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Abstract 

Background:  Variation in intercellular methylation patterns can complicate the use of methylation biomarkers for 
clinical diagnostic applications such as blood-based cancer testing. Here, we describe development and validation 
of a methylation density binary classification method called EpiClass (available for download at https​://githu​b.com/
Elnit​skila​b/EpiCl​ass) that can be used to predict and optimize the performance of methylation biomarkers, particularly 
in challenging, heterogeneous samples such as liquid biopsies. This approach is based upon leveraging statistical 
differences in single-molecule sample methylation density distributions to identify ideal thresholds for sample 
classification.

Results:  We developed and tested the classifier using reduced representation bisulfite sequencing (RRBS) data 
derived from ovarian carcinoma tissue DNA and controls. We used these data to perform in silico simulations using 
methylation density profiles from individual epiallelic copies of ZNF154, a genomic locus known to be recurrently 
methylated in numerous cancer types. From these profiles, we predicted the performance of the classifier in liquid 
biopsies for the detection of epithelial ovarian carcinomas (EOC). In silico analysis indicated that EpiClass could be 
leveraged to better identify cancer-positive liquid biopsy samples by implementing precise thresholds with respect to 
methylation density profiles derived from circulating cell-free DNA (cfDNA) analysis. These predictions were confirmed 
experimentally using DREAMing to perform digital methylation density analysis on a cohort of low volume (1-ml) 
plasma samples obtained from 26 EOC-positive and 41 cancer-free women. EpiClass performance was then validated 
in an independent cohort of 24 plasma specimens, derived from a longitudinal study of 8 EOC-positive women, and 
12 plasma specimens derived from 12 healthy women, respectively, attaining a sensitivity/specificity of 91.7%/100.0%. 
Direct comparison of CA-125 measurements with EpiClass demonstrated that EpiClass was able to better identify 
EOC-positive women than standard CA-125 assessment. Finally, we used independent whole genome bisulfite 
sequencing (WGBS) datasets to demonstrate that EpiClass can also identify other cancer types as well or better than 
alternative methylation-based classifiers.
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Background
A primary aim in cancer diagnostics is to identify and 
develop biomarkers capable of detecting or assessing 
malignancies in a reliable and noninvasive manner. 
Epigenetic alterations have shown significant potential 
as cancer biomarkers, as many genomic loci become 
aberrantly methylated during tumorigenesis and can thus 
serve as indicators of disease [1–3]. Biomarkers based 
on DNA methylation  are particularly attractive for use 
in liquid biopsies of peripheral blood, which provide a 
minimally invasive means of assessing cancer-specific 
epigenomic alterations contained in circulating tumor 
DNA (ctDNA) using a simple blood draw [4].

While genome-wide methylation analysis techniques, 
such as whole-genome bisulfite sequencing (WGBS) [5] 
and Infinium BeadArrays [6], have been used to identify 
scores of differentially methylated genomic loci in cancer 
tissues [7], only a handful of methylation biomarkers have 
been implemented in the clinic [8, 9]. This is due in part 
to a number of technical and logistical hurdles involved 
in translating promising tissue-based methylation 
biomarkers for use in liquid biopsies, including: (1) 
the small proportion of plasma ctDNA relative to cell-
free DNA (cfDNA) derived from healthy cells [10], (2) 
heterogeneity of methylation patterns at a given locus 
[11–15], (3) age-associated accrual of methylation [16], 
(4) technical artifacts due to bisulfite conversion [17], 
and (5) differences in the yield of extracted cfDNA 
between individual or batches of liquid biopsy samples 
[18]. Collectively, these issues can often make it difficult 
to achieve the high degrees of sensitivity and specificity 
necessary to attain adequate clinical performance with 
a discrete number of biomarkers using conventional 
diagnostic approaches [19]. There thus remains an unmet 
need for the development and implementation of new 
methods capable of better distinguishing cancer-specific 
methylation from background methylation “noise” 
at individual loci in order to harness the diagnostic 
potential of methylated biomarkers in general.

While assessment of locus-specific differential 
methylation can be used to readily identify cancer-
specific signatures at the tissue-level [20], detection 
of this differential methylation can become difficult in 
heterogeneous or highly dilute clinical samples such as 
liquid biopsies. In these cases, current strategies have 

primarily focused on identifying and detecting cancer-
specific CpG methylation patterns [21–25]. Although 
DNA methylation is regarded as a stable and heritable 
epigenetic mark, the fidelity and maintenance of specific 
methylation patterns at the CpG level can vary across the 
genome [26–29]. Differences in methylation levels have 
been reported between individuals [30], dizygotic twins 
[31], and within individuals over time [32], suggesting 
the influence of both genetic and environmental effects 
on DNA methylation stability and its heritability [33]. 
In the context of cancer, it has been observed that 
localized methylation patterns become stochastically 
disordered within individual cells of tumors, creating 
intratumoral, heterogeneous patterns of methylation [34, 
35]. Importantly, these regions of increased methylation 
discordance also tend to coincide with those specifically 
differentially methylated in cancer. Taken together, there 
is a need for tools to optimize the detection of cancer-
specific methylation signatures while accounting for 
locus-specific heterogeneous populations of methylation 
patterns both between and within individuals that can 
complicate the performance of methylation biomarkers 
[36–38].

The overall aim of the present study was to develop 
a means of exploiting differences in locus-specific 
heterogeneous methylation patterns (arising from 
biological and technical noise but also specifically 
from tumors) for use in  clinical cancer diagnostic 
applications. In contrast to genome-wide methylation 
analyses, which are most often employed to identify 
methylation biomarkers, we developed a locus-
specific technique for the clinical implementation of 
methylation biomarkers, particularly in challenging 
samples. Specifically, we sought to devise an approach 
to maximize the performance of methylation biomarkers 
for use with blood-based (liquid biopsy) detection assays. 
For this purpose, we introduce a binary classification 
algorithm called epiallelic methylation classifier 
(EpiClass) that can be used to identify and leverage 
statistical differences in methylation density profiles to 
improve the overall diagnostic performance of putative 
methylation biomarkers. As this approach is based on 
the measurement of methylation density, it is agnostic 
to methylation pattern permutations, thereby conferring 
the potential to outperform methods that are reliant on 

Conclusions:  Our results indicate that assessment of intramolecular methylation density distributions calculated 
from cfDNA facilitates the use of methylation biomarkers for diagnostic applications. Furthermore, we demonstrated 
that EpiClass analysis of ZNF154 methylation was able to outperform CA-125 in the detection of etiologically diverse 
ovarian carcinomas, indicating broad utility of ZNF154 for use as a biomarker of ovarian cancer.
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predefined methylation patterns such as methylation-
specific PCR (MSP) [39], or calculations of the average 
methylation level at a locus, which often become 
ineffective at dilute DNA concentrations. Overall, we 
reasoned that assessment and analysis of intramolecular 
methylation densities, i.e., the proportion of CpG sites 
that are methylated within each epiallelic copy [40], 
should provide a means of improving both the sensitivity 
and specificity of methylation biomarkers in clinical 
diagnostic applications.

We investigated this approach by examining 
methylation at the ZNF154 locus, which we previously 
demonstrated to be differentially methylated in at least 
14 different solid cancer types [2, 41] and has additionally 
been shown by us and others to be a particularly 
promising methylation biomarker of epithelial ovarian 
carcinoma (EOC) [8, 42]. However, the use of ZNF154 in 
the context of liquid biopsies is expected to be potentially 
confounded by the presence of hypermethylated cfDNA 
derived from healthy tissues of the gastrointestinal tract 
[43]. We therefore reasoned that ZNF154 would make 
an ideal model biomarker to test the utility of EpiClass 
approach.

