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Artificial intelligence  (AI) in healthcare is the use of computer‑algorithms in analyzing complex medical 
data to detect associations and provide diagnostic support outputs. AI and deep learning  (DL) find 
obvious applications in fields like ophthalmology wherein huge amount of image‑based data need to 
be analyzed; however, the outcomes related to image recognition are reasonably well‑defined. AI and 
DL have found important roles in ophthalmology in early screening and detection of conditions such as 
diabetic retinopathy (DR), age‑related macular degeneration (ARMD), retinopathy of prematurity (ROP), 
glaucoma, and other ocular disorders, being successful inroads as far as early screening and diagnosis are 
concerned and appear promising with advantages of high‑screening accuracy, consistency, and scalability. 
AI algorithms need equally skilled manpower, trained optometrists/ophthalmologists  (annotators) to 
provide accurate ground truth for training the images. The basis of diagnoses made by AI algorithms is 
mechanical, and some amount of human intervention is necessary for further interpretations. This review 
was conducted after tracing the history of AI in ophthalmology across multiple research databases and 
aims to summarise the journey of AI in ophthalmology so far, making a close observation of most of the 
crucial studies conducted. This article further aims to highlight the potential impact of AI in ophthalmology, 
the pitfalls, and how to optimally use it to the maximum benefits of the ophthalmologists, the healthcare 
systems and the patients, alike.
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Ever since a handful of scientists coined the term in the 
Dartmouth workshop in 1956, artificial intelligence  (AI) 
has been the locus of innovation in the scientific world for 
decades.[1] With its capabilities and potential gradually being 
unearthed by scientists, AI is becoming a game‑changer in 
the contemporary scenario. Medicine and healthcare are the 
latest advocates of AI’s revolutionary potential, and image 
recognition and analysis seem to be one of its strongest fortes.[2,3]

Although the definition of AI has evolved over the past, 
at present it refers to machine learning (ML) and its notable 
subset, deep learning (DL).[1,4,5]

ML refers to a paradigm that relies on data instead of explicit 
instructions to inform a computer how to perform a specific 
task. These problems are best understood as creating a mapping 
function between an input and an output. In healthcare, inputs 
are typically images or 3D volumes taken from a patient 
with a specific modality  (retinal camera, optical coherence 
tomography [OCT], X‑rays, and other imaging modalities), 

with outputs being the diagnosis of a specific condition. Some 
typical applications are chat‑bots, oncology, pathology, and 
rare diseases.

Algorithms are being applied on a database of inputs 
and desired outputs representative of the problem 
(the “training set”). The outcome is a statistical model that 
generalizes the mapping to any given case of the same nature 
as the training set. This is done through an error minimization 
process, often iterative in nature, during which a complex 
model of relationships transforming the input into the most 
optimal output is “learnt” from the training set.

Artificial neural networks  (ANNs), a set of machine 
learning  (ML) algorithms, have achieved state‑of‑the‑art 
performance in a wide range of problems. Their fundamental 
building block is an artificial neuron, which consists of simple 
mathematical functions transforming inputs into an output. 
These neurons are stacked beside on top of each other to form 
layers. This mimics the way the human brain works. Neurons 
rely on weights to compute their output. The training process 
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of a neural network consists of deriving the most optimal set 
of weights through a process called “backpropagation.” This 
involves multiple iterations through a very large training set.

While the algorithmic fundamentals of ANNs date back to 
the 60s, its potential only started to emerge in the last decade.[6] 
Thanks to more powerful hardware, it is now possible to train 
neural networks with a number of neurons of an unprecedented 
magnitude. The rise of these large neural networks, coined 
“deep learning”  (DL), has been a game‑changer in many 
applications. In ophthalmology, DL has allowed ML algorithms 
to reach accuracies acceptable for large‑scale field deployment.

Methods
This review was conceived after extensive online research 
using the keywords AI, ML, DL, ophthalmology, diabetic 
retinopathy (DR), age‑related macular degeneration (ARMD), 
retinopathy of prematurity (ROP), anterior‑segment diseases, 
cataract, glaucoma, fed into research databases like PubMed, 
Web of Science, Embase, and Cochrane. A  chronological 
history of AI and its adaptation in healthcare, especially 
ophthalmology, was mapped andthe subsequent advances in 
different fields of ophthalmology were documented.

