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ARTICLE INFO ABSTRACT

Keywords: Research has shown that difficulties with emotion regulation abilities in childhood and adolescence increase the

Adolescence risk for developing symptoms of mental disorders, e.g anxiety. We investigated whether functional magnetic

léram'“’f“}’mer‘mterface resonance imaging (fMRI)-based neurofeedback (NF) can modulate brain networks supporting emotion regulation
onnectivity

abilities in adolescent females.

We performed three experiments (Experiment 1: N = 18; Experiment 2: N = 30; Experiment 3: N = 20). We first
compared different NF implementations regarding their effectiveness of modulating prefrontal cortex (PFC)-
amygdala functional connectivity (fc). Further we assessed the effects of fc-NF on neural measures, emotional/
metacognitive measures and their associations. Finally, we probed the mechanism underlying fc-NF by examining
concentrations of inhibitory and excitatory neurotransmitters.

Results showed that NF implementations differentially modulate PFC-amygdala fc. Using the most effective NF
implementation we observed important relationships between neural and emotional/metacognitive measures,
such as practice-related change in fc was related with change in thought control ability. Further, we found that the
relationship between state anxiety prior to the MRI session and the effect of fc-NF was moderated by GABA
concentrations in the PFC and anterior cingulate cortex.

To conclude, we were able to show that fc-NF can be used in adolescent females to shape neural and emotional/
metacognitive measures underlying emotion regulation. We further show that neurotransmitter concentrations
moderate fc-NF-effects.

Emotion regulation
Magnetic resonance spectroscopy
Neurofeedback

1. Introduction they are unable to regulate, which can impact friendships, school per-

formance, and mark the beginning of long-term mental health difficulties

Adolescence is marked by a multitude of neural, emotional/meta-
cognitive and behavioural changes, such as functional and structural
maturation and improvements in cognitive abilities and socio-emotional
behaviour (Blakemore, 2008; Burnett et al., 2011; Cohen Kadosh et al.,
2013; Linscott and van Os, 2013). It has been suggested that these
complex, transformational processes may shape poor emotion regulation
abilities and increase the risk for developing mental disorders (Haller
et al., 2015, 2013; Keshavan et al., 2014; Paus et al., 2008). Anxiety is
one of the most common and impairing mental disorders in adolescence.
Youth with anxiety experience impairing levels of fears and worries that

(Beddington et al., 2008; Pine et al., 2001; Trentacosta and Fine, 2010).
Gaining a better understanding of the mechanisms underlying the suc-
cessful regulation of emotions during this unique developmental period
therefore represents an important step towards devising efficient, and
targeted strategies for early support and intervention.

In the human brain, the regulation of emotions relies on a network of
brain regions, comprising the prefrontal cortex (PFC) and the amygdala,
as well as additional regions in the orbitofrontal, frontal and cingulate
cortex (Kohn et al., 2014; Ochsner and Gross, 2005). A particular focus
has been placed on the PFC-amygdala relationship, a relationship that
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manifests in both structural and functional connections (Banks et al.,
2007; Davidson et al., 2000; Kim et al., 2003; Kim and Whalen, 2009;
Kohn et al., 2014; Quirk and Beer, 2006). With regard to the regulatory
aspect of the PFC-amygdala connection, the functional connectivity (fc)
between the two regions has been theorized to reflect top-down PFC
regulation of amygdala reactivity (Hare et al., 2008; Hariri et al., 2003;
Kim et al., 2003; Pezawas et al., 2005), with increased PFC responses
leading to decreases in amygdala activation, i.e. negative fc (Kim et al.,
2011). Interestingly, this fc pattern only emerges during adolescence
(Dougherty et al., 2015; Gee et al., 2013; Wu et al., 2016), with research
showing that children at the beginning of adolescence (up until around
10 years of age) exhibit predominantly positive fc, rather than negative fc
((Dumontheil et al., 2012, 2010; Silvers et al., 2012), also reviewed in
(Ahmed et al., 2015)). What is less clear however is whether we can
intervene to actively shape fc patterns in the developing brain to improve
emotional/metacognitive abilities and thereby affect behaviour.

The current study aimed to address this question by using real-time
functional magnetic resonance imaging (fMRI)-based neurofeedback
(NF). NF provides the user with real-time information of one’s own brain
activity, and it has already been shown to be a promising intervention
tool to (re-)shape neural activity in a number of psychiatric and neuro-
logical diseases (Linden, 2012; Lubianiker et al., 2019). In the case of
emotion regulation, NF can aid the modulation of networks underlying
this process, such as PFC-amygdala fc (Paret and Hendler, 2020). Pre-
vious studies suggest that fMRI-based NF represents a promising
approach to train individuals in the self-modulation of brain regions or
networks (Johnston et al., 2010; Koush et al., 2017, 2013; Scharnowski
and Weiskopf, 2015; Weiskopf et al., 2004; Zilverstand et al., 2014), also
in the emotion processing domain (adults: (Johnston et al., 2010; Koush
et al., 2017; Paret et al., 2014; Zotev et al., 2013); children: (Cohen
Kadosh et al., 2016)).