We first establish the potential utility of the  EpiClass 
approach by using RRBS methylation data generated 
from healthy and cancerous tissues in the framework 
of in silico dilution experiments. This demonstrates 
the feasibility of improving diagnostic performance 
through characterization of intramolecular methylation 
densities in dilute liquid biopsy samples. We then 
experimentally confirm the predictions of EpiClass 
performance by generating cfDNA methylation density 
profiles from liquid-biopsy-derived cfDNA using our 
previously reported quasi-digital, high-resolution 
melt approach called DREAMing to directly assess 
intramolecular methylation density at single-molecule 
sensitivity [44]. In total, plasma from 34 patients with 
refractory EOC and 53 cancer-free controls are analyzed 
as training and testing datasets. From these data we 
demonstrate significant improvement in the ability to 
distinguish between patient and control plasma samples 
using EpiClass compared to calculating the mean 
locus methylation signal. Furthermore, we show that 
employment of EpiClass in the assessment of ZNF154 
methylation can more accurately identify EOC in liquid 
biopsies from etiologically-diverse tumor ovarian cancer 
subtypes (i.e., both serous and endometrioid tumors) 
than measurement of blood CA-125, the most commonly 
employed biomarker for monitoring EOC. Lastly, 
using WGBS data generated from plasma cfDNA  of 30 
patients with hepatocellular carcinoma and 36 normal 
controls, we compare the performance of EpiClass to 
alternative DNA methylation-based analysis methods 

and demonstrate the ability to apply EpiClass towards 
assessment of additional cancer biomarkers. Our results 
suggest that EpiClass offers the potential as an improved 
screening method for ovarian cancer and more broadly 
as a practical means of improving the diagnostic 
performance of DNA methylation-based biomarkers, 
particularly in challenging samples such as liquid 
biopsies.

Results
Development of a methylation density binary classifier
Figure  1a illustrates the basic principle of the EpiClass 
approach for classifying samples based on intramolecular 
methylation density distributions. In this highly-
simplified example, identification of cancer-specific 
hypermethylation is obscured by the presence of 
a few heterogeneously methylated epialleles in the 
control sample. In this situation, not uncommon in 
cfDNA methylation analyses, the samples cannot be 
differentiated by assessment of mean methylation (or 
β-values) at individual CpGs, the entire locus or even 
only fully methylated epialleles (Additional file 1: Figure 
S1). In contrast, by considering the methylation density 
of individual cfDNA fragments, or epialleles, and their 
relative abundances or fractions in each sample, i.e., the 
epiallelic fractions, the case is distinguishable from the 
control sample (Fig. 1b).

In order to further leverage the discriminatory power 
of using methylation-density-determined epiallelic 
fraction, we sought to codify this approach by creating 
a streamlined, biostatistical tool called epiallelic 
methylation classifier (EpiClass). Implementation of 
EpiClass requires a dataset that provides a representative 
distribution of epiallelic methylation densities at the 
locus of interest, such as can be derived from standard 
bisulfite sequencing data (WGBS, RRBS, and other) 
methods. Notably, positional information of CpG sites 
is not required, thereby making EpiClass compatible 
with digital or quasi-digital high-resolution DNA 
melting techniques, such as HYPER-Melt or DREAMing 
techniques [44, 45], respectively. The algorithmic 
procedure for EpiClass is shown in Fig.  1c, which is 
used to identify the methylation density and epiallelic 
fraction cutoffs that optimize classification of case and 
control samples. First, the number of methylated CpG 
sites in each detected epiallelic copy of the target locus is 
tabularized to enumerate the distribution of methylation 
densities of each respective sample in the case and 
control sample sets, as shown in Fig. 1a. This table is then 
used to calculate the true-positive and false-positive rates 
as determined by iteratively varying methylation density 
and epiallelic fraction cutoffs. Figure  1c shows the TPR 
and FPR matrices generated for the example scenario 
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of Fig.  1a, with the corresponding optimal methylation 
density and epiallelic fraction cutoffs found by taking the 
cutoff combination that maximizes the positive difference 
between the TPR and FPR (in this simplified case, TPR 
is 100% and FPR is 0%). These cutoffs are the predicted 
optimal cutoffs for the genomic locus in the test sample 
set, which can then be further validated in a secondary 
cohort of samples.

Simulated dilute admixtures for predicting EpiClass 
performance
We previously reported the presence of aberrant 
methylation at the ZNF154 locus in at least 14 different 
solid cancer types [2, 41] and also established the locus 
as one of the most promising candidate biomarkers 
for epithelial ovarian carcinoma (EOC) [8]. However, 
analysis of Illumina Infinium Human Methylation 450K 
array data from the Cancer Genome Atlas (TCGA) 
[46] revealed that healthy colorectal tissues also exhibit 
hypermethylation at this locus (Additional file  1: Figure 
S2), portending limitations in the utility of ZNF154 as 
a biomarker in liquid biopsies derived from peripheral 
blood. Additional analyses of RRBS data from EOCs, 
healthy ovarian tissues, and peripheral blood samples 

from healthy patients also revealed heterogeneous 
methylation at this locus across individual reads 
and samples that might further complicate analyses 
(Additional file  1: Figure S3). Therefore, in spite of the 
promising discriminatory potential of hypermethylation 
at ZNF154 to classify ovarian carcinomas [41], 
methylation heterogeneity at this locus would be 
expected to challenge its utility as a useful liquid biopsy 
marker, thereby making this locus an ideal candidate for 
testing the EpiClass approach.

In order to further validate the selection of ZNF154 
for our studies, we sought to develop a generalizable 
approach for predicting whether implementation of 
EpiClass with a given methylation biomarker could 
improve diagnostic performance over other methods 
in liquid biopsy specimens. Furthermore, we reasoned 
that such an approach might also aid in the selection of 
biomarkers that could benefit from the EpiClass method 
in general. Toward this end, we investigated whether 
methylation density distributions derived from publicly 
available datasets might be used to create simulated 
dilute admixtures resembling cfDNA solutions. 
Simulated cfDNA solutions were created using in silico 
admixtures from RRBS reads of EOCs (n = 12) and white 

a

c

b

Fig. 1  Schematic of the methylation density binary classifier. a Hypothetical dataset of methylation data from a single case and control cfDNA 
sample containing heterogeneously-methylated DNA b Table characterizing the use of a methylation density classifier cutoff. c Schematic 
illustrating the EpiClass procedure for determining optimal methylation density and epiallelic fraction cutoffs. The optimal methylation density 
cutoff is 75%, and the epiallelic fraction cutoff is either 2 or 3. Thus, a sample in this example is called positive if it has 2 or more epialleles that 
exhibit methylation densities of 75% or higher
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blood cells (WBCs; n = 22). In particular, cancer-positive 
cfDNA samples were simulated using a bootstrapping 
method by combining randomly-sampled RRBS reads 
from each of the EOC samples after being randomly 
paired and mixed with a WBC background sample 
at various EOC:WBC admixture ratios ranging from 
100% down to 0.01%. These were then compared with 
RRBS reads generated exclusively from the WBCs. Data 
from this evaluation were used to identify methylation 
density cutoff values achieving the highest area under 
the receiver operating characteristic curve (AUC) value 
based on EpiClass analysis, as determined by sample sets 
at each admixture ratio. The AUC values achieved by 
implementation of EpiClass to classify the samples were 
compared to those achieved using overall mean locus 
methylation as a baseline classification approach.

Figure  2 shows the AUC performance of EpiClass 
versus average methylation values over the entire range 
of simulated EOC:WBC admixture ratios. The results 
of this analysis indicate that EpiClass classification 
outperformed average methylation classification at all 
admixture ratios, particularly as the EOC:WBC ratio 
decreased below the 1% abundance commonly reported 
for ctDNA in cfDNA from cancer patients [47]. We 
then generated a second simulated cohort of 50 cancer-
positive and 50 cancer-free cfDNA samples, to observe 
the variance in EpiClass performance in simulated 
cfDNA solutions of 1%, 0.1% and 0.01% EOC:WBC 
admixture ratios. The results of these simulations, 
shown in Additional file  1: Figure S4 and S5, indicate 
that the probability of improving sample classification 

relative to mean locus methylation steadily increases as 
the methylation density cutoff increases from 20% to 
approximately 85% at all admixture ratios. Performance 
drops off as the admixture ratio approaches 0.01% and, 
interestingly, at methylation density cutoffs > 85%, as 
might be observed in traditional assays such as MSP due 
to stochastic sampling of only heavily or fully methylated 
epialleles.