Artificial Intelligence in Ophthalmology: 
Opportunities and Potential in Different 
Ophthalmological Conditions
AI finds obvious applications in ophthalmology where the 
amount of data to be analyzed are complex and the number 
of patients to be analyzed is huge; however, the outcomes are 
simple and well‑defined. There are various approaches in the 
use of AI systems to automatically detect lesions in images of 
the eye.

DL has shown robust skills in medical imaging analysis 
as it involves constant refining, weighting, and comparing of 
details in the images as a part of the constant learning process, 
to accommodate every piece of information possible.[7,8] The 
most common way to apply DL to images (fundus or visual 
field images) or volumes (OCT scans) is through convolutional 
neural networks (CNNs). They take image pixels or volume 
voxels  (the 3D equivalent of a pixel) as input.[3,9‑12] In deep 
neuronal learning, a CNN algorithm teaches itself through 
repetition and self‑correction process until the output matches 
with that of the human grader, by analyzing a labelled training 
set of expert‑graded images and provides the diagnosis. The 
optimised AI algorithm is then ready to provide diagnostic 
support with unknown fundus images.

The most common conditions for which the utility of AI has 
been demonstrated include,
•	 Diabetic retinopathy (DR)
•	 Age‑related macular degeneration (ARMD)
•	 Retinopathy of prematurity (ROP)
•	 Glaucoma, cataracts, and other anterior segment diseases.

The quality of an AI algorithm vastly depends on the dataset 
used to train and validate it. Beyond the absolute number of 
images, it is crucial to gather a fair amount of data for each 
of the different desired outcomes. In medical applications, 
data distributions are often heavily skewed, since healthy 
cases are almost always more prevalent than pathological 

cases. The most advanced stage of the pathology is often the 
one with the least available data. If the trained algorithm 
is intended to be used on different imaging device models, 
it is also important to use datasets representative of the 
differences of output between them, such as field of view or a 
characteristic color tint. The datasets should also be gathered 
following daily practice protocols for exclusion criteria or for 
assessment of acceptable quality. A possible strategy consists 
of implementing a quality detection algorithm as an integral 
part of the AI system. Furthermore, possible variations in the 
images due to ethnicity, age, gender, and so on should also be 
fairly represented in the datasets.

Validating an AI algorithm can either be done in a 
prospective or retrospective way. Retrospective validations 
can either be done by carving out a subset of the dataset for 
that purpose. This is, however, the weakest option, as this only 
validates the algorithm for the characteristics and biases of the 
dataset used. A better alternative is the use of an independent 
validation dataset gathered in a different context. Prospective 
validation is the most comprehensive validation approach. It 
validates the entire system in conjunction with the capturing 
process and the deployment workflow.

Further analysis of the cases wherein the AI algorithm has 
failed to provide a definite answer can be used to provide 
further insights. It might lead to a diagnosis of a different 
pathology which had not been comprehended earlier by the 
algorithm.

DR and AI
DR has evolved to be a hotspot for AI. With more than 400 
million people with diabetes worldwide, DR is touted to be 
one of the leading causes of preventable blindness.[10] The 
overall prevalence of any DR among the global population is 
as high as 34.6%, with ~10% vision‑threatening DR (VTDR).[11] 
In India, one out of five people with diabetes has some form 
of retinopathy. DR being a global health burden, tele‑retinal 
screening programs and retinal screening programs employing 
DL‑based imaging scans using fundus photography or 
multimodal imaging have immense potential and are being 
studied in various trials by ophthalmologists. Several reported 
studies have implemented DL algorithms for diagnosis of 
microaneurysms, hemorrhages, hard exudates, cotton‑wool 
spots, and neovascularization among people with DR. Some 
of these algorithms borrow other ML techniques on top of 
ANNs, such as morphological component analysis  (MCA), 
lattice neural network with dendritic processing  (LNNDP), 
and k‑nearest neighbour (kNN).[2,12]

A potential benefit with AI‑enhanced diagnosis in DR 
detection is the sheer increase number of patients who get 
screened at primary care clinics thereby allowing for early 
detection of diabetic eye disease, which may have otherwise 
gone undetected as a result of the patient not independently 
going to an ophthalmologist to be screened for DR.