Building upon these studies, we conducted a set of three experiments
that investigated whether fMRI-based fc-NF of PFC-amygdala fc can be
used to modulate neural measures (e.g. change in fc) and emotional/
metacognitive measures (i.e. self-reported measures of anxiety and
thought control ability) relevant for emotion regulation in adolescent
females. To achieve this overall objective, we first explored whether PFC-
amygdala can be differentially modulated by contrasting three different
NF implementations (Experiment 1). The most effective NF imple-
mentation was then used to assess the effects of one session fc-NF on
neural measures and emotional/metacognitive measures in a larger
sample (Experiment 2). Finally, we assessed the effects of a longer fc-NF
block in order to further enhance the effectiveness of the fc-NF, and
whether the brain-behaviour correlations found in Experiment 2 could
be replicated (Experiment 3). In Experiment 3, we also explored
whether neurotransmitter concentrations of the brain’s main excitatory
and inhibitory neurotransmitters in relevant regions influence the
observed effects. Regarding the latter, we used proton magnetic reso-
nance spectroscopy (‘H-MRS) to extract the neurotransmitter profile
from two voxels of interest (VOI), the PFC and the anterior cingulate
cortex (ACC). We choose the PFC because of the key role of y-amino-
butyric acid (GABA)-ergic neurotransmission within the PFC in balancing
amygdala activity (Constantinidis et al., 2002). Further, we choose the
ACC because of its centrality in the reward processing network, espe-
cially for explicit processing of reward, such as NF (Emmert et al., 2016;
Sitaram et al., 2016). For both of these VOIs we quantified GABA and
glutamate, the major inhibitory and excitatory neurotransmitters in the
human brain.

2. Experiment 1
2.1. Materials and methods
2.1.1. Participants

18 female adolescent participants (M = 14.83 years; SD = 0.99 years)
were recruited from local schools in the Oxfordshire/Gloucestershire
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area. The single-sex approach allowed us to minimize variation intro-
duced by differences in hormonal development and puberty (Goddings
et al., 2014, 2012). All participants had normal or corrected-to-normal
vision and reported no history of neurological and psychiatric disor-
ders (determined via self-report). Informed written consent was obtained
from the primary caregiver and informed written assent was obtained
from the adolescent. Participants received an Amazon voucher (£20) for
their participation. The study was approved by the Central Oxfordshire
Ethics Committee (MSD-IDREC-C2-2015-023) and conducted in accor-
dance with the Declaration of Helsinki. This work was registered as
preclinical trial (ClinicalTrials.gov Identifier: NCT02463136).

2.1.2. Self-report questionnaires

Immediately prior to the MRI session, participants completed several
self-report questionnaires, which will be referred to as emotional/meta-
cognitive measures. Specifically, we assessed psychological variables using
the Emotion Regulation Questionnaire (CERQ) (Derryberry and Reed,
2002), the Mood and Feelings Questionnaire (MFQ) (Angold et al.,
1995), Social Anxiety Scale for Adolescents (SAS-S) (La Greca and Lopez,
1998), the State-Trait Anxiety Inventory (STAI-T, STAI-S) (Spielberger
et al., 1999), the Thought Control Questionnaire (TCQ) (Wells and
Davies, 1994) and the Thought Control Ability Questionnaire (TCAQ)
(Luciano et al., 2005). These are established self-report measures, which
are frequently used in psychological testing. A subset of the question-
naires (i.e. CERQ, MFQ, SATI-S, TCQ, TCAQ) were repeated after the MRI
session in order to assess changes. Participants also completed a De-
mographic and Health Questionnaire and the Wechsler Abbreviated
Scale of Intelligence (Wechsler, 2011).

2.1.3. MRI data acquisition

MRI data acquisition was performed on a 3 T S MAGNETOM Prisma
MRI scanner (Siemens AG, Erlangen, Germany) using a standard 32-
channel head matrix coil. First, a high-resolution structural scan was
acquired, which was followed by functional imaging during the localizer
task and the NF task (see Supplementary Methods for details on the
MRI sequences).

2.1.4. Localizer task

A modified version of the social scenes task (Haller et al., 2016) was
used to identify the NF regions of interest (ROI), as it was expected that
this task activates the key regions involved in cognitive and emotional
appraisal and reappraisal. The localizer task lasted 8.9 min and
comprised 30 trials. Each trial started with a social scene presented for
four volumes (3.73 s). Scenes depicted negative, rejecting social situa-
tions viewed from the perspective of a female protagonist depicted from
the back. Participants were instructed to interpret the scene freely
(appraisal). This was followed by a positively valanced interpretative
statement (4 volumes, 3.73 s), after which the same scene was shown
again for four volumes (3.73 s). For the duration of the second presen-
tation, participants were instructed to reappraise the scene based on an
interpretative statement (reappraisal). Finally, participants were asked to
rate how much they were able to change, i.e. reappraise, their thoughts
and feelings from the first to the second presentation of the scene. Par-
ticipants indicated their perceived change on a Likert scale ranging from
no change (1) to much change (4) via button press on each trial. A fix-
ation cross was presented for one volume between two trials. Stimulus
presentation was controlled via BrainStim 1.1.0.1 (open source stimu-
lation software, Maastricht University, http://svengijsen.github.io/B
rainStim/). Participants were encouraged to use these emotional reap-
praisal strategies during the NF tasks.

2.1.5. Neurofeedback task

The NF task consisted of four identical runs lasting 4.8 min each.
Stimulus presentation was controlled with BrainStim 1.1.0.1. Each run
started with a fixation cross that was displayed for 20 volumes (18.66 s),
followed by seven fc-NF mini-blocks (20 volumes each) and seven no-NF
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mini-blocks (20 volumes each) that were presented in alternating order,
with the start condition being randomized and counterbalanced across
individuals. During both fc-NF and no-NF mini-blocks a ten-segment
thermometer was presented at the centre of the screen on a dark grey
background. During the no-NF mini-blocks, the ‘temperature’ of the
thermometer was frozen at the sixth segment (i.e. 6/10) throughout the
mini-block (Fig. 1a). During the fc-NF mini-blocks, the thermometer
featured a green frame and the ‘temperature’ was a direct reflection of
PFC-amygdala fc and was updates with every TR (see section ‘Online MRI
data analysis’ for more details). All participants were asked to up-
regulate the thermometer by controlling their thoughts and feelings
and by revisiting emotional reappraisal strategies as practised in the
localizer task (see Supplementary Methods for more details on the
instructions).

