only to keep the essential elements using various
methods of segmentation. This approach led to unsatisfactory
results because dermoscopy images suffer from high visual
similarity, vast variations of intra-class, and artifacts [11].

According to the ability of the ABCD method to extract
distinctive morphological features, this method used to detect
benign lesions from malignant melanoma [10, 12]. Therefore,
it has widely used for automated systems. The performance of
this method is ranging from 85 to 91%. These low percentages
motivate the researchers to find an alternative way either by
modifying this method or by finding a newway to enhance the
performance. A simple method to extract features is the gray-
level difference method (GLDM) [13]. It works by indicating
the differences that happened in the gray level by calculating
angular second moment, contrast, entropy, and mean within
the image in different directions (such as vertical, horizontal,
and two diagonals) [14].

Also, a computer-aided system to detect skin cancer devel-
oped using machine learning methods [15–18]. A single pre-
trained end to end CNN has been used by Esteva et al. [19] to
classify skin lesions. They classify three different classes of
lesions called melanoma, seborrheic keratosis, and benign or
nevus. They made a binary classification in two stages. First,
keratinocyte carcinomas versus benign seborrheic keratosis,
and the second is between malignant melanomas versus be-
nign nevi. They have been fine-tuned a pertained architecture
from google called Inception v3 using their skin lesion dataset.
The average accuracy of their proposed methods was about
71.2%.

A deep convolutional neural network (CNN) proposed by
Yu et al. [20] for melanoma recognition. They used residual
learning to deal with overfitting and degradation problems.
They also built a fully convolutional residual network
(F00CRN) for classification. The experimental results showed
that they gained an average accuracy of 85.5%. In [21], they
tried to classify only three lesion types by combining sparse
coding, deep learning, and support vector machine (SVM)
techniques, and the classification rate of their work was
93.1%. While in [22], they firstly enhanced the images by
median filter and contrast limited adaptive histogram equali-
zation technique (CLAHE), then images are segmented by
normalized Otsu’s to extract the affected skin lesion from

the background. To classify the segmented image, they com-
bined the deep learning with hybrid Adaboost-(SVM). The
classification rate accuracy of their work was 92.89%.

Wahba et al. [23] proposed a new discrimination technique
for texture feature extraction. In this method, Wahba and his
co-authors used the cumulative level-difference mean
(CLDM) based on GLDM. The ABCD rule feature vector
refers to symmetry, border irregularity, color variation, and
diameter that have been used to classify the lesions into benign
or melanoma. In the modified set of ABCD, each border fea-
ture considered as a separate feature, like the fractal dimen-
sion, edge abruptness, and compact index. These features are
ranked using the eigenvector centrality (ECFS) method. Then
a cubic support vector machine is used to classify these ranked
features. The accuracy of this work was approximately 100%,
which may appear as good results. It is biased, deceptive, and
not accurate. They select only 300 images and discard the rest
of the dataset. Also, they consider only four classes of skin
lesion, melanoma, BCC, nevus, and BKL.

Titus et al. [24] proposed an automated skin lesion detec-
tion. They started by a preprocessing step using color normal-
ization. They applied transfer learning to VGG16 and
GoogLeNet architectures to classify skin lesions. The classi-
fication rate of their proposed model was 79.7% for VGG and
81.5% for GoogLeNet. Gessert et al. [25] attempted to classify
the skin lesion by using different architectures like ResNet,
Densenet, and SENet. They used different approaches such as
balanced batch sampling and loss weighting to overcome the
problem of imbalance numbers of images for each class.
Finally, the ensemble different convolutional neural network
architectures and fine-tuned them using their dataset. The clas-
sification rate of this work was 85.1%. In [26], they try to
classify lesions using an SVM classifier with 200 handcrafted
features after segmentation. The accuracy of this work was
93.01.

AlexNet proposed by Krizhevsky et al. [27], where this net
possesses many essential characteristics, such as the
following:

1. There are many more filters with every layer, which able
to enhance features and reduce noise.

2. Each stacked convolution layer is followed by a pooling
layer which able to reduce the number of features and
extract essential features only.