DL algorithms for DR detection have recently been reported 
to have higher sensitivity  (~97%) as compared to manual 
efforts by ophthalmologists (~83%),[4] though at this time, more 
peer‑reviewed clinical studies may be needed in literature to 
claim that AI may be doing better than an ophthalmologist, in 
reading images.
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The potential of AI and automated screening systems 
in detecting referable DR has been established in multiple 
studies over the recent past emphasizing AI’s potential in early 
screening and detection of DR [Table 1]. EyeArt by Eyenuk 
has used 40,542 images from 5084 patient encounters obtained 
from the EyePACS telescreening system to train AI algorithms 
to screen for DR with a 90% sensitivity at 63.2% specificity, 
as well as to detect the presence of microaneurysms with a 
sensitivity of 100%.[13] Another study by Tufail et al. evaluated 
the sensitivity and the specificity of EyeArt and Retmarker, two 
automated DR image assessment systems (ARIAS) in a study, 
earlier in 2017. The sensitivity point estimates of the EyeArt 
were 94.7% for any DR, 93.8% for referable retinopathy/RDR 
(graded by humans as either ungradable, maculopathy/diabetic 
macular edema, preproliferative, or proliferative DR), 99.6% for 
proliferative DR (PDR) and that of Retmarker was 73.0% for any 
retinopathy, 85.0% for RDR and, 97.9% for PDR, respectively.[14]

Furthermore, tech‑giant Google  (Health) has reported 
having created a dataset of 128,000 images fed by scientists to 
train a DL network for DR.[4]

Google’s AI system  (automated retinal  disease 
assessment –ARDA) was evaluated with the help of two test 
runs using fundus photos from pre‑diagnosed DR patients by 

expert physicians (The EyePACS‑1 data set and MESSIDOR‑2 
data set). These tests resulted in high sensitivity values of 
97.5% and 96.1% in each practice set and specificity values 
of 98.1% and 98.5%. Google has partnered with Aravind Eye 
Care System and Sankara Nethralaya in India to integrate its 
AI system as part of its global DR care initiative.[15,16]

Another study to evaluate the sensitivity and specificity 
of DL algorithms in automated detection of DR from fundus 
photographs defined referable diabetic retinopathy  (RDR), 
as moderate and worse DR, referable diabetic macular 
edema  (DME), or both, with two different datasets; the 
EyePACS‑1 data set consisting of 9963 images from 4997 patients 
and MESSIDOR‑2 data set consisting of 1748 images from 
874 patients. The prevalence in both sets for RDR was 7.8% and 
14.6%, respectively. For the first operating cut point with high 
specificity, the sensitivity and specificity for EyePACS‑1 were 
90.3% and 98.1%, respectively. For MESSIDOR‑2, the sensitivity 
was 87.0% and the specificity was 98.5%. For the second cut 
point with high sensitivity, in EyePACS‑1 the sensitivity was 
97.5% and specificity was 93.4% and for MESSIDOR‑2 the 
sensitivity was 96.1% and specificity was 93.9%.[16]

A multiethnic study conducted by Asian researchers, 
fed a DL system  (DLS) with a dataset consisting of images 

Table 1: A review of the performance of various artificial intelligence algorithms validated in prospective as well as 
retrospective studies in the detection of referable diabetic retinopathy (RDR) using fundus images

Study (Authors) Type of Study Camera/AI Algorithm Dataset Sensitivity 
(%)

Specificity 
(%)

Rajalakshmi et al.[18] Retrospective Remidio, Fundus on Phone (FOP)/EyeArt Internally generated 
dataset

99.3 66.8

Abràmoff et al.[19] Retrospective Topcon TRC NW6 nonmydriatic fundus 
camera/IDx-DR X2

MESSIDOR‑2 96.8 87

Gulshan et al.[16] Retrospective Topcon TRC NW6 nonmydriatic 
camera/inception‑V3 