We evaluated three different NF implementations with regard to their
effectiveness of modulating PFC-amygdala fc (N = 6 per implementa-
tion). The three different NF implementations only differed in the upper
value of the thermometer (the lower value of the thermometer was set to
zero). The upper value of the thermometer was set to —1 (maximal
negative correlation) for the negative NF implementation, which reinforced
negative fc; to —0.3! for the weighted negative NF implementation, which
reinforced negative fc; and to +1 (maximal positive correlation) for the
positive NF implementation, which reinforced positive fc. To illustrate this:
if the thermometer changes from 2/10 to 3/10 segments, this corre-
sponds to a more negative correlation by 0.1 for the negative NF
implementation, a more negative correlation by 0.03 for the weighted
negative NF implementation, and a change towards a more positive
correlation by 0.1 for the positive NF implementation.

2.1.6. Online MRI data analysis

To enable real-time fMRI-based NF, MR images were passed from the
MRI console computer to the real-time computer via a direct TCP/IP
network link using the Server Message Block (SMB) network layer.
Following completion of the structural scan, anatomical images were
processed using BrainVoyager QX 2.8.2 (Brain Innovation, Maastricht,
The Netherlands). Each 3D volume was corrected for BO in-
homogeneities (4-cycle bias field estimation), followed by brain extrac-
tion from the skull and separating bone and cerebro-spinal fluid (2-cycle
iteration).

Functional images obtained during the localizer and the NF runs were
processed in real-time using Turbo-BrainVoyager 3.2 (Brain Innovation,
Maastricht, The Netherlands). To correct head motion, each volume was
realigned to the first volume of the localizer. Each realigned volume was
smoothed with a three-dimensional Gaussian kernel of 8 mm full-width-
half-maximum. After completion of the localizer, three ROIs (voxel size
=12 mm®, 6 x 6 x 6) were manually placed. To this end, GLM t-statistics
of the brain activity during the localizer task, i.e. the sum of the three
contrasts: appraisal > fixation, reappraisal > fixation, reappraisal >
appraisal (threshold ¢t = 3), was projected onto the processed structural
scan. The local maximum of the t-statistics within the left dorsolateral
and medial PFC constituted the centre of the PFC ROL Similarly, the local
maximum of the t-statistics within the left amygdala constituted the
centre of the amygdala ROL A ROI in the left corticospinal tract (CST)
served as control ROL? Probability maps of the selected ROIs across
subjects are depicted in Fig. 1c.

During the NF task, PFC-amygdala fc was calculated in real-time. PFC-
amygdala fc was defined as the partial correlation r, between PFC and

1 This threshold was determined using the data obtained from the negative NF
implementation, using the cumulative distribution function of PFC-amygdala fc,
i.e. partial correlations r, between the PFC, amygdala and corticospinal tract.

2 We note that the current study focused on left-lateralized ROIs as those were
reliably activated in all subjects in the localizer task, whereby a lateralization in
favour of the left hemisphere is in line with the literature (Ochsner and Gross,
2005).
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amygdala activity, while controlling for CST ‘activity’. As shown previ-
ously, partial correlation analysis can be used to quantify fc between
areas while controlling for noise from a task-unrelated region (Dawson
et al., 2016). Partial correlations were based on a moving window, which
was updated with every incoming volume. The length of the correlation
window was 20 volumes (see Supplementary Discussion). Therefore,
the ratio of fc-NF to no-NF volumes in the correlation window changed
with every incoming TR (Fig. 1b). To illustrate this: for the fc-NF
mini-blocks, the ratio of fc-NF: no-NF volumes in the correlation win-
dow was 1:19 at the first volume of the mini-block, 2:18 at the second
volume of the mini-block and 20:0 at the last volume of the mini-block,
and vice versa for no-NF mini-blocks. Calculations were performed using
a custom-made plugin for Turbo-BrainVoyager, which also provided a
direct TCP/IP based link between the real-time analysis software and the
stimulus application BrainStim. PFC-amygdala fc was displayed via
thermometer during the fc-NF mini-blocks.

2.1.7. Offline MRI data analysis

We also analysed the MRI data offline. While online and offline
analysis of the MRI data follow a similar processing pipeline, offline al-
gorithms tend to be more robust. Offline analysis of the MRI data was
performed using SPM12 (FIL, Wellcome Trust Centre for Neuroimage,
UCL, London, UK). Here head motion was corrected by realigning the
functional time series of the localizer or the NF runs to its first volume.
Due to motion artefacts (i.e. motion exceeded 3 mm on any axis) three
individuals (i.e. one individual per group) were excluded from all ana-
lyses. Each individual’s structural image was registered to their mean
functional image and segmented, in order to normalize structural and
functional images to the Montreal Neurological Institute (MNI) template.
Finally, normalized functional images were smoothed with a three-
dimensional Gaussian kernel of 8 mm full-width-half-maximum. To in-
crease the consistency between online and offline analysis we used the
same ROIs. Therefore, the ROIs defined in Turbo-BrainVoyager during
the MRI session were transformed from DICOM to NIFTI format, from
radiological to neurological convention and from voxel to mm space.
Subsequently, ROIs were normalized to the MNI template by applying the
same transformation matrix used for the subject-specific normalization of
structural and functional images. Time series were extracted from the
three ROIs using MarsBaR 0.44 (Brett et al., 2002) and PFC-amygdala fc
calculated using the same procedure as during real-time NF, i.e. partial
correlation r, between PFC and amygdala activity, while controlling for
CST ‘activity’.