Implementation of EpiClass in liquid biopsies
We next validated the predicted performance of EpiClass 
using primary data derived from a cohort of liquid 
biopsies from 67 patients (26 women with late-stage 
ovarian cancer and 41 cancer-free women; Additional 
file  2: Table  S1). For these samples, we obtained 
methylation densities of individual DNA fragments using 
DREAMing melt profiles [44] (see Additional file 1: Figure 
S6 for examples). We further validated the methylation 
densities obtained by DREAMing with bisulfite 
sequencing. The two methods showed good agreement 
(Additional file  1: Figure S7) indicating sufficient 
congruency to implement DREAMing as a simpler and 
cheaper method for locus-specific methylation density 
analysis than deep bisulfite sequencing.

As shown in Fig.  3a and Additional file  1: Figure S8, 
preliminary meta-analysis of the methylation density 
profiles of EOC-positive and cancer-free women revealed 
that while both cohorts exhibited a large fraction 
of ZNF154 epialleles with little to no methylation, 
only cfDNA from cancer-positive patients exhibited 
the presence of a significant proportion of densely 
methylated ZNF154 epialleles. However, comparison 
of the overall population of epialleles indicated that 
there was no significant difference in mean methylation 
between cases and controls, suggesting that classification 
by mean methylation was not sufficient to discriminate 
samples (Additional file 1: Figure S9).

We next employed EpiClass to identify methylation 
density and epiallelic fraction cutoffs that would optimize 
the diagnostic performance for classifying EOC-positive 
women based solely on their respective liquid biopsy 
ZNF154 methylation density profiles. The results of 
EpiClass analysis, shown in Additional file 1: Figure S10, 
identified a methylation density cutoff of 60% and a 
normalized epiallelic fraction of 6.7 epialleles per mL 
of plasma (viz., 6.7 epialleles, at least 60% methylated) 
as the optimal cutoff values for maximizing diagnostic 
performance. Figure  3b shows the classification 
performance as a function of methylation density cutoff 
(using corresponding optimal epiallelic fraction cutoffs) 
in comparison with classification by mean methylation 
alone. Data from this analysis demonstrate that overall 
performance increases as the methylation density cutoff 

Fig. 2  Simulated performance of EpiClass as a function of admixture 
ratios of epithelial ovarian carcinoma (EOC) to WBC RRBS reads. The 
performance of the methylation density binary classifier (EpiClass, 
red) and mean locus methylation classifier (blue) at increasing 
dilutions of EOC RRBS reads in a background of WBC RRBS reads 
acquired from Widschwendter et al.[8]. Simulated performance of 
improved classification over mean methylation at different read 
depths demonstrated in Additional file 1: Figure S4 and S5. AUC​ area 
under the curve, EpiClass methylation density classifier
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is increased to 20%, at which point it remains largely flat, 
agreeing with the predicted performance of the previous 
simulation. This result indicates that consideration of 
heterogeneously-methylated epialleles can significantly 
improve classification performance. In contrast, 
consideration of epialleles at methylation densities below 
20% reduces overall performance (due to high fractions 
of epialleles with low methylation density in the controls) 
by effectively reducing clinical specificity. The optimal 
methylation density cutoff, defined as the maximum 
positive difference between TPR and FPR, was identified 
here as 60%. These points are further illustrated in Fig. 3c, 

d, which show that EpiClass achieves better performance 
than using a 0% (mean methylation) methylation 
density cutoff (EpiClass AUC = 0.67, optimal sensitivity/
specificity = 65%/83% vs. mean methylation AUC = 0.53, 
optimal sensitivity/specificity = 54%/63%). Consideration 
of only heavily-methylated epialleles, as targeted in MSP-
based techniques, was defined by epialleles with 95% or 
more methylation density and yielded the same AUC and 
specificity as EpiClass (AUCs: 0.67 vs 0.67; specificities: 
83% vs 83%); however the EpiClass optimal sensitivity 
was higher (65% vs 58%), suggesting heterogeneously-
methylated epialleles allow for a modest improvement 

Fig. 3  Performance of EpiClass in EOC patient and control plasma samples. a The pooled epiallelic fractions of cfDNA methylated epialleles with 
varying methylation densities in EOC (red, n = 26) and healthy (blue, n = 41) patient plasma samples. Purple-shaded regions indicate overlap 
between the two plasma sets. b Performance of EpiClass at each methylation density cutoff for the EOC and healthy control plasma samples. 
Dotted line shows the optimal methylation density cutoff derived from EpiClass. The red dot indicates the ROC curve AUC for the mean methylation 
cutoff. Measurement metric refers to either 1—FPR, TPR, AUC, or TPR–FPR. c ROC curves showing the classification performance of using the 
optimal methylation density cutoff determined by EpiClass (red), MSP (orange), or mean methylation cutoff (blue) to identify the EOC and healthy 
control plasma samples. d Boxplots showing the performance of the epiallelic fraction cutoffs for either the optimal 60% methylation density cutoff 
determined by EpiClass, MSP, or mean methylation to classify plasma samples from EOC patients (red, n = 26) or healthy controls (blue, n = 41) 
Y-axes adjusted to ignore healthy control outliers. EOC epithelial ovarian carcinoma, EpiClass methylation density classifier, MDC methylation density 
cutoff, AUC​ area under the curve; * indicates p < 0.05, two-sided Wilcoxon rank-sum test; ns = not significant; Mean* methylation was inferred from 
the fraction of all methylated epialleles. MSP* performance estimated using an MDC of 95%. Supplementary Figure S9 demonstrates no statistical 
difference between sample cohorts with respect to mean methylation
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in detection. The failure of the mean methylation level to 
classify any cases is likely a result of low-level background 
methylation noise contributed by the higher abundance 
of low-methylation-density epialleles in the control 
samples than the cases.

Independent validation of EpiClass threshold values
We validated the methylation density and epiallelic 
fraction cutoffs identified by EpiClass in our initial cohort 
by applying them to the analysis of a second, independent 
cohort. For this validation cohort, we used archived 
plasma samples (n = 36), comprising 3 separate blood 
draws obtained from 8 women over a longitudinal study 

period of 8  weeks (n = 24), as well as plasma samples 
obtained from cancer-free women (n = 12; Additional 
file  2: Table  S2). Initial analysis, shown in Fig.  4a, 
indicated that these samples exhibited a similar overall 
methylation density profile as the first cohort in that the 
cases had higher levels of heterogeneously-methylated 
epialleles than in the control cohort samples, many of 
which also exhibited the presence of hypermethylated 
epiallelic variants.