MESSIDOR‑2 87 98.5

Gulshan et al.[16] Retrospective EyePACS‑1 90.3 98.1

Ting et al.[17] Retrospective FundusVue, Canon, Topcon, and Carl Zeiss/
VCG‑19 

SiDRP 14-15 90.5 91.6

Guangdong 98.7 81.6

SIMES 97.1 82.0

SINDI 99.3 73.3

SCES 100 76.3

BES 94.4 88.5

AFEDS 98.8 86.5

RVEEH 98.9 92.2

Mexican 91.8 84.8

CUHK 99.3 83.1

HKU 100 81.3

Ramachandran et al.[27] Retrospective ‘Canon CR‐2 Plus Digital Nonmydriatic 
Retinal Camera (Canon Inc., Melville, 
New York, USA)/Visiona

ODEMS 84.6 79.7

Ramachandran et al.[27] Retrospective ‘Canon CR‐2 Plus Digital Nonmydriatic 
Retinal Camera (Canon Inc., Melville, 
New York, USA)/Visiona

Messidor 96 90

Natarajan et al.[20] Prospective Remidio Nonmydriatic Fundus on 
Phone (NM FOP 10)/MediosAI

Internal dataset 
generated

100 88.4

Sosale et al.[28] Prospective Remidio Nonmydriatic Fundus on/Medios AI 
Phone (NM FOP 10)

Internal dataset 
generated

98.8 86.7
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for DR  (76370 images), possible glaucoma  (125189 images), 
and AMD  (72610 images), and performance of DLS was 
evaluated for detecting DR  (using 112648 images), possible 
glaucoma  (71896 images), and AMD  (35948 images). This 
DLS was used to evaluate 494661 retinal images as a part 
of the Singapore National Diabetic Retinopathy Screening 
Program  (SIDRP), using digital retinal photography and 
verified by a team of trained professional graders.[17]

In the primary validation dataset consisting of 71 896 images 
from 14880 patients, the DLS had a sensitivity of 90.5% and 
specificity of 91.6% for detecting RDR; 100% sensitivity and 
91.1% specificity for vision‑threatening DR  (VTDR) when 
compared with professionally analysed records from graders.[17]

The first published study of the use of AI‑based automated 
detection of DR with smartphone‑based fundus images was 
from India.[18] A retrospective analysis of Remidio Fundus on 
Phone (FOP) mydriatic smartphone‑based retinal images and 
EyeArt AI software showed a very high sensitivity of 95.8% for 
detection of DR of any level of severity (95.8%) and over 99% 
sensitivity for detection of RDR as well as sight‑threatening 
DR (STDR)/VTDR.[18]

IDx is the first AI device to get USFDA approval for 
screening for DR in 2018.The retinal images captured by a 
Topcon NW400 camera are uploaded to the IDx‑DR software 
server. The software interprets the retinal images to provide 
the following outputs: i) “More than mild DR detected: referred 
to eye care professional” or ii) “negative for more than mild 
DR; rescreen in 12 months.” A multicenter trial of the device in 
more than 900 adults with diabetes revealed a sensitivity and 
specificity of 87.3% and 89.5%, respectively. There are more 
AI algorithms in the pipeline awaiting regulatory approval, 
from multiple ophthalmic researchers and private companies.

There have been attempts to address two key challenges 
in implementing large‑scale models of screening, namely, 
affordable imaging systems and AI algorithms that can 
be used in minimal infrastructure contexts where access 
to the internet may be difficult. A  recent study aimed at 
evaluating the performance of Medios AI‑  an offline AI 
algorithm that can be used on a smartphone, to detect RDR 
on images taken on Remidio’s Fundus on Phone  (FOP 
NM‑10), a smartphone‑based imaging system. This study 
analyszed images of 231 people with diabetes visiting 
various dispensaries under the municipality of Greater 
Mumbai [Fig. 1].[20] The results showed high accuracy of the 
offline AI algorithm with sensitivity and specificity in grading 
RDR of 100% and 88.4%, respectively and any grade of DR 
as 85.2%and 92%, respectively, when compared to manual 
reports generated by trained ophthalmologists.[20]