2.1.8. Statistical analysis

If not stated otherwise, statistical analysis was performed using SPSS
version 25 (SPSS Inc, Chicago, IL, USA). To identify the most effective NF
implementation we evaluated the difference between no-NF and fc-NF
for each NF implementation. The primary measure for this comparison
constitutes PFC-amygdala fc, i.e. partial correlations r,. Fc was averaged
at each of the 20 volumes (i.e. length of a mini-block) across the seven
mini-blocks within one condition (fc-NF, no-NF), NF runs (1, 2, 3, 4) and
individuals within one NF implementation (negative NF implementation,
weighted negative NF implementation, positive NF implementation). The
relationship of fc-NF and fc was assessed by correlating (Pearson’s r
correlations) the average fc at each of the 20 volumes with the number of
fc-NF volumes within the correlation window (N = 40, i.e. 20 volumes
per mini-block). To statistically compare these Pearson’s r correlations
between the different NF implementations, Fisher’s z-transformation was
applied to each correlation coefficient, resulting in normally distributed
values r’ with standard errors s,-. The null hypotheses (r'1-r'2 = 0) were
tested in R(psych) (Revelle, 2015) using Student t-test (Howell, 2011).

The same analysis was conducted to assess the frequency of negative
partial correlations (secondary measure). We then assessed the frequency
of the different scenarios, to provide further insights into the mechanisms
underlying differences between fc-NF and no-NF (Supplementary Re-
sults, Supplementary Fig. 3; Supplementary Fig. 5).
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Fig. 1. Schematic representation of the experimental procedures (Experiment 1 and 2 in green and Experiment 3 in orange). (a) Experimental timelines. To activate
the key regions involved in emotion regulation participants performed the social scenes task (localizer). Based on an individual’s localizer activity, we then defined
three regions of interests (ROIs): left prefrontal cortex (PFC), left amygdala, left corticospinal tract (CST). Each NF run comprised fc-NF mini-blocks (20 volumes in
Experiments 1 and 2; 40 volumes in Experiment 3) and no-NF mini-blocks (20 volumes), presented in alternating order. (b) Detailed view of the procedure during
the NF task. NF was based on partial correlations r, between the PFC and amygdala activity, while controlling for CST ‘activity’, whereby partial correlations were
obtained from a moving window comprising 20 subsequent volumes, which was updated with every incoming volume. Thus, for Experiments 1 and 2, the ratio of fc-
NF: no-NF volumes in the correlation window is 1:19 at the first volume of the mini-block, 2:18 at the second volume of the mini-block and 20:0 at the last volume of
the mini-block, and vice versa for no-NF mini-blocks. Note that due to the extended window length for the fc-NF mini-blocks in Experiment 3, the ratio of fc-NF: no-NF
volumes in the correlation window is 20:0 for twenty volumes. Number of fc-NF volumes in the correlation window (N of fc-NF volumes in r,) is illustrated in form of a
grey shape (c) Probabilistic maps of subject-specific ROIs (i.e. PFC and amygdala). superimposed on the groups’ average structural image in MNI space. The respective
centre of the PFC probabilistic maps (Experiment 1 and 2: x = —20, y = 50, z = 24; Experiment 3: x = —26, y = 47, z = 22) are classified as Brodmann area 10 within
the left middle frontal gyrus. The respective centre of the amygdala probabilistic maps (Experiment 1 and 2: x = —17,y = —1, z = —14; Experiment 3: x = —16,y =

—3, z = —15) are classified as left amygdala (Eickhoff et al., 2005).

2.2. Results

The aim of Experiment 1 was to explore whether PFC-amygdala can
be differentially modulated. Therefore, we compared three different NF
implementations regarding their effectiveness of modulating PFC-
amygdala fc. The primary measure for this comparison, i.e. PFC-
amygdala fc, is illustrated in Supplementary Fig. la.

The relationship of fc-NF and fc was assessed by correlating the
average fc at each of the 20 volumes with the number of fc-NF volumes
within the respective correlation window (Supplementary Fig. 1b). For
the weighted negative NF implementation, a significant negative rela-
tionship was found (r3g) = —0.72, p < 0.001), i.e. the more fc-NF vol-
umes were included in the correlation window, the less positive the
resulting partial correlation. The opposite relationship was found for the
negative NF implementation (r(sgy = 0.37, p = 0.02), i.e. the more fc-NF
volumes were included in the correlation window, the more positive the
resulting partial correlation. No significant relationship was observed for
the positive NF implementation (r3g) = 0.22, p = 0.16).

Finally, the relationship between the average fc at each volume and
the number of fc-NF volumes within the correlation window observed for
the weighted negative fc-NF implementation was significantly different
from the other two implementations (both p’s < 0.001), which did not
differ from each other (p = 0.48). The picture is similar for the secondary
measure, i.e. the frequency of negative partial correlations (see Sup-
plementary Results, Supplementary Fig. 2; Supplementary Fig. 3 for
details).

In sum, these findings demonstrate the superiority of the weighted
negative NF implementation in modulating PFC-amygdala fc towards
more negative fc.®

3. Experiment 2
3.1. Materials and methods

This study comprises data from 30 adolescent females (M = 15.20
years; SD = 1.10 years; 25 naive individuals and the 5 individuals tested
using the weighted negative NF implementation in Experiment 1). The
recruitment procedure was identical to Experiment 1. The ‘Self-report
questionnaires’, ‘MRI data acquisition’, ‘Localizer task’, ‘Neurofeedback
task’ as well as the ‘Online MRI data analysis’ and ‘Offline MRI data
analysis’ were identical to Experiment 1. However, all individuals
received NF using the weighted negative NF implementation. Due to
motion artefacts (motion exceeded 3 mm on any axis) datasets from three
individuals were excluded from all analyses.