Independent evaluation of the methylation density 
cutoffs from the validation cohort, as shown in Additional 
file  1: Figure S11 and Fig.  4b, demonstrated that the 
ideal methylation density cutoff values identified by 

Fig. 4  Validation of EpiClass cutoff values and corresponding performance for identifying EOC from patient plasma. a The pooled epiallelic fractions 
of cfDNA methylated epialleles with varying methylation densities in the second EOC (red, n = 24) and healthy (blue, n = 12) patient plasma sample 
cohort. Purple shaded regions indicate overlap between the two plasma sets. b Performance of EpiClass at each methylation density cutoff for the 
EOC and healthy control plasma samples. Dotted line shows the optimal methylation density cutoff derived from EpiClass. The red dot indicates 
the ROC curve AUC for the mean methylation cutoff. Measurement metric refers to either 1—FPR, TPR, AUC, or TPR–FPR. c Receiver operating 
characteristic curve for the optimal 60% methylation density cutoff on the second plasma cohort. d Boxplots indicating the distribution of sample 
normalized read counts with intramolecular methylation densities greater than or equal to 60% (EpiClass), 95% (MSP*), or greater than 0% (mean* 
methylation). EOC epithelial ovarian carcinoma; EpiClass methylation density classifier, MDC methylation density cutoff, AUC​ area under the curve; 
*** indicates p < 0.001, two-sided Wilcoxon rank-sum test; ns = not significant; Mean* methylation was inferred from the fraction of all methylated 
epialleles. MSP* performance estimated using an MDC of 95%
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EpiClass were largely consistent between the simulated 
(20–85%), training (20–95% density) and validation 
(20–80% density) cohorts. These results indicate 
that experimentally-determined methylation density 
thresholds are likely consistent and applicable when 
evaluating independent cohorts with similar patient 
characteristics. Figure  4c, d shows that classification of 
the validation set using the optimal methylation density 
cutoff of 60% identified in the training set achieved 
91.7%/100.0% sensitivity and specificity, in which the 
sensitivity plus specificity was higher than either the 
mean methylation level (83.3%/66.7% sensitivity and 
specificity) or the 95% methylation density cutoff 
(37.5%/100.0% sensitivity and specificity). Again, mean 
methylation suffered from a loss of clinical specificity 
likely due to heterogeneous, low-methylation-density 
epialleles, whereas consideration of heavily-methylated 
epialleles compromised clinical sensitivity as not all 
case samples possessed significant fractions of heavily-
methylated epialleles.

Performance of EpiClass versus CA‑125 in liquid biopsies 
from patients with EOC
Next, we blindly classified these samples according to 
the 60% optimal methylation density and 6.7 epialleles 
per mL plasma epiallelic fraction cutoffs established by 
EpiClass analysis of the training cohort, the results of 
which are shown in Fig. 5. We compared the classification 
performance using the EpiClass-identified methylation 
density cutoffs with gold-standard patient CA-125 levels 
(available for all but one of the samples in the validation 
set). Figure  5 shows that EpiClass correctly classified 
16 of 23 (69.6%) samples, whereas CA-125 correctly 
classified only 11 of 23 (47.8%) using the standard clinical 
CA-125 cutoff of 35 U/mL. Of additional note, CA-125 
misclassified all of the patients with non-serous ovarian 
cancer subtypes (n = 9), whereas EpiClass-thresholded 

ZNF154 correctly classified 6 of the 9 endometrioid 
samples. This finding suggests that EpiClass analysis of 
ZNF154 may represent a viable alternative to CA-125 
for companion diagnostics of non-serous ovarian cancer. 
Combining CA-125 measurements with EpiClass cutoffs 
improved classification performance even further, 
achieving correct classification of 6 of 9 non-serous and 
14 of 14 serous for a total of 20 of 23 (87.0%) cases. Here, 
too, implementation of EpiClass-derived cutoffs for 
ZNF154 methylation achieved 100.0% clinical specificity.

Comparison of EpiClass to alternative methylation‑based 
sequencing analyses
We compared the classification performance of 
EpiClass to another cfDNA methylation analysis 
tool, CancerDetector [25], which has been previously 
reported to provide higher liquid biopsy cancer 
detection performance than other epigenetic diagnostic 
methods, including CancerLocator [48] and methylation 
haplotype blocks [21]. For this comparison, we used 
whole genome bisulfite sequencing (WGBS) data of 
cfDNA derived from liquid biopsies obtained from 30 
patients diagnosed with hepatocellular carcinoma (HCC) 
(from Chan et  al. [24], EGAS00001000566, and Li et  al. 
[25], EGAD00001004317), which included 25 patients 
with early-stage disease [24], and 36 normal controls. 
Using this data, we assessed methylation at our locus of 
interest, ZNF154, and three additional liver cancer loci, 
using both methods. The patient and control samples 
were randomly split 50:50 ten times into separate runs 
of paired training and test sample sets. Training samples 
from each run were used to construct classifiers based on 
methylation density cutoffs (for EpiClass) or Tumor and 
Normal Class beta distribution shape parameters (in the 
case of CancerDetector). Each classifier was then applied 
to the test set samples and the performances of the two 
methods were compared (see “Methods” section).

Fig. 5  Counts of endometrioid (n = 9) or serous (n = 14) EOC subtype patient plasma samples from the validation cohort above the CA-125 
cutoff (35 U/ml) or EpiClass cutoffs derived from the training cohort. Numbers above each bar indicate the number of samples above each given 
classification cutoff. Mean* methylation was inferred from the fraction of all methylated epialleles. MSP* performance estimated using an MDC of 
95%. No available specificity measurements for CA-125 as the control samples (n = 12) did not have measured CA-125 U/mL concentrations. MDC 
methylation density cutoff
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Figure 6a, b shows that EpiClass slightly outperformed 
CancerDetector with respect to classifying the WGBS 
cases and normal plasma samples when utilizing 
ZNF154 as the biomarker (EpiClass mean AUC = 0.77 
versus CancerDetector mean AUC = 0.70), although 
this difference was not statistically significant (p = 0.059; 
Wilcoxon rank sum 2-sided test). For all 10 EpiClass 
training sample set runs, the ideal methylation density 
cutoff was determined to be 45% (Additional file  2: 
Table  S3), which is consistent with the previously 
determined range of ideal methylation density cutoffs 
for the EOC training and independent validation 
cohorts. This further confirms the utility of leveraging 
heterogeneous methylation data to improve the 
performance of ZNF154 and demonstrates that EpiClass 
derived optimal cutoffs for a given locus are consistent 
not only across different sample cohorts but also across 
different cancer types and stages of disease.

To explore the generalizability of EpiClass for use with 
panels of methylated biomarkers, we identified additional 
genomic regions that are hypermethylated in TCGA liver 
hepatocellular carcinoma (LIHC) tumors with respect to 
normal controls and classified the WGBS samples based 
on their methylation status at these loci. Specifically, 

we selected the top three CpG probes with the largest 
positive median difference in beta-value methylation 
level between matched tumor and normal samples using 
LIHC 450K methylation array datasets collected from 
TCGA. We also implemented a previously-described 
bioinformatic pipeline to identify highly cancer-specific 
methylation by only considering probes exhibiting β < 0.2 
in all of the normal samples. Additionally, in order to 
compare the performance of EpiClass to CancerDetector, 
we limited our probe selection to the liver-cancer-
specific markers previously identified by CancerDetector 
[25]. These markers are notable in that they exhibit 
differential methylation, not only between liver cancer 
samples and matched normal tissue, but also between 
liver cancer samples and normal plasma samples. For 
EpiClass, the methylated status at each of the three loci 
for the WGBS samples was pooled by constructing a 
support vector machine (SVM) classifier with a linear 
kernel and using the normalized methylated read counts 
at each locus (see “Methods” section). Figure 6c, d shows 
that EpiClass significantly outperforms CancerDetector 
with respect to classification based on the three loci, 
(EpiClass mean AUC = 0.77 versus CancerDetector mean 
AUC = 0.68; p = 0.013, Wilcoxon rank sum 2-sided test). 

Fig. 6  Comparison of EpiClass and CancerDetector. a, b Receiver operating characteristic curves (ROCs) based on classification of 10 test sample 
sets using either the optimal methylation density read counts at the ZNF154 marker region for EpiClass (a, blue), or the estimated sample tumor 
fraction derived by CancerDetector (b, red) using reads at the ZNF154 marker region. Light shaded lines indicate individual ROC curves for each test 
sample set. Dark line indicates the mean ROC curve. Light shaded region indicates 1 standard deviation from the mean. c, d Same as A–B except for 
the chosen top 3 liver cancer markers. e, f Same as C–D except for the top 3 liver cancer marker regions and ZNF154 marker region. AUC​ area under 
the curve, std. dev. standard deviation
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In Fig.  6e, f, we further expanded the biomarker panel 
by also including ZNF154 (4 biomarkers total), resulting 
in mean AUCs of 0.82 and 0.72 for EpiClass versus 
CancerDetector, respectively (p = 0.005; Wilcoxon rank 
sum 2-sided test). Overall, EpiClass exhibited better 
classification performance than CancerDetector in all 
tested methylation biomarkers.