3. The likelihood of gradient vanishing reduced because
of using RELU as activation function instead of tanh,
logistic, arctan, or Sigmoid, which is more biological
inspired.

4. From the previous three points, the AlexNet is five times
faster than other deep architectures.

5. Some deep architecture required specific hardware;
AlexNet can work well with hardware and GPU
limitations.
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Even AlexNet was relatively old architecture; it successful-
ly utilized in skin lesion classification. Hosny et al. [28–30]
proposed modified models of AlexNet. In [28], they applied it
with the public ph2 dataset [29]. In [30], the modified model
was trained and tested using four datasets, Dermatology infor-
mation system [31], DermQuest [32], MED-NODE [33], and
ISIC 2017 [34].

In 2018, the ISIC 2018 challenge [35] released. In this
challenge, the skin lesions divided into seven classes, melano-
ma (MEL), melanocytic nevus (N.V.), basal cell carcinoma
(BCC), actinic keratosis (AKIEC), benign keratosis (BKL),
dermatofibroma (D.F.), and vascular lesion (VASC).

Successful classification models must be able to classify
the seven kinds of skin lesions with high accuracy. Besides,
the ISIC 2018 challenge has two problems. First, the number
of images in some classes is limited. Second, the imbalanced
number of images in different classes makes the classifier
biased toward the class with the dominant number.

To the best knowledge of the authors, there is no published
work in which the seven skin lesions accurately classified.
This challenge motivated the authors to modify the successful
AlexNet-based model.

In this paper, a pre-trained deep convolutional neural net-
work model proposed. This model utilized the transfer learn-
ing and AlexNet. The last three layers of the AlexNet, con-
nected layer, softmax layer, and classification layer, have been
dropped out and replacedwith new layers to be appropriate for
classifying seven classes of skin lesions. The weights of these
layers have been randomly initialized and then updated during
the training. The performance measures of the proposed meth-
od outperformed the existing methods.

We could summarize the main contributions in this paper
in the following points:

1. We are achieving a very high classification rate, in addi-
tion to high sensitivity, specificity, and precision
percentages.

2. The proposed model works smoothly with binary and
multi-class detection due to using softmax. The probabil-
ities of the softmax output ranging from 0: 1, so the sum-
mation of these probabilities must be one in binary clas-
sification. In multi-class detection, the possibility of each
class will return, but only the one class with high proba-
bility will be the target class. For these characteristics, we
use the softmax layer to compute the probability coming
from the new, fully connected layer.

3. The utilization of different ways of augmentation has ap-
plied to overcome the two problems of class sizes.

The rest of this work organized as follows: a brief descrip-
tion of the utilized DCNN AlexNet and transfer learning pre-
sented in the “Method” section. The data set and the experi-
ments discussed in the “Experiment results and discussion”

section. The “Comparative study” section was for the compar-
ison of the proposed method with state of the art—the conclu-
sion presented in the “Conclusion” section.

Method

Usually, the depth of traditional neural networks consists of
three layers. These layers are the input layer, an output layer,
and a single hidden layer. These types of learning methods
suffered from some problems, such as the gradient values may
become zero or close to zero while updating the weights. This
problem called gradient vanishing [36, 37], so the deep
convolutional architecture introduced to solve problems that
have appeared from older learning methods [38, 39].

Alex-Net

Deep architectures contain more than a hidden layer. These
hidden layers help to enhance and extract features in a better
way. So, the performance of image classification using the
deep networks proved to gain a high rate of classification
compared with other methods, which excites everyone to
use deep networks. AlexNet is a big network consisting of
several neurons equal to 650,000 and 60 million parameters.
Krizhevsky et al. [27] carried out numerous enhancements to
train these parameters. Overall Architecture of the network
displayed in Fig. 1.