3.1.1. Statistical analysis
Firstly, we performed the same analysis as in Experiment 1.
We extended this by investigating practice-related change in

3 Note that the cognitive and psychological measures were comparable be-
tween the three groups (see Supplementary Table 1).

emotional/metacognitive measures and neural measures. Practice-related
change in emotional/metacognitive measures was defined as difference be-
tween emotional/metacognitive measures obtained before and after the
MRI session and assessed using paired samples t-test. Practice-related
change in neural measures, i.e. practice-related change in fc, was defined
as the slope of the linear regression” of the total fc across runs (Supple-
mentary Fig. 4a) and was tested using a one-sample t-test.

Moreover, we performed correlation analyses between different
emotional/metacognitive and neural measures. Relevant emotional/
metacognitive measures were practice-related change in emotional/
metacognitive measures (as defined in the previous paragraph) and initial
emotional/metacognitive measures, i.e. measures obtained before the MRI
session. Relevant neural measures were practice-related change in fc (as
defined in the previous paragraph), initial fc and fc-NF-effect. Initial fc
was defined as the average fc of the first two mini-blocks (Supplementary
Fig. 4b). Fc-NF-effect was defined as the difference between no-NF and fc-
NF (Supplementary Fig. 4c). For Experiment 2, the correlation analysis
was exploratory. Pearson’s r correlations (two-tailed) are reported for the
whole sample and, in addition, after outlier removal. Outliers were
identified for each correlation separately (i.e. multivariate outlier) by
bootstrapping the Mahalanobis distance (Schwarzkopf et al., 2012).

Missing values analysis revealed that 2.56% of the self-report ques-
tionnaire data were missing. We performed Little’s test of Missing
Completely at Random (MCAR) (Little, 1988). MCAR was not significant
(X2(35’ N=27) = 41.74, p = .201), i.e. there is no evidence to suggest that
the data were not MCAR. As such, pairwise deletion was used in the
statistical analysis.

3.2. Results

The aim of Experiment 2 was to assess the effects of one session fc-NF
(weighted negative NF implementation) on neural measures, emotional/
metacognitive measures and their associations in a larger sample. The
fc-NF-effects observed in Experiment 1 were replicated, that is, the
number of fc-NF volumes within the correlation window was negatively
related with the average fc at each volume (Fig. 2a) and positively related
with the frequency of negative partial correlations at each volume
(Fig. 2b).

We further investigated practice-related change on emotional/meta-
cognitive measures and neural measures for the whole sample. At
emotional/metacognitive level no significant changes between measures
obtained before and after the MRI session were observed (Supplementary
Table 2). Similarly, at neural level no significant practice-related change
in fc could be observed (M = 0.005, SD = 0.035, p > .01). Thirteen in-
dividuals showed a negative slope (i.e. change in the desired direction, M
= —0.023, SD = 0.019), fourteen individuals exhibited a positive slope
(M = 0.031, SD = 0.025). Note that the emotional/metacognitive mea-
sures were comparable between these two subsamples (see Supplemen-
tary Table 3 and Supplementary Table 4).

4 See (Paret et al., 2019) for an overview on NF indices.
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3.2.1. Correlation analysis related change towards negative fc, the better the thought control abil-

We first investigated whether practice-related change in emotional/ ity after the MRI session, when compared to the before the MRI session.
metacognitive measures and practice-related change in fc were related. Moreover, we were interested whether neural measures could be
We found that practice-related change in fc was negatively related with predicted by initial emotional/metacognitive measures, i.e. measures

change in TCAQ (Fig. 3a top; r21) = —0.37, p = .087; after the removal of obtained before the MRI session. Correlation analysis revealed that initial
one outlier: rzp) = —0.58, p = .005). Hence, the larger the practice- fc was positively related with STAI-T (Fig. 3b top; r(2s) = 0.36, p = .067;
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after the removal of two outliers: r(23) = 0.59, p = .002) and negatively
related with thought control ability (TCAQ: Fig. 3c top; ri21) = —0.36, p
= .087; after the removal of two outliers: r (19) = —0.66, p = .001). In
other words, initial fc was more negative in individuals with lower trait
anxiety and better ability to control thoughts before the MRI session.
Further, we found that STAI-S and fc-NF-effect were negatively related
(Fig. 3d top; r(p2) = —0.41, p = .046; after the removal of one outlier: r(a1)
= —0.55, p = .007). This suggests that individuals with lower state
anxiety before the MRI session showed a larger difference between fc-NF
and no-NF, than individuals with higher state anxiety.

4. Experiment 3
4.1. Materials and methods

20 naive female adolescent participants (M age = 15.85 years; SD =
1.04 years) were tested using the weighted negative NF implementation
as described in Experiment 1. The recruitment procedure was identical
to Experiments 1 and 2.

The ‘Self-report questionnaires’ were identical to Experiments 1 and
2. ‘MRI data acquisition’ was similar to Experiments 1 and 2, the only
modification being the number of volumes during the localizer and the
NF runs (see Supplementary Methods). The ‘Localizer task’ was similar
to Experiments 1 and 2, however, only half of the trials were performed
(i.e. 15 trials, 4.7 min).

The "Neurofeedback task’ was similar to Experiments 1 and 2, with
one critical variation: we lengthened the fc-NF mini-blocks to 40 volumes
while the no-NF mini-blocks remained 20 volumes. This variation was
introduced to further enhance the effectiveness of the fc-NF. We collected
data from three identical runs, each comprising five fc-NF mini-blocks
and five no-NF mini-blocks.® The ‘Online MRI data analysis’ and ‘Offline
MRI data analysis’ was similar to Experiments 2 taking into account the
change from 20 to 40 volumes per fc-NF mini-block. Moreover, we
collected MRS data. We choose to quantify GABA and glutamate, the
major inhibitory and excitatory neurotransmitters in the human brain, in
the PFC and ACC to explore their effect on significant brain-behaviour
correlations. The PFC was chosen due to its key role in y-aminobutyric
acid (GABA)-ergic neurotransmission within the PFC in balancing
amygdala activity (Constantinidis et al., 2002). The ACC was chosen due
to its central role in the reward processing network, especially for the
explicit reward processing, such as in the case of NF (Emmert et al., 2016;
Sitaram et al., 2016). See Supplementary Methods for details on MRS
data acquisition. Due to motion artefacts (motion exceeded 3 mm on any
axis) the dataset from one individual was excluded from all analyses.