ARMD and AI
ARMD is a chronic, degenerative condition of the retina which 
is the most common cause of visual impairment in elderly is, 
characterized by drusen, retinal pigment changes, choroidal 
neovascularization, hemorrhage, exudation, and even geographic 
atrophy.[10] It is broadly classified as dry and wet ARMD. Ting 
et  al. showed that their DLS had a sensitivity of 93.2%, the 
specificity was 88.7% and the AUC was 0.931 for detection of 
referable ARMD based on multiethnic fundus images.[17]

With the promising results from DL interpretation of 
fundus images, efforts towards DL use in OCT analysis, given 

its use in the management of retinal disorders. DL analysis 
of OCT for morphological variations in the scan, detection of 
intraretinal fluid or subretinal fluid, neovascularization has 
started showing promise. DL systems are being effectively 
used to identify anatomic OCT‑based features aiding in early 
diagnosis of retinal pathology and also predict outcomes 
of treatment.[19,21] The sensitivity using such methods varies 
between 87–100% with very high accuracy. Hwang et al. used a 
dataset of labelled 35,900 OCT images obtained of age‑related 
macular degeneration (AMD) patients and used them to train 
CNNs to perform AMD diagnosis and found the accuracy 
was generally higher than 90% when compared to diagnosis 
by retina specialists and the treatment recommendations 
provided by DL was also comparable to that of retina 
specialists [Table 2].[21,22]

ROP and AI
ROP is a leading cause of childhood blindness all over the 
world but it can be treated effectively with early diagnosis 
and timely treatment. Blindness can be prevented if ROP with 
plus disease or retinopathy in zone one stage 3 even without 
plus disease is treated on time. Infants with pre‑plus disease 
require close and repeated observation. The barriers to ROP 
screening are significant inter‑examiner variability in diagnosis 
and only a few trained examiners to screen for ROP. Repeated 
observations and testing require huge manpower and energy 
and this is where AI could make a huge impact in improving 
the efficacy of ROP treatment.[23]

Researchers at The Massachusetts General Hospital and 
OHSU have been working on combining two existing AI 
models to create an algorithm and making reference standards 
to train the same, respectively. On comparing this algorithm 
with the analysis by trained ophthalmologists, its accuracy was 
detected to be better (91%) than that by the experts (82%).[23,24]

Other studies have reported the automatic identification 
of ROP through algorithms that focussed on two‑level 
classification (plus or not plus disease) some of which were 
based on tortuosity and dilation features from arteries and 
veins, with an accuracy of 95% accuracy, which is comparable 
to the diagnosis made by experts [Table 3].[2,24] In 2018, Brown 
et  al. reported the results of a fully automated DL system, 
informatics in ROP (i‑ROP) that could diagnose plus disease, 
with AUROC of 0.98. The i‑ROP system has created a severity 
score for ROP that appears to be promising for ROP treatment 
monitoring.[25]

Figure 1: (a) Interface for the inbuilt, automated, offline AI‑algorithm, 
Medios‑AI integrated into fundus on phone (FOP) to provide instant 
DR diagnosis.  (b) Sample report generated showing heat maps 
highlighting DR lesions

ba
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AI in glaucoma, cataracts and other anterior segment diseases
Cataract and glaucoma are very common diseases in 
ophthalmology. Cataracts lead to clouding of the lens and 
whereas glaucoma damages the optic nerve causing irreversible 
blindness.[10] Conditions like these, although irreversible, their 
progress can be significantly lowered by early diagnosis and 
reasonable treatment.

Slit‑lamp images have been fed into CNN algorithms to 
evaluate the severity of nuclear cataracts. On further iteration and 
validation, their accuracy was found to be 70% against clinical 
grading. Significant progress has also been made considering 
identification of pediatric cataracts in terms of achieving 
exceptional accuracy and sensitivity in lens classification 
and density.[10] ML algorithms like radial basis functions or 
support‑vector machines have improved lens implant power 
selection prior to cataract surgeries. They have been useful in 
conducting anterior segment area analysis such as in corneal 
topography scans and intraocular lens power predictions.[4]