The activation function was the first improvement. For
nonlinearity in the classical neural network, the activation
function limited to arctan, tanh, logistic function, etc. The
gradient values using these activation functions will be signif-
icant only when the input is around small range 0, so these
types of activations functions will fall into the problem of
gradient vanishing. A new activation function called a recti-
fied linear unit (ReLU) had been used to overcome this prob-
lem. If the input is not less than 0, the gradient of RELU is
always 1. Also, it accelerates the training process. RELU de-
fined through the next equation:

y ¼ max 0; xð Þ ð1Þ

This network consists of several small sub-networks. Each
sub-network can fall into overfitting, but they share the same
loss function so that it may be a useful way to drop out some of
these layers. The second improvement was to avoid
overfitting by dropping out some of these layers. This im-
provement can be applied by dropping out the fully connected
layers. During the dropout, a part of the neurons trained for
each iteration. The joint adaptation will be reduced between
neurons because neurons forced to cooperate by dropping out,
which also enhances and improve the generalization. The
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average of the sub-networks is the output of the entire net-
work. Now it can be clear that dropout also improves and
increases the robustness.

Features are extracted automatically by the convolutional
layers and reduced by the pooling layer. For an image I with
height h and width w, where m is the convolutional kernel
with height b and width c, the convolution can be defined as
the following:

C h;wð Þ ¼ I*mð Þ h;wð Þ ¼ ∑
b
∑
c
I h−b;w−cð Þm b; cð Þ ð2Þ

The model will able to learn from image features by convo-
lution, and these parameters are shared to reduce the complexity
of the model. The pooling layers used to reduce the extracted
features. The pooling layers take a group of neighboring pixels
from the feature map and generating values for representation.
Max pooling is used in AlexNet to reduce the feature map. The
max pooling takes a 4 × 4 block from the feature map to gen-
erate a 2 × 2 block contains the maximum values.

Feature generalization improved by the cross-channel
normalization, which belongs to a local normalization

method. Before feeding the feature maps to the next layers,
these maps must normalize first. A sum from several
adjacent maps with the same positions generated by
cross-channel normalization. In real neurons, this mecha-
nism also found. The classification was done in the fully
connected layers. Softmax was used in the fully connected
layers as an activation function, which can be computed by
the next equation:

softmax xð Þi ¼
exp xið Þ

∑n
j¼1exp x j

� � for i ¼ 0; 1; 2……; k ð3Þ

The output of softmax is constrained to be in range 0 to 1,
which is the main advantage to ensure neurons activation; this
is the reason behind using this activation function. Different
techniques were used in [27] to train AlexNet, for example,
multiple GPUs training and overlapping pooling. The classi-
fication rate of AlexNet has been tested against other methods
using the same dataset. The classification rate of AlexNet
exceeded these methods by 10% [40], and that is the main
contribution. Here, we used this structure for skin lesion
classification.

Fig. 1 AlexNet architecture

Fig. 2 Transfer learning to
AlexNet
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Transfer Learning

Although the outstanding classification ability of AlexNet,
as discussed before, it requires a great time for training.
Furthermore, the limitation of available skin lesions
datasets is not sufficient to train a deep network from
scratch because of having a few numbers of images. The
best solution to overcome this problem is by applying
transfer learning. The transferred AlexNet architecture is
shown in Fig. 2.

The last three layers replaced in AlexNet with the
following:

1) A fully connected layer with seven nodes which used
to classify seven different skin lesions

2) Softmax layer
3) The classification layer

The rest of the network parameters are the same as in the
original model without any changes. In other words, the
architecture of AlexNet is divided to a pre-trained network
and transferred network. The pre-trained network parame-
ters used as it has computed with the original model be-
cause it proved its ability to effectively extract features for

classification during the training using millions of images
in ImageNet [41]. The transferred network parameters ex-
pertly trained because it is a tiny part where be suitable to
be prepared using small datasets. From the state-of-art,
there are many researchers try to replace more than three
layers, but they found that the performance measure of
classification became less than replacing the last three
layers only [40].

A practical and convenient way to train a deep neural
network with a small number of labeled images is to ap-
ply transfer learning to a pre-trained deep architecture.
Using all the pre-trained network parameters as initiation
can take advantage of the features that have learned from
large images. Features extracted using these layers, and
the parameters that acquired from these layers can assist
the training converging. Personal computers used to im-
plement the transfer learning instead of using a high GPU
and CPU performance to train deep networks from
scratch. The stochastic gradient descent momentum
(SGDM) used to train the transferred AlexNet. The max
training epoch’s number set to 32, while the mini-batch
size was 10, the initial learning rate was 0.0001, and the
momentum was 0.9.