4.1.1. MRS analysis

MRS post-processing was performed using the MATLAB (Mathworks,
Natick, MA) toolbox MRspa (version 1.5f, https://www.cmrr.umn.e
du/downloads/mrspa/). Motion corrupted spectral averages were
removed and frequency and phase drifts corrected before spectral aver-
aging. Averaged spectra were quantified in LCmodel (Provencher, 2001,
1993) in reference to a simulated basis set. GABA and glutamate were
quantified in reference to total Creatine (Creatine + Phosphocreatine,
t/CrPCr) for each VOI. Cramér-Rao lower bounds were <20% for GABA
(t/CrPr) indicating reliable estimates extracted from spectra for all but
two values in the PFC which were 22% and 27%. Both were retained for
analysis. GABA (t/CrPr) concentrations were similar in each VOI (t(1g) =
0.89, p = .386; ACC: M = 5.811%, SD = 1.40%, PFC: M = 5.29%, SD =
2.25%). Cramér-Rao lower bounds were all <20% for Glutamate
(t/CrPr) indicating reliable estimates extracted from spectra. Glutamate
(t/CrPr) concentrations differed by VOI (t;1g) = 4.85, p < .001), with

5 The number of runs and blocks was reduced from four runs with seven
blocks (Experiment 1 and 2) to account for the extended fc-NF period and to
accommodate the acquisition of MRS data in the same session.
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estimates higher in the ACC (M = 10.57%, SD = 0.76%), than the PFC (M
= 9.34%, SD = 0.75%).

4.1.2. Statistical analysis

We performed the same statistical analysis as in Experiment 1 and 2,
whereby we only tested the significant correlations obtained in Experi-
ment 2. In addition, we conducted a moderation analysis following mean
centering using the SPSS add-on tool PROCESS macro (version 3.3)
(Hayes, 2018). Significant interactions were followed-up with simple
slope analysis.

4.2. Results

The aim of Experiment 3 was three-fold: to assess the effect of longer
fc-NF mini-blocks, to test the relationships between the neural and
emotional/metacognitive measures as observed in Experiment 2, and to
explore whether neurotransmitter concentrations in NF relevant regions
influence these relationships.

As in Experiment 1 and 2, the number of fc-NF volumes within the
correlation window was negatively related with the average fc at each
volume (Fig. 2¢) and positively related with the frequency of negative
partial correlations (Fig. 2d). We further found that these two measures,
i.e. average fc and the frequency of negative partial correlations, pla-
teaued when the fc-NF was estimated consecutively from volumes
stemming from fc-NF mini-blocks only (i.e. the ratio of fc-NF: no-NF
volumes in the correlation window was 20:0).

Similar to Experiment 2, no practice-related change in emotional/
metacognitive measures (Supplementary Table 5) or practice-related
change in fc could be observed at group level (M = —0.006, SD =
0.061, p > .01). Ten individuals showed a negative slope (i.e. change in
the desired direction, M = —0.057, SD = 0.022), nine individuals
exhibited a positive slope (M = 0.052, SD = 0.026).

4.2.1. Correlation analysis

We computed the correlation coefficients for the relationships be-
tween the neural and emotional/metacognitive measures that were
found to be significant in Experiment 2. Again, all four correlations were
found to be significant. Practice-related change in fc was negatively
related with change in thought control ability (TCAQ; Fig. 3a bottom;
ra7) = —0.57, p = .01; after the removal of two outliers: r(;5y = —0.66, p
= .004). Initial fc was positively related with trait anxiety (STAIT T;
Fig. 3b bottom; r(17) = 0.43, p = .70; after the removal of one outlier: r(;6)
= 0.56, p = .016) and negatively related with thought control ability
(TCAQ: Fig. 3¢ bottom; r(17) = —0.55, p = .014; after the removal of three
outliers: r 14y = —0.69, p = .003). The effect of fc-NF was negatively
related to state anxiety (STAI-S; Fig. 3d bottom; r(;7) = —0.69, p = .001;
after the removal of three outliers: r(;4) = —0.80, p < .001).

4.2.2. Moderation analysis

We conducted moderation analyses to assess if neurotransmitter
concentrations, i.e. glutamate and GABA, in relevant regions influence
the significant relationships found between neural measures and
emotional/metacognitive measures. PFC GABA and ACC GABA concen-
trations moderate the relationship between state anxiety before the MRI
session (STAI-S) and fc-NF—effect (model 3, F(7,11) = 3.65, p = .028, R?=
0.70, Fig. 4a). We found that STAI-S significantly predicted (b = —0.009
ta1) = —3.514,p =.005, 95% CI [-0.015, —0.003]) fc-NF-effect, and that
both, PFC GABA concentration (b = 0.036 t(11) = 2.635, p = .023, 95% CI
[0.006, 0.066]) and the interaction between PFC GABA and ACC GABA
concentrations (b = —0.037 t(11) = —2.394, p = .036, 95% CI [-0.071,
—0.003], Table 1), significantly moderated the relationship between
STAI-S and fc-NF-effect.