Glaucoma detection primarily depends on the intraocular 
pressure, the thickness of retinal nerve fibre layer (RNFL), optic 
nerve, and visual field examination. Researchers have devised 
an algorithm to classify the optic disc of open‑angle glaucoma 
from OCT images. This algorithm has reported an accuracy of 
87.8%.[10] ML algorithms to identify glaucoma in its early stages 
assessing the cup disc ratio in fundus images or the thickness of 
the retinal nerve fiber in OCT images have reported accuracies 
ranging between 63.7% and 93.1% depending on the input 
images [Table 4]. Ting et al. showed that their DLS had a sensitivity 
and specificity of 96.4% and 87.2%, respectively and the AUC was 
0.942 for glaucoma detection was based on fundus images.[17]

Potential pitfalls
There are a few potential pitfalls that one needs to weigh before 
being prompted to blindly trust the AI‑based decisions and 
diagnoses in ophthalmology.[7]

•	 AI algorithms would need equally skilled manpower to 
capture clear and coherent images to be fed as input images. 

Table 2: A review of the performance of various Artificial Intelligence algorithms tested for detection of Age‑related 
Macular Degeneration (ARMD)

Study (Authors)/Image 
Used

AI Algorithm/Dataset AI Utility Sensitivity 
(%)

Specificity 
(%)

Burlina et al.[29]/Fundus 
images

DCNN‑A WS/National Institutes of Health 
AREDS 

Detecting the presence of AMD from the 
dataset and differentiating from normal 
images

88.4 94.1

DCNN‑U WS 73.5 91.8

DCNN‑A NSG 87.2 93.4

DCNN‑U NSG 73.8 92.1

DCNN‑A NS 85.7 93.4

DCNN‑U NS 72.8 91.5

Lee et al.[30]/OCT Images Modified VGG16/Heidelberg Spectralis 
(Heidelberg Engineering, Heidelberg, 
Germany) imaging database

Detecting the presence of AMD from the 
dataset and differentiating from normal 
images

92.6 93.7

Treder et al.[31] DCNN (using open‑source deep learning 
framework TensorFlow (Google Inc., 
Mountain View, CA, USA))/ImageNet

Detecting the presence of AMD from the 
dataset and differentiating from normal 
images

100 92

Sengupta et al.[32]/OCT 
Images

Transfer Learning/Privately generated 
dataset with 51140 normal, 8617 drusens, 
37206 CNV, 11349 DME images

Differentiating AMD/DME images from 
the dataset consisting of all conditions 
causing treatable blindness

97.8 97.4

Sengupta et al.[32]/Fundus 
Images

DCNN/AREDS 66.34 88.95

DCNN/Tsukazaki Hospital database 100 97.31

CNN/Kasturba Medical College database 96.43 93.45

Hwang et al.[22]/OCT 
Images

VGG16/Internally generated database with 
35,900 images

Identify Normal images without AMD 99.07 99.54

Identify Dry AMD 83.99 99.34

Identify inactive Wet AMD 96.07 90.40

Identify Active Wet AMD 86.47 99.05

Inception V3 Identify normal images without AMD 99.38 99.70

Identify Dry AMD 85.64 99.57

Identify Inactive Wet AMD 97.11 91.82

Identify Active Wet AMD 88.53 98.99

ResNet50 Identify Normal images without AMD 99.17 99.80

Identify Dry AMD 81.20 99.45

Identify Inactive Wet AMD 95.35 90.24
Identify Active Wet AMD 87.19 97.84
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Curated data sets that are robust become a must for proper 
deep learning by the AI systems

•	 AI algorithms require a reliable single output for each 
input. On the contrary, intergrader variability is high when 
diagnosing retinal conditions. This gives rise to a paradox: 
the AI should be more reliable than humans while learning 
from data labelled by humans. This needs to be overcome 
by involving multiple graders and arbitrators which can be 
lengthy and expensive

•	 High computational costs and in‑depth training experiences 
are needed for developing AI algorithms; hence, one might 
only bear such investments when it comes to conditions 
with higher morbidity and mortality rates but not so much 
for rare diseases

•	 The basis of identification and diagnoses made by AI 
algorithms is mechanical, and some amount of human 
intervention is always necessary for detecting each and 
every feature or variation of a disease;

•	 AI may miss findings it’s not looking for, which a trained 
human grader may not, giving patients a false sense of 
security

•	 A wide range of complex algorithms are necessary to execute 
AI operations and designing these algorithms is itself, 
complicated; a slight error in programming could lead to 
higher levels of damage