Fig. 3 Confusionmatrix, a first, b
second, and c third experiments

Table 1 Proposed model
accuracy Experiments Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

First 94.90 82.17 97.03 82.17

Second (balanced) 98.20 93.84 98.96 93.81

Third 98.70 95.60 99.27 95.60
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Experiment Results and Discussion

An IBM computer with a Core i7 processor with 16 GB
DDRAM and a graphic card NVIDIA GeForce MX150 used
to perform experiments and evaluations. MATLAB 2018 ×
64-bit used to execute the codded program. This study tested
and evaluated using a well-known dataset from the
International Skin Imaging Collaboration (ISIC) 2018 chal-
lenge dataset [35]. The AlexNet and transfer learning trained
and tested using the ISIC 2018 dataset, which consists of
10,015 images. ISIC dataset divided into seven classes. All
of these classes have a different number of images MEL is
1113, NV is 6705, BCC is 514, AKIEC is 327, BKL is 1099,
DF is 115, and VASC is 142. This dataset is one of the hardest
challenges to classify different images into seven classes—the
implemented work coded using CUDA run over the GPU.

Using GPU allows using a massive number of training data
with a low error rate of models. In the proposedmodel, the last
three layers (fully connected 8, softmax layer, and the classi-
fication layer) dropped out and replaced with the new three
layers. The pre-trained AlexNet previous three layers created
to classify 1000 classes, but in this proposed work, there are
only seven classes needed to be classified.

There are four performance measures have been computed
to test the reliability of the proposed model. These measures
named accuracy, sensitivity (TPR), specificity (TNR), and
precision (PPV) [42]. These measures can be computed based
on the following equations:

Accuracy ¼ tp þ tn
tp þ f p þ f n þ tn

ð4Þ

Fig. 4 Visualization the
difference of images number for
each class

Fig. 5 Visualization of the performance metrics for the proposed model experiments
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Sensitivity TPRð Þ ¼ tp
tp þ f n

ð5Þ

Specificity TNRð Þ ¼ tn
f p þ tn

ð6Þ

Precision PPVð Þ ¼ tp
tp þ f p

ð7Þ

Where tp, fp, fn, and tn refer to a true positive, false
positive, false negative, and true negative, respectively. The
acronyms, TPR, TNR, and PPV, refer to true positive rate, true
negative rate, and positive prediction rate. The rates of true
negative and false positive should be large and small.

The proposed model tested by three different experiments.
The first experiment carried out with the original ISIC 2018
images, which contains 100,015 images without any augmen-
tation. The proposed model trained and tested using the orig-
inal ISIC dataset. In this experiment, the 10-fold cross-valida-
tion used to divide ISIC 2018 dataset into groups for training
and testing without any augmentation. Each group used at
least once as training and once as testing but not in the same
run. Then the modified AlexNet after applying transfer

learning theory has been used. This process repeated ten
times, and the average accuracy for the ten-run times comput-
ed to be the overall accuracy of the proposed model. The
reason behind using this way with the first experiment is some
classes contain a few numbers of images, which is not enough
to train and test the proposedmodel. The accuracy, sensitivity,
specificity, and precision for this experiment were 94.91%,
82.17%, 97.03%, and 82.17%, respectively. The confusion
matrix of this experiment is shown in Fig. 3a.

According to the deep learning networks, a vast number of
images required to retrain a pertained network, so we have
applied the augmentation in two ways. The first way of aug-
mentation was in the second experiment. In the second exper-
iment, we implemented the data augmentation where the im-
ages rotated using random rotation angles from 0°: 355° and
flipping for all classes except “N.V.” to overcome the problem
of images imbalance for each class. The other six classes aug-
mented to have the same number of images equal to 6700 (±
5) to make the classifier not biased for the class that contains
the largest number of images. The reason for not augment the
N.V. class is that this class has enough images in 6705, so we

Table 2 Proposed model
accuracy Brinker et al. [24] Gessert et al. [25] Hardie

et al. [26]
Proposed method

Preprocessing Yes Yes Yes No

No. of classes 7 7 7 7

Classification
method

Ensemble (VGG and
GoogLeNet)