Discussion
Recent analyses of cancer methylomes have shown that 
while cancer-specific hypermethylation can be highly 
deterministic, methylation patterns between tumor 
subpopulations at these loci often exhibit considerable 
epigenetic polymorphisms [13]. Diagnostic methylation 
assays that focus solely on heavily-methylated 
biomarkers, such as MSP, may struggle at detecting early 
stage tumors in part due to their inability to discriminate 
the subtle changes in methylation density distributions 
that are likely present in heterogeneous tumors and 
at early stages of carcinogenesis. In the present work, 
we report a method for leveraging disease-associated 
differences in epiallelic methylation density profiles to 
improve performance of methylation biomarkers for use 
in clinical diagnostic assays, particularly when evaluating 
challenging samples such as liquid biopsies. Our results 
demonstrate that assessment of methylation density 
information at the level of individual DNA fragments 
can be used to establish effective thresholds potentially 
capable of overcoming the inherent biological noise 
associated with methylation from background sources 
such as clinical, technical and biological variation or age-
related epigenetic drift [49].

In this study, we primarily focused on the ZNF154 
locus based upon previous reports by us and others 
showing it to be a promising, recurrently methylated 
cancer biomarker whose implementation in liquid 
biopsy is nonetheless complicated by the presence of 
background methylation from cfDNA derived from 
healthy tissues [8, 41, 50]. Furthermore, the potential 
utility of ZNF154 as a pan-cancer methylation biomarker 
also afforded the opportunity to directly compare the 
performance of EpiClass in different cancer types. 
Our results suggest that EpiClass can be successfully 
implemented with ZNF154 cfDNA methylation data 
obtained by different methods (RRBS, WGBS, DNA 
melting data via DREAMing) to improve liquid-biopsy-
based detection of disparate cancer phenotypes. 
Likewise, ZNF154 methylation appears to be useful for 
detection and monitoring of EOC subtypes, in contrast 
to CA-125, which is largely limited to only serous-type 
ovarian carcinomas. Beyond EOC, EpiClass is easily 
generalizable to individual or multiple cancer biomarkers 

irrespective of their cancer specificity as long as the 
appropriate case and control datasets are used.

To demonstrate the generalizability of EpiClass, we 
also tested its performance  with independent datasets 
and methylation biomarkers in the context of HCC. 
With these data we also compared the classification 
performance of EpiClass with a previously described 
methylation classification tool, CancerDetector. Overall, 
our results indicate that not only is EpiClass readily 
generalizable to individual or multiple cancer biomarkers, 
but that it also can achieve higher performance than 
other methods applied to the same targets and datasets. 
Notably, applying EpiClass to ZNF154 methylation in the 
context of WGBS data from HCC patient and normal 
control plasma samples demonstrated promise for 
detecting early stage hepatocellular carcinoma as 25 out 
of the 30 WGBS datasets were collected from patients 
with early stage disease [24]. We conclude that EpiClass 
is generalizable to individual or multiple biomarker 
panels, applicable to sequencing in addition to DNA 
melting data, performs as well as CancerDetector for 
classification of cancer-positive liquid biopsy samples, 
and that ZNF154 may also be an effective biomarker for 
detection of diverse cancer types, including liver and 
ovarian cancers.

In addition to its utility for predicting and improving 
the performance of novel methylated biomarkers, 
EpiClass also has the potential to prompt reevaluation of 
promising methylation biomarkers that may have been 
overlooked or excluded due to perceived background 
noise resulting from heterogeneous methylation. As this 
noise depends not only on the locus in question but also 
on the cohort of samples analyzed, EpiClass could be 
used to prescreen for methylated loci that would have 
the highest performance specific to the clinical context 
of interest. For example, in this study, we selected three 
loci that exhibited liver-cancer-specific differential 
methylation based on public TCGA data and assessed 
their classification performance using WGBS data 
from liquid biopsies obtained from patients diagnosed 
with HCC and healthy individuals. Interestingly, the 
performance of these three loci was equivalent to that 
of using only ZNF154 in the case of EpiClass analysis, 
or slightly reduced in the case of CancerDetector. 
Consideration of all four loci provided only a minor 
improvement in analytical performance. In terms of 
marker screening, ZNF154 may be a more efficient 
choice for inclusion in a biomarker panel, whereas the 
other three loci may be useful for identifying tissue of 
origin.

It is also possible that the results of EpiClass analyses 
could be used to inform the most suitable assay method 
for a candidate methylation biomarker. For example, 
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a locus of interest with a high methylation density 
optimal cutoff would ostensibly imply high levels of 
background methylation would likely obfuscate mean 
methylation analysis but might thereby be well-suited 
to MSP-based assays targeting heavily-methylated 
epialleles. Alternatively, optimal methylation density 
cutoffs in the moderate range would imply the presence 
of heterogeneously-methylated epialleles from 
healthy tissue(s) and indicate that methods capable of 
analyzing intramolecular methylation density, such 
as DREAMing or deep  bisulfite sequencing, may 
be warranted in challenging samples such as liquid 
biopsies. A low-level methylation density cutoff would 
imply an ideal biomarker with minimal background 
methylation, for which methods sensitive to any level 
of hypermethylation, e.g., methylation-sensitive high-
resolution melt (MS-HRM), might be employed [51, 52]. 
In theory, EpiClass thresholds might also be adjusted 
to differentiate even marginal changes in methylation 
density to increase early-stage sensitivity while 
maintaining an acceptable level of specificity. Future 
studies will be needed to further explore the relationship 
between methylation density and the development and 
progression of cancer.

We observed that the optimal methylation density 
cutoffs identified by EpiClass were relatively consistent 
in the present study; however it is probable that the 
epiallelic fraction cutoff might vary between distinct 
datasets or analysis techniques as seen by comparison of 
the training and validation sample sets as well as between 
tissue and plasma sample sets. This likely reflects 
inherent differences in the composition of the tumor 
tissues and suggests that care should be taken when 
employing EpiClass thresholds in disparate sample types 
assessed by different or incongruent technologies. In this 
study, this may be reflected with respect to the training 
and validation ovarian cancer plasma samples, in which 
the diagnostic performance of the validation cohort was 
higher than that of the training cohort. This was likely 
due in part to increased heterogeneous methylation in 
this sample set, a result of inherent differences between 
training and validation cohorts, but also the limited 
number of patients may have contributed to cohort-
specific performance. Nonetheless, our results indicate 
that consideration of heterogeneously-methylated 
epialleles, based on the heterogeneous methylation 
density cutoff identified by EpiClass, is expected to 
improve diagnostic performance in various sample types 
by increasing the separation between tumor and normal 
signals regardless of sample type or cohort. Additionally, 
the agreement of the methylation density cutoffs between 
our different sample cohorts implies that localized 
discordant methylation profiles are possibly a product of 

consistent underlying biological phenomena as observed 
here in the case of EOC and liver cancer at the ZNF154 
locus.

Similar to all diagnostic tests and algorithms, the 
reliability of the EpiClass thresholds and corresponding 
performance will be necessarily determined by both 
sample size and population variability of the effect size, 
or difference in methylation levels between cases and 
controls. Because the MD cutoff is derived based on the 
predicted classification performance, the reliability, or 
variability, in picking the MD cutoff itself will depend on 
the effect size to be detected. Smaller effect sizes will 
require more sequencing depth (and also more samples) 
to detect reliably. Generally speaking, the MD cutoff 
variance is expected to scale as 1

√

n
 , where n is the number 

of samples and 1

D
 [53], where D represents the mean 

depth in sequencing or the inverse of the mean analytical 
specificity (ratio of epialleles with methylation densities 
over the MD cutoff that are detectable in a background of 
D epialleles) in a DREAMing assay.