•	 One of the challenges in use of AI in ophthalmology is the 
limited availability of large data for the rare ocular diseases 
as well as in very common conditions like cataract where 
imaging is not done as a part of routine medical practice

•	 The “Black Box” mode of learning where what goes on 
inside a neural network or ML algorithm remains unclear, 
despite familiar inputs and outputs; complete transparency 
is needed for taking accountability for treatment decisions 
for patients[26]

•	 An ML algorithm would only be reliable on a population 
which is exactly similar to the one it learnt from, and 
whenever there is a slight change in the input data, a whole 
new set of learning algorithms need to be programmed to 
maintain the same accuracy

•	 The difficult attribution of liability in case of errors and 
malfunctions of AI systems in screening and healthcare.

Legal aspects of AI
The development and implementation of the AI algorithms 
involve huge datasets and hence there are several legal 
issues such as regulatory issues, privacy issues, tort laws, 
and intellectual property laws that need to be addressed. 
The AI system consists of a complex set of mathematical 
rules whose inner‑working mechanisms are beyond human 
comprehension. Generalized principles on how to deal with 
AI becomes difficult as there are different forms of applications 
for different purposes. This necessitates the governments, the 
industry players, research institutions, and other stakeholders 
to draft special AI ethics principles regarding fairness, safety, 
reliability, privacy, security, inclusiveness, accountability, 
and transparency and policies that need to be applied to 
the AI activities. Similarly, as the majority of AI algorithms 
development and validation and then clinical implementation 
involves the use of huge datasets, this leads to important 
questions on consent, privacy, and security against the misuse 
of data. Liability of the product, in case the algorithm commits 
an error in diagnosis and misses a diagnosis, is another aspect 
which lawmakers need to pay heed to while dealing with 
AI‑based products or solutions.[36]

What lies in the future?
There are newer applications being discussed among the 
ophthalmic fraternity. These include research on implementing 

Table 3: A review of the performance of various artificial intelligence algorithms tested for detection of Retinopathy of 
Prematurity (ROP)

Study (Authors) Image AI Algorithm/Dataset Sensitivity (%) Specificity (%)

Worrall et al.[33] Fundus images Bayesian CNN (per image)/Canada 82.5 98.3

Bayesian CNN (per exam) 95.4 94.7

Zhang et al.[34] Wide‑angle retinal 
images

AlexNet/Private dataset with 420 365 wide‑angle retina images 72.9 78.7

VGG‑16 98.7 97.8
GoogleNet 96.8 98.2

Table 4: A review of the performance of various artificial intelligence algorithms tested for detection of Glaucoma

Study (Authors) Image AI Algorithm/Dataset Sensitivity (%) Specificity (%)

Sengupta et al.[32] Fundus image DENet/SECS, SINDI 70.67, 37.53

Inception V3/Private database with 48000+ images 95.6 92

MB‑NN/Private database 92.33 90.9

OCT Images MCDN/Private database 88.89 89.63
Yousefi et al.[35] OCT Images The algorithm developed combining Bayesian net, Lazy K Star, 

Meta classification using regression, Meta ensemble selection, 
alternating decision tree (AD tree), random forest tree, and simple 
classification and regression tree (CART)/Privately generated from 
University of California at San Diego (UCSD)‑based diagnostic 
innovations in glaucoma study (DIGS) and the African Descent and 
Glaucoma Evaluation Study (ADAGES), assessed RNFL thickness

80.0 73.0
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AI and ML algorithms in automated grading of cataracts, 
managing pediatric conditions such as refractive errors, 
congenital cataracts, detect strabismus, predicting future high 
myopia, and diagnosing reading disability. There have also 
been studies reported to automatically detect leukocoria in 
children from a recreational smartphone or digital camera 
photographs, implying another potential application of AI. 
Applications in ocular oncology using multispectral imaging 
and ML has also been recently tested. Newer AI algorithms 
are now measuring inner and outer retinal layer thicknesses to 
predict the risk for Alzheimer’s disease.[37] Moreover, with the 
use of AI in multimodal imaging, i.e., combining fundus images 
with OCT and OCT angiography images, it might be possible 
to detect more accurately and multiple retinal diseases at one 
go. Such an algorithm would be invaluable in the differential 
screening of DR, AMD, glaucoma, and other retinal disorders 
simultaneously, along with their severity. Further studies 
and validations are required to assess the application of these 
algorithms in the clinical settings to ensure that such AI‑assisted, 
automated screening and diagnosis effectively minimize 
doctors’ burden and add value at the ophthalmology clinics.[38]