To further explore the nature of the interaction we performed a
simple slopes analysis. We found that the relationship between STAI-S
and the fc-NF-effect reached significance at medium ACC GABA and
medium PFC GABA concentrations (b = —.009 ;1) = —3.513, p = .005,
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Table 1

Estimating the influence of neurotransmitter concentrations in NF relevant re-
gions on the relationship between state anxiety before the MRI session and
fc—NF-effect.

Coeff SE t p LLCI ULCI
Constant iy -.028 .020 —1.438 178 -.072 .015
STAI-S (X) by -.009 .003 —3.514 .005 -.015 -.003
PFC GABA (W) b, .036 .014 2.635 .023 .006 .066
xw bs .006 .005 1.121 .286 -.006 .017
ACC GABA (2) by -.029 .025 -1.185 .261 -.084 .025
XZ bs -.001 .005 -.233 .820 -.011 .009
wz bes -.037 .015 —2.394 .036 -.071 -.003
XWzZ b, .002 .008 -.231 .822 -.018 .015

95% CI [-0.015, —0.003]) and was at trend level for medium ACC GABA
and low PFC GABA concentrations (b = —0.022, t(11) = —1.894, p = .085,
95% CI [-0.048, 0.004]), whereas no such effect was found at medium
ACC GABA and high PFC GABA concentrations (b = 0.004 t;1) = 0.324,
p = .752, 95% CI [-0.023, 0.031]). No significant effects were observed
for low and high ACC GABA (all p’s > 0.1). To test the specificity of this
effect we ran the same model using glutamate only (i.e. PFC glutamate
and ACC glutamate concentrations) and a combination of GABA and
glutamate (e.g. PFC GABA and ACC glutamate concentrations). In none of
these cases the overall model was found to be significant (all p’s > 0.1).

5. Discussion

Here we aimed at comparing different NF implementations with re-
gard to their effectiveness in modulating PFC-amygdala fc (Experiment
1) and at assessing the effects of the most effective NF implementation on
neural measures and emotional/metacognitive measures, and their as-
sociations (Experiment 2 and 3). We further assessed the effect of a
longer fc-NF block and whether neurotransmitter concentrations in NF
relevant regions influence fc-NF-effects or practice-related changes
(Experiment 3).

5.1. Differential effects of NF implementations

In Experiment 1, we compared three NF implementations and found
that the weighted negative NF implementation was most effective in
achieving a more negative fc when comparing fc-NF to no-NF. Consid-
ering that younger individuals and anxious individuals of all ages exhibit
generally lower levels of negative PFC-amygdala fc, or even positive PFC-
amygdala fc, it is plausible to suggest that a NF implementation ranging
from zero (no correlation) to minus one (maximum negative correlation)
was too unspecific to benefit the individuals (Hattie and Timperley,
2007; Lotte et al., 2013). In other words, the naturally more rarely
occurring negative connectivity pattern does not receive enough rein-
forcement to allow the individuals to learn and improve. This finding
holds important implications for the development of NF interventions, as
it suggests that individually tailored NF implementations should enhance
the modulation of task-specific activity patterns even more.

5.2. Absence of significant effects at group level

In Experiment 2 and 3 we did not find significant changes in
emotional/metacognitive measures or in the change in fc at group level.
This could be due to several reasons, such as the large inter-individual
differences in neural and emotional/metacognitive measures, or the
relatively short practice time. We note though that the relationship be-
tween the amount of practice and manifestation of emotional/meta-
cognitive changes is not yet clear, and may depend on various aspects
(e.g. population, task, NF implementation). While Zilverstand and col-
leagues (Zilverstand et al., 2015) showed clinically relevant effects with
only one NF session, others argue that multiple sessions may be necessary
(Linden et al., 2012; Scheinost et al., 2013). For one, this shows that there
is an urgent need to actively research the optimal dose of NF practice.
Moreover, it may be beneficial to link the NF practice more closely to
cognitive-behavioural approaches, such as cognitive behavioural
therapy.
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5.3. Relationships between emotional/metacognitive and neural measures

The significant associations between emotional/metacognitive and
neural measures that we observed in Experiment 2 were replicated in an
independent sample in Experiment 3. The observed correlational results
can be subdivided into effects of change and predictive effects. Correla-
tions representing effects of change demonstrated that practice-related
change in fc is related to change in thought control abilities. Effects of
change indicate that fc-NF could potentially be used to selectively
modulate specific brain network connections. Here neural changes relate
to changes in emotional/metacognitive measures, which supports the
effectiveness of the NF implementation.

Results depicting predictive effects found that lower trait anxiety
predicted more negative fc. This finding is consistent with previous
studies (Delli Pizzi et al., 2017; Kim et al., 2011). Our results further
indicate that thought control abilities were negatively related to the
initial fc, i.e. the better the thought control ability, the more negative the
initial fc. This is not surprising given the negative relationship between
trait anxiety and thought control abilities. Together, these results high-
light that levels of anxiety and thought control abilities can be used to
predict PFC-amygdala fc during emotion regulation.

Our results also provide some insights into individual differences in
fc-NF-effects. Specifically, we found that state anxiety prior to the MRI
session was negatively related with the fc-NF-effect, i.e. the lower the
state anxiety, the higher the effect of fc-NF on fc. This highlights the
importance of an individual’s state prior to the NF. Future studies aiming
at increasing NF success should therefore ensure that individuals, espe-
cially those with high levels of state anxiety, are relaxed and comfortable
prior to the NF session. It is fair to assume that an individual’s state not
only plays a pivotal role prior to the NF session, but also during the NF
session. One approach could therefore be to only initiate the next trial if
the individual is in a ‘good’ state (i.e. relaxed, low state anxiety), which
could be assessed either behaviourally or by means of an identified
biomarker (Meinel et al., 2016).