The dependence of the EpiClass approach on sensitive 
and accurate assessment of methylation density at the 
individual epiallele level can pose technical or logistical 
barriers, particularly for sequencing-based approaches, 
which can require significant time and cost to achieve 
adequate sensitivity and statistical power to determine 
accurate methylation density profiles in samples 
containing dilute tumor DNA, such as liquid biopsies. In 
contrast to methylation patterns, epiallelic methylation 
density information can be more easily assessed using 
HRM techniques, such as DREAMing, thereby opening 
the door for biomarkers to be evaluated via low-cost, 
nonsequencing-based assays amenable to low-resource 
clinic settings [44, 51]. The DREAMing-based technique 
we employed here offers several advantages for targeted 
profiling of methylation density. In particular, the short 
turnaround time for DREAMing (results in several hours) 
and low cost (approximately $10.00 per sample) make 
it a practical option for profiling methylation density. 
Secondly, single molecule sensitivity is readily achievable 
by DREAMing, which is particularly important when 
working, as here, with limited (plasma) sample volumes. 
Furthermore, unlike bisulfite sequencing, DREAMing 
does not require analysis of sequencing results or 
patterns, drastically reducing the turnaround time 
for determining optimal thresholds for maximizing 
performance or applying established thresholds in a 
given clinical application.

Unlike other methods that rely upon thousands of 
genomic loci to classify a sample as cancer-positive, 
EpiClass is instead designed for the assessment of 
individual genomic regions. However, as demonstrated 
in this study, it is also possible to combine counts of 
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methylated fragments from different loci into a learned 
model after assessing each separately with EpiClass. One 
reason for assessing hundreds to thousands of loci is to 
increase the probability of detecting tumor derived DNA 
with any of the loci, especially when using low coverage 
sequencing information. Conversely, EpiClass is ideally 
suited for use with a small panel of loci using high depth 
data, such as derived from DREAMing, to achieve high 
classification performance. With low coverage data, relative 
performance decreases, as expected and as demonstrated 
here, when comparing DREAMing data versus WGBS 
data. However, the relatively simple procedure of 
including heterogeneous methylation as a measurable 
signal performs as well if not better than methods which 
rely on methylation patterns or attempt to identify tumor 
derived reads based on joint methylation probabilities 
across adjacent CpG sites. Because the majority of 
methylation patterns in the genome are characterized by 
bimodality (either heavily methylated or unmethylated), it 
is reasonable for many classification methods to construct 
a model that reflects these underlying distributions. 
However, it can be difficult to assign DNA fragments with 
heterogeneous methylation patterns to one mode or the 
other. In liquid biopsies, the dearth of tumor DNA means it 
is essential to capture as much signal as possible. The ability 
to include heterogeneously-methylated, tumor-derived 
DNA using a simple threshold is one way to increase signal 
and improve detection sensitivity. Applying this method to 
a small panel of biologically relevant loci at high depth may 
greatly improve the ability to detect disease.

Conclusions
The EpiClass approach presented here is a relatively 
simple, effective, and interpretable technique for 
overcoming issues related to the presence of heterogeneous 
methylation patterns that arise from inherently stochastic 
cellular processes associated with the accumulation and 
maintenance of DNA methylation, such as localized 
discordant methylation reflective of intratumor 
heterogeneity. Likewise, this approach is likely to be largely 
suitable, not only for optimizing the performance of 
methylation biomarkers for clinical diagnostic applications 
such as liquid biopsies, but also more generally for 
the study and evaluation of any biological phenomena 
associated with the dynamic localized accumulation or loss 
of DNA methylation, particularly in complex, composite or 
dilute samples.

Methods
Datasets and samples
450K Illumina Infinium Human Methylation 450 BeadChip 
datasets
Processed Illumina Human 450K data for EOCs 
(GEO accession GSE72021, described in [8, 54]) from 
221 tumor samples (171 serous, 18 endometrioid, 
14 clear cell, 9 mucinous and 9 other histological 
cancer subtypes) and WBCs (GEO accession 
GSE55763, described in [55]) from 2664 individuals 
were downloaded from the NCBI’s Gene Expression 
Omnibus (GEO, https​://www.ncbi.nlm.nih.gov/geo/). 
Data for TCGA solid tumor and control sample sets 
were downloaded from the Broad Institute (https​://
gdac.broad​insti​tute.org/) FireHose. Beta-values for 
probes cg11294513, cg05661282, cg21790626, and 
cg27049766 were extracted using custom Python-2.7.14 
(https​://pytho​n.org) scripts.

Reduced representation bisulfite sequencing data
Reduced representation bisulfite sequencing (RRBS) 
data were obtained for 12 EOCs, 10 healthy ovarian 
tissues, and 22 WBC samples used in Widschwendter 
et al. [8]. The data were downloaded from the European 
Genome-phenome Archive (dataset accession: 
EGAD00001003822).

Plasma samples
All samples for this study were obtained after approval 
by institutional review board (IRB), and the study 
was conducted in accordance with the U.S. Common 
Rule. Plasma samples (n = 107) were obtained from 
34 patients with late-stage residual EOC and 57 
pathologically normal control patients with written 
consent given by (all) the participant subjects. The 
patients with EOC were derived from two different 
clinical trials, described below, and controls were 
recruited by Fox Chase Cancer Center. Samples were 
split into two cohorts. One was used to assess the 
performance of EpiClass and establish optimal cutoffs 
in plasma and the second cohort was used to validate 
EpiClass cutoffs in plasma and compare the cutoffs to 
CA-125.

The first cfDNA cohort contained plasma from 26 
EOC-positive patients and 41 healthy women (1 sample 
per patient). The patients with EOC had previously 
received standard-of-care treatment (a platinum- and 
taxane-containing regimen), relapsed after one or more 
subsequent treatment regimens, and been recruited 
into a clinical trial testing combined treatment with 
bevacizumab and dasatinib (NCT01445509). The 
plasma samples were taken at baseline before treatment 

https://www.ncbi.nlm.nih.gov/geo/
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
https://python.org
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was administered. Volumes of plasma processed and 
extracted cfDNA concentrations can be found in 
Additional file 2: Table S1.

The second cohort encompassed 24 plasma samples 
from 8 patients with ovarian cancer (3 samples per 
patient) and 12 control samples from healthy women 
(1 sample per patient). Here, too, patients with 
ovarian cancer were given standard of care, relapsed, 
and were recruited to a clinical trial, this one testing 
combined treatment with bevacizumab and sorafenib 
(NCT00436215) [56]. Ovarian cancer patient plasma 
samples were taken at three separate time points over 
6  weeks (at baseline, 2  weeks after exposure to the first 
agent, and 2 weeks after exposure to the second agent). 
Blood was collected into standard EDTA tubes and 
maintained on ice for transport; plasma was separated 
immediately using centrifugation and frozen in 1.0- to 
1.5-ml aliquots at − 80 °C. Additionally, CA-125 protein 
levels in the blood were measured every 4  weeks using 
standard immunoassay testing.

Whole genome bisulfite sequencing data
Whole genome bisulfite sequencing (WGBS) data from 
obtained for 32 normal plasma and 26 hepatocellular 
carcinoma (HCC) patient plasma samples collected by 
Chan et  al. [24] were downloaded from the European 
Genome-phenome Archive (dataset accession: 
EGAS00001000566). Additional 4 HCC patient plasma 
and 4 normal plasma WGBS samples collected by 
Li et  al. [25] were downloaded from the European 
Genome-phenome Archive (dataset accession: 
EGAD00001004317).

Mean locus methylation and weighted sample fraction 
of methylation density at the ZNF154 locus from RRBS data
The RRBS data were aligned to hg19 using Bismark-0.19.0 
[57]. Counts of RRBS reads that overlapped the region 
Chr19:58220000-58220800 were tallied for each sample 
and divided into subgroups based on their specific 
start coordinates and combinations of methylated and 
unmethylated cytosines. Based on sample metadata, 
counts of reads from replicate libraries of the same 
sample were pooled together. One WBC sample did not 
have any reads at these coordinates and therefore was 
removed from the analysis.