Conclusion
The deployment of AI in ophthalmology is augmenting 
diagnostic imaging, which may soon lead to real‑time 
deployment in telemedicine screening programs. Recent 
studies done real‑time have shown the feasibility of using an 
AI‑assisted automated detection system in ophthalmology, 
especially in the detection of DR. The advantages of the use of 
AI in ophthalmology far outweigh its limitations. When used 
wisely and cautiously, with proper tracking and reporting, 
AI would definitely provide the desired output that could 
help to increase adherence and compliance with screening 
and treatment regimens. Robust deep learning algorithms are 
evolving rapidly and would soon get integrated into regular 
eye‑care services. One should always remember that AI 
provides the best results only when augmented by the skilled 
human workforce.
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Commentary: Artificial intelligence 
for everything: Can we trust it?

The growing prevalence of using artificial intelligence (AI) for 
everything is visible virtually in all aspects of modern life. In 
the accompanying article,[1] the authors examined the rising 
popularity of AI in ophthalmology[2] by tracing its history across 
multiple research databases and various crucial studies. They 
also emphasized the dangers of implicitly trusting machine 
learning (ML) and AI‑based technology.

Conventional software programming vs machine learning
Conventional “explicit programming” of software follows 
definite written rules, and a well‑written software produces 
the expected output from a given input with no mistakes. 
If there is a mistake, the programmer can look through the 
source code to find the reason for the mistake and correct 
the bug.

In machine learning, the software learns by making 
mistakes. Even after extensive training of the software, AI can 
still make new mistakes that the programmer cannot predict, 
understand, or debug.

Hidden danger?
Due to the Black Box nature of most AI, the process by which the 
software arrived at the conclusion – whether right or wrong, is 
hidden from everyone including the programmer who created 
the AI in the first place. One might recall the advice of Arthur 
Weasley from the Harry Potter books “Never trust anything 
that can think for itself if you can’t see where it keeps its brain”. 
This unpredictable nature of AI and ML is the reason why 
Stephen Hawking and Elon Musk warned that the global arms 
race for AI may cause World War 3.[3] However, others like Bill 
Gates and Mark Zuckerberg were more optimistic about the 

advantages of AI and suggest that it will only enhance human 
intelligence and make our lives easier.[4]

In addition, apart from making unintentional mistakes, 
rogue AI can create fake patient information similar to what 
Mirsky et al. had presented at a conference wherein they used 
a deep learning AI to insert fake cancer lesions in CT scans by 
hacking an active hospital network.[5]

AI for ophthalmologists
AI can now be used in ophthalmology for fundus evaluation 
for diabetic retinopathy, glaucoma, retinopathy of prematurity, 
age‑related macular degeneration, retinal vascular occlusions, 
retinal detachment, and other retinal conditions. AI can predict 
how many injections of anti‑VEGF (vascular endothelial growth 
factor) a patient might need. Hill‑RBF IOL calculation formula 
is based on ML.

More interestingly, AI can predict seemingly unrelated 
characteristics such as age, gender, smoking status, systolic 
blood pressure, refractive error, cognitive impairment, 
dementia, neurological diseases, Alzheimer’s disease, risk of 
stroke, and cardiac arrest from only the fundus photographs.[6]

AI can potentially predict the future progression in visual 
fields of glaucoma, myopic progression, the response of retinal 
edema to anti‑VEGF, expected surgical complications, and 
more.[6]

Great power, great responsibility
As we may develop more powerful gadgets, machines, 
software, and AI, patients may trust the AI more than they 
may trust the doctor. However, that trust is misplaced, and we 
should be wary of this. Researchers have been studying how to 
build trust in AI.[7,8] Even if trust can be earned, responsibility 
has to be assigned appropriately. Medicolegally, the lines are 
not clear about responsibility related to the mistakes of AI. 
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