5.4. Moderation through neurotransmitter concentrations

In Experiment 3, we extended our protocol to obtain glutamate and
GABA concentrations from the PFC and ACC. We choose the PFC due to
the key role of y-aminobutyric acid (GABA)-ergic neurotransmission
within the PFC in balancing the amygdala activity (Constantinidis et al.,
2002), whereas the ACC was chosen due to its centrality for explicit
processing of reward, such as NF (Emmert et al., 2016; Sitaram et al.,
2016). Our results showed that the relationship between state anxiety
(STAI-S) before the MRI session and fc-NF-effect (Fig. 3d) is moderated
by GABA concentrations in the ACC and PFC. Simple slope analysis
revealed that the relationship between STAI-S and the fc-NF-effect
reached significance at medium ACC GABA and medium PFC GABA
concentrations and is at trend level for medium ACC GABA and low PFC
GABA concentrations. This demonstrates that medium ACC GABA con-
centrations constitutes an optimal level of inhibition. Due to the central
role of the ACC for explicit reward processing (Emmert et al., 2016;
Sitaram et al., 2016), this result suggests that medium inhibition levels in
the ACC are ideal for explicit reward processing, such as NF. Our results
further demonstrate that medium and low PFC GABA concentrations, but
not high PFC GABA concentrations, promote the relationship between
STAI-S and fc-NF-effect. This is in agreement with animal studies
demonstrating that higher GABA concentrations in the ventromedial PFC
reduces GABA-ergic inhibition of the amygdala, promoting its hyperac-
tivity (Akirav and Maroun, 2007; Chefer et al., 2011; Courtin et al., 2014;
Gauthier and Nuss, 2015). Delli Pizzi and colleagues provided supporting
evidence for this in humans, i.e. they found a positive relationship be-
tween medial PFC GABA concentrations and resting state ventromedial
PFC-amygdala fc (Delli Pizzi et al., 2017). This suggests that if high PFC
GABA concentrations imply higher amygdala activity, this could in turn
result in a more positive PFC-amygdala fc and consequently reduce
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fc-NF-effects. In sum, our results provide first empirical evidence for the
relevance of neurotransmitter concentrations for the effectiveness of
fc-NF.

Given the importance of the optimal neurotransmitter concentrations
for fc-NF to be effective approaches to alter neurotransmitter concen-
trations prior to NF should be explored. However, the use of GABA-ergic
drugs during childhood and adolescence is controversial due to the risk of
developing dependence and severe adverse effects (Sidorchuk et al.,
2018). Yet other means that alter GABA-ergic activity, such as yoga
(Streeter et al., 2010, 2007), may be adopted. Such studies would also
shed further light on the causal interpretation.

A pressing question is whether the observed moderation effect is
specific to the domain of emotion regulation, i.e. domain specific, or
universal. Within our moderation model ACC GABA concentrations (Z)
and fc-NF-effects (Y) constitute NF specific variables, whereas STAI-T
(X) and PFC GABA concentrations (Z) are domain specific variables. It
is thus reasonable to assume that the model is still valid if X and Z are
replaced by corresponding variables in the different domain, such as
residual motor function in the affected limb as X and GABA concertation
from the sensorimotor area of the affected hemisphere as Z for motor
control following post-stroke. It can further be assumed that this effect
may not specific to fc-NF only, but also apply for activity-based NF.
Empirical research and computational modelling should be consulted to
answer the question wheatear our results are domain specific or
universal.

5.5. Implications for translational, clinical application

The results from the current series of experiments have provided
strong evidence that fc-NF is feasible in adolescent females with different
anxiety levels. We further found that practice-related changes in fc is
related to changes in thought control ability. Thus, on a broader scale,
our results provide first evidence for a possible clinical application that
aims to shape emerging fc patterns non-invasively in the developing
brain (Cohen Kadosh et al., 2013). This is significant given that one in
four children have increased levels of worry and fear as they enter
adolescence and paediatric anxiety predicts lifelong mental disorders
(Keshavan et al., 2014). Aberrant emotional regulation strategies arising
in anxiety mirror fc patterns in younger individuals where lower levels of
negative PFC-amygdala fc or even positive PFC-amygdala fc are exhibited
(Kim et al., 2011).

Further research is now necessary to evaluate the effects of multi-
session protocols in clinical samples using both subjective and objec-
tive clinical outcome measures.

5.6. Limitations

The following limitations merit comment: Despite converging results
across the experiments, multi-centre studies with good control group/
conditions are now necessary to examine the effect of psychosocial and
socioeconomic factors. We acknowledge that the absence of a control
group/conditions in Experiment 2 and 3 limits the scope of the current
results (Jeunet et al., 2018; Paret et al., 2019). Furthermore, we per-
formed a relatively large number of correlations, whereby we have
focussed on priori hypotheses, i.e. correlations with measures of anxiety
and thought control ability.

While we underline the acquisition of neurotransmitter levels as a
strength of this study, we emphasize that single-voxel MRS has limited
spatial resolution. Recent advances in magnetic resonance spectroscopic
imaging (MRSI) have the potential to overcome the shortcomings related
to single-voxel MRS in future (Steel et al., 2018).

6. Conclusions

Our results showed that NF implementations differentially modulate
PFC-amygdala fc. Using the most effective NF implementation in a larger
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sample yielded important associations between neural measures and
emotional/metacognitive measures (e.g. practice-related change in fc
was related with change in thought control ability), but also highlighted
the difficulty to learn voluntary fc modulation. Further, we found that the
relationship between state anxiety and the effect of fc-NF was moderated
by GABA concentrations in the PFC and ACC. Future studies that inves-
tigate the effects of multi-session protocols in clinical samples and
whether the moderation model is domain specific or universal are
recommended.
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