Methylation density was defined as the number of 
methylated CpG dinucleotides (meCpGs) out of the total 
CpGs in a given read or DNA molecule. The weighted 
methylation level of a locus, or henceforth the mean 
locus methylation, was defined as the total number of 
meCpGs out of all CpGs sequenced in reads from the 
locus in question [58]. The sample epiallelic fraction 

was defined as the proportion of reads with a given 
methylation density out of all reads from a given locus.

Reads with the same methylation density but having 
different numbers of CpGs were weighed in terms of 
their contribution to the overall sample methylation 
density by normalizing their epiallelic fractions in terms 
of the number of CpGs they covered out of the total 
CpGs covered in all of the reads. For this, the epiallelic 
fraction for a given set of reads was defined as:

where C = # of CpGs covered by the reads with a 
methylation density above a given cutoff and Ctot = total 
CpGs in all reads.

Methylation density classifier (EpiClass) procedure
The DREAMing assay includes two parameters that 
must be specified before a sample can be called 
positive: (1) a minimum methylation density MDmin, 
and (2) a minimum epiallelic fraction EFmin. A sample is 
considered positive if at least EFmin of the DNA fragments 
are methylated at a density above or equal to MDmin, 
where the optimal parameters are chosen to maximize 
Youden [59] (sensitivity + specificity, or, equivalently, 
true-positive rate (TPR) − false-positive rate (FPR)). 
Given a set of training data, EpiClass procedure solves 
for these two parameters simultaneously by calculating 
TPR-FPR for various combinations of MDmin and EFmin, 
choosing the pair of parameter values that maximizes the 
value.

In practice, a range of values for MDmin were defined 
from 0 to 1 in increments of 0.05, with appropriate ranges 
of EFmin for each possible density MDi determined by 
considering the full set of epiallelic fractions observed in 
the training data, at the selected MDi. In the extreme case 
that MDmin = 0, all fragments exhibiting a density above 
but not equal to MDmin were considered.

Epiallelic fractions for the RRBS data were calculated 
according to the weighted sample fraction method 
described above. For the plasma samples methylation 
density is derived from the melting temperatures as 
described below, and epiallelic fractions are calculated 
from the DREAMing melt peaks representative of each 
DNA divided by the total genomic equivalents assessed.

Simulated dilution and classification performance 
comparison between the mean locus methylation 
and EpiClass using RRBS data
RRBS reads from EOCs or WBCs were randomly mixed 
together at different fractions at a set depth of total reads. 
A total depth of either 100, 1000 or 10,000 reads was 
determined in order to simulate dilutions down to 0.01%. 

C

Ctot
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At each dilution, a simulated set of “spike-in” samples 
was made by randomly pairing each of the 12 EOCs 
with one of the 22 WBC samples for a total spike-in 
sample set size of 22. For each pair, a distribution of read 
methylation densities was generated for the EOC and the 
WBC sample based on the weighted sample fractions 
of methylation densities. Reads were randomly sampled 
from each distribution at a ratio equivalent to the % 
tumor dilution in question with the total number of reads 
sampled equal to the total read depth. For each dilution, 
receiver operating characteristic (ROC) curves were 
built for classifying samples using either the mean locus 
methylation level or the sample epiallelic fraction based 
on the methylation density cutoffs selected by EpiClass. 
The spike-ins were used as cases and the original 22 
WBC samples as controls. ROC area under the curve 
(AUC) for the mean locus methylation and the optimal 
methylation density were recorded. This simulation was 
repeated 50 times, and the mean AUC and the 95% CI for 
the mean locus methylation EpiClass methylation density 
were computed.

Using the same 50 iterations of the simulated dilution 
mentioned above, for select tumor dilutions (1.0%, 0.1%, 
0.01%), AUC values were calculated for each methylation 
density cutoff as well as the sensitivity and specificity 
resulting from the optimal epiallelic fraction cutoff. 
The calculated AUCs were then used to determine 
the probability of achieving an improved performance 
over mean locus methylation for each methylation 
density cutoff. Given that the AUC can be defined as: 
“the probability that a randomly selected case will have 
a higher test result than a randomly selected control,” 
[60] each application of the methylation density cutoff 
was defined as a case and the resulting AUC was its test 
result, whereas the mean locus methylation AUCs would 
be the test results for a set of controls. New ROC curves 
based on these two sets of test results (i.e., sets of AUCs; 
n = 50 for both methylation density [cases] and mean 
locus methylation [controls]) and the resulting AUC 
values of these ROC curves were used to calculate the 
probability that the methylation density cutoff would 
produce a higher AUC, or improved performance, than 
the mean locus methylation.

Measurement of ZNF154 methylation using DREAMing
Plasma cfDNA extraction and bisulfite conversion
cfDNA was extracted and processed according 
to the methylation-on-beads protocol [61] using 
NeoGeneStar Cell Free DNA Purification kits with 
pretreatment reagents and NeoGeneStar magnetic beads 
(NeoGeneStar, Somerset, NJ). Extracted cfDNA was 
bisulfite converted using Zymo Lightning Conversion 
reagents (Zymo Research, Irvine, CA) and eluted twice 

in 50  μl Zymo Elution Buffer using 1.5  ml LoBind 
Eppendorf tubes (Eppendorf, Hauppauge, NY). Extracted 
cfDNA was quantified by qPCR in duplicate, using a 
primer and a TaqMan probe set to amplify a 100-bp 
region overlapping the bisulfite-converted top strand of 
the beta-actin locus on a C1000 Touch Thermo Cycler 
(BioRad, Hercules, CA) using a CFX96 Real-Time System 
(F: 5′-TAG​GGA​GTA​TAT​AGG​TTG​GGG​AAG​TT-3′; 
R: 5′-AAC​ACA​CAA​TAA​CAA​ACA​CAA​ATT​CAC-3′; 
probe: /56-FAM/TGT​GGG​GTG/ZEN/GTG​ATG​GAG​
GAG​GTT​TAG​/3IABkFQ/).

Quantifying ZNF154 methylation in cfDNA with DREAMing
cfDNA ZNF154 methylation densities were assessed by 
DREAMing according to previous established protocols 
[44]. Briefly, based on the sample extraction yield, up 
to 4800 genomic equivalents from each cfDNA sample 
were distributed across 12 wells (approximately 400 
equivalents per well) on a 96-well microtiter plate, for a 
total of 8 samples per plate. This was based on our ability 
to detect single fragments of fully methylated synthetic 
ZNF154 target in a known quantity of low-methylation 
bisulfite-treated genomic DNA. As previously reported, 
the DREAMing method achieves single molecule 
quantification of the methylated cfDNA by using primers 
biased towards methylated DNA, assumes the methylated 
cfDNA fragments are rare in a background of cfDNA 
with low methylation density, and that the methylated 
cfDNA fragments are partitioned across the wells 
based on a Poissonian distribution. The unmethylated 
background cfDNA fragments all are expected to melt 
at the same temperature. However, wells that contain a 
methylated cfDNA fragment will produce a secondary 
melting peak whose melting temperature corresponds to 
the methylation density of the cfDNA fragment present 
in the well. Each sample was queried via DREAMing at 
least twice, for a total of 24 wells per sample, and the data 
for multiple runs of a given sample were pooled together. 
The fraction of methylated ZNF154 genomic fragments 
for each sample was determined by counting the number 
of melting peaks above a defined temperature cutoff 
(corresponding to a specific methylation density cutoff, 
or number of methylated CpGs out of 14 total positions 
for our ZNF154 locus; for conversion between these 
two values see next section), where each counted peak 
corresponded to a single methylated cfDNA fragment, 
inferred from Poissonian statistics.