Ensemble different deep
architecture

SVM AlexNet + transfer
learning

Accuracy (%) 81.5 85.1 93.01 98.70

Sensitivity (%) - - 73.03 95.60

Specificity (%) - - 95.49 99.27

Precision (%) - 61.97 95.60

Fig. 6 Classification rate comparative study visualization
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do not need to expand this class. In the second experiment, as
we discuss, six classes augmented to have the same number of
images. The reason behind this way of augmentation is to
make all classes contain approximately the same number of
images to make balanced weights which make the measures
more confidence and fair. In this experiment, the expanded
datasets divided into 80% for training and 20% for testing.
Then each set has been augmented separately to avoid sharing
the same features. The accuracy, sensitivity, specificity, and
precision were 98.2%, 93.84%, 98.96%, and 93.81% for the
second experiment, respectively. The confusion matrix of this
experiment is shown in Fig. 3b.

The second way of augmentation was in the third experi-
ment. In the third experiment, images for all classes except
“N.V.” augmented by random rotation from 0°: 355° and
flipping. The number of images for augmented classes be-
comes 23,544, 37,008, 79,128, 8280, 79,992, and 10,224 for
AKIEC, BCC, BKL, DF, MEL, and VASC, respectively. In
this experiment, the dataset divided into 80% training and
20% testing, where each set augmented separately to avoid
sharing the same features. The accuracy, sensitivity, specific-
ity, and precision were 98.8%, 95.6%, 99.3%, and 95.6% for
the third experiment, respectively. The confusion matrix of
this experiment is shown in Fig. 3c.

Table 1 gives an overview of the obtained results for the
performed experiments. From Table 1, the sensitivity and pre-
cision have low rates 82.17%, and 82.17% respectively in the
first experiment because of the imbalance numbers of the im-
ages in each class in addition to that some classes contain not
enough number of images like VASC, DF, AKIEC, and BCC.
Figure 4 indicates the difference in image number. In the sec-
ond experiment, the sensitivity becomes 93.84% while it was
82.17%, the precision becomes 93.81 while it was 82.17%,
the specificity becomes 98.96% while it was 97.03%, and the
accuracy becomes to 98.2% while it was 94.9%. These results
show that data augmentation brings balance in all classes and
improves the classification rate. In the third experiment, sen-
sitivity and precision increased when the data augmentation
applied differently. It is clear that the augmentation processes
significantly improve the classification rates. The proposed
method achieved a very high classification rate. Figure 5 vi-
sualizes the difference between classification rates for pro-
posed model experiments.

Comparative Study

To prove the credibility of the proposedmodel here, AlexNet and
transfer learning, we compare the acquired performance measure
here with state-of-art.We choose a recent work that works on the
same dataset, ISIC 2018. The state-of-art uses different architec-
tures and methods to classify the same dataset ISIC that consists

of seven classes. Table 2 lists the performance measures of the
proposed model and recently published papers.

From Table 2, it is evident that methods [24, 25] use the
deep network but with different architectures while [26] use
the SVM as classifier. In [24], they used VGG, GoogleNet
separately, and ensembled the two architectures, but the accu-
racy found to be 81.5%, which may be very low to medical
analysis. In [25], they try to use different architectures like
PolyNet, SENet, and ResNeX; finally, they ensemble these
different architectures. The accuracy of this was 85.1%, which
is very low for medical purposes. In [26], they use the SVM
classifier after a segmentation step for all images is carried out.
The accuracy of this work was 93.01%. Here, the performance
of the proposed model is 98.7%, which exceeds other
methods. The obtained results are visualized and displayed
in Fig. 6.

Conclusion

A novel method for skin lesion classification developed here
is based on deep neural network AlexNet and transfer learn-
ing. The proposed method was trained and tested using public
dataset ISIC 2018 to compare with state of the art. The pro-
posed method can classify seven different kinds of lesions
accurately. The performance of the proposed classification
model outperformed the existing classification methods.
Explicitly, the accuracy, sensitivity, specificity, and precision
for the proposed method were 98.7%, 95.6%, 99.27%, and
95.6%. The performance of the proposed method exceeds
the performance of the state-of-art by at least 6%.
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