The reaction conditions for DREAMing were as 
follows: Master PCR mixes were made so that each well 
would have a final volume of 25  μl with 200  μM dNTP 
mixture, 300  nM forward ZNF154 DREAMing primer 
(5′-GGG​CGA​TAT​TGG​TAG​GGA​TT-3′), 300 nM reverse 
ZNF154 DREAMing primer (5′-AAA​TAT​ATT​CAC​CGA​
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ATC​AAA​AAT​AAC​AAA​A-3′), 1× EvaGreen (Biotium 
Inc, Fremont, CA), 0.04 U/μl Platinum Taq (Thermo 
Fisher Scientific, Bothell, WA), and 1× in-house “Magic 
Buffer” (16.6  mM ammonium sulfate, 67  mM Tris pH 
8.8, 2.7  mM magnesium chloride, and 10  mM beta-
mercaptoethanol). DREAMing reactions were run on a 
C1000 Touch Thermal Cycler using a CFX96 Real-Time 
System. Reactions were run at 95 °C for 5 min for 1 cycle; 
95 °C for 30 s, 61.4 °C for 30 s, and 72 °C for 30 s for 50 
cycles; followed by a temperature gradient beginning 
at 65  °C and ramping up to 90  °C in 0.2  °C increments, 
each held for 10  s, before SYBR/FAM fluorescence was 
imaged. After DREAMing, melting temperature peaks 
were visualized using the accompanying CFX Manager 
3.1 software to analyze the negative derivative of the 
change in fluorescence (-d(RFU)/dT) versus temperature 
plots for each well.

Sample epiallelic fractions
The volume of sample plasma assed in DREAMing was 
determined by the amount of genomic equivalents 
(derived from beta-actin qPCR measured copies) loaded 
into the assay for a given sample divided by the total 
number of beta-actin copies measured in the entire 
sample elution, multiplied by the starting volume of 
sample plasma processed. The counts of epialleles of 
a given methylation density measured by DREAMing 
were then divided by this number to return: counts of 
epialleles per mls of plasma.

Validation and calibration of DREAMing melt peak 
temperatures to methylation densities
Bisulfite amplicon sequencing was used to validate the 
results of at least one DREAMing well per sample in 
the training set. Wells exhibiting a temperature peak 
indicative of a high methylation density cfDNA fragment 
were preferentially selected and, when possible, multiple 
wells representative of the overall methylation profile 
were selected for each respective sample.

Sequencing was performed by pipetting 20  μl from 
chosen wells into a separate 96-well plate and cleaned 
using Ampure XP beads (Beckman Coulter, Brea, CA) 
according to the manufacturer’s protocol, at a ratio of 
1.8  μl beads to 1  μl sample. The DNA was then eluted 
with 35  μl  EB buffer (Qiagen, Germantown, MD), 
and 30.75  μl of the elution was combined with 5  μl 
10X TaKaRa EpiTaq PCR Buffer (Mg2+ free; TaKaRa, 
Mountain View, CA), 5  μl 25  mM MgCl2, 6  μl 2.5  mM 
dNTP mixture, 1  μl 12.5  μM forward primer (175-bp 
forward ZNF154 DREAMing primer with sequencing 
adapter), 1  μl 12.5  μM reverse primer (175-bp reverse 
ZNF154 DREAMing primer with sequencing adapter), 
1 μl DMSO, and 0.25 μl of 5 U/μl TaKaRa EpiTaq DNA 

polymerase, for a total reaction volume of 50  μl. This 
mixture was placed in a SimpliAmp thermal cycler 
(Applied Biosystems, Foster City, CA) using the following 
conditions: 95 °C for five minutes and one cycle; 95 °C for 
30  s, 50  °C for 30  s, and 72  °C for 30  s, for nine cycles; 
and 72  °C for 7  min for one cycle. A second Ampure 
XP beads cleanup was performed by combining 46  μl 
each PCR reaction with 55 μl beads, eluting in 27 μl EB 
buffer. Next, a 23 μl elution was combined with 25 μl 2× 
High Fidelity Phusion Master Mix (NEB, Ipswich, MA), 
and 1 μl i7 and i5 barcoding primers for a total reaction 
volume of 50 μl. Another round of PCR was performed 
under the following conditions: 98  °C for 30  s and one 
cycle; 98 °C for 10 s, 65 °C for 30 s, and 72 °C for 30 s, for 
nine cycles; and 72 °C for 5 min and one cycle. After this, 
each reaction was cleaned again with Ampure XP beads 
using 55 μl beads and 46 μl sample and eluted in 30 μl EB 
buffer. Then a 3  μl elution was run on a 2% agarose gel 
to confirm the expected band of 300-bp (size of amplicon 
with adapter and barcodes). Samples were submitted 
to the NIH Intramural Sequencing Center for quality 
control and sequencing on a MiSeq using 300-bp paired 
end sequencing. Using Bismark-0.19.0, analysis of reads, 
bisulfite conversion efficiency, and determination of 
meCpG patterns was performed as described previously 
[41]. Wells with sequenced amplicons that had less than 
95% bisulfite conversion efficiency were discarded.

DREAMing melt peak temperatures were converted 
to methylation density values by linear regression of 
methylation density values determined by the bisulfite 
amplicon sequencing. Briefly, sequencing patterns were 
ordered based on methylation density and abundance 
and the pattern with the highest methylation density 
from this list was then matched to the highest melt peak 
temperature, the results of which are shown in Additional 
file 1: Fig S7. The generated linear model was then used 
to convert all melt peak temperatures into methylation 
densities and rounded these to the nearest 7% given that 
we would expect each additional meCpG in our locus 
of 14 potential meCpG sites to increase the methylation 
density by 1/14 or approximately 7%.

Mean locus methylation in plasma
The epiallelic fraction of all detected epialleles via 
DREAMing except fully unmethylated DNA fragments 
(based on a methylation density cutoff of 0%) was used 
as an estimate of the sample mean locus methylation. 
This was based on the fact that, unlike the RRBS reads, 
the number of CpG sites covered [14] was the same 
for each DNA fragment targeted in the DREAMing 
assay. Therefore, the fraction of these CpGs that were 
methylated would be proportional to the fraction of total 
methylated epialleles.
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Comparison to CancerDetector
Overview
The combined 30 HCC and 36 normal WGBS plasma 
samples were randomly split 50:50 ten times into 
training and test sample set pairs, where each pair of 
training and test samples was considered a separate run. 
Training samples in each run were used by EpiClass or 
CancerDetector to define an optimal methylation density 
cutoff (with respect to EpiClass) or Tumor Class and 
Normal Class beta distribution shape parameters, for 
each marker (see Li et  al. [25] for detailed description). 
The methylation density cutoffs were applied to the test 
sample sets to construct ROC curves based on sample 
counts of methylated reads at or above the cutoff in 
order to assess the performance on EpiClass, or the Class 
shape parameters were used to estimate tumor fractions 
in the test set samples, which were used to construct 
ROC curves in order to assess the performance of 
CancerDetector.

Preprocessing of WGBS datasets
The WGBS data were aligned to hg19 using 
Bismark-0.20.0 [57]. Reads adapters were trimmed with 
TrimGalore-0.6.0 [62] and duplicate reads were removed 
with deduplicate_bismark. bismark_methylation_
extractor was used to generate coverage files indicating 
the number of unmethylated and methylated CpGs in 
the aligned reads at each CpG position. For each marker, 
reads that were aligned to the genomic region of interest 
were extracted. Reads which did not overlap completely 
were ignored.

EpiClass pipeline
Read methylation density tables of the WGBS samples 
for each marker region were generated using the epiclass 
READtoMD command. For each training and test 
sample set pair, the optimal methylation density cutoff 
for normalized read counts was determined using the 
epiclass MDBC command on the training set, then run 
again on the test set with the flag sampleValsAtMD to 
obtain sample read counts with methylation densities at 
or above the methylation density cutoff.

CancerDetector pipeline
For each run, Tumor Class and Normal Class beta 
distribution shape parameters were determined for each 
marker, as described in Li et  al. [25]. In brief, BMIQ-
normalized LIHC 450K methylation array data were 
filtered for probes within the marker region for 50 tumor 
and normal sample pairs. Probes overlapping SNPs were 
removed. Beta values at each of the probes for the tumors 
were used to learn the shape parameters for the Tumor 
Class beta distribution and conversely beta values at 

each of the probes for the normal samples were used to 
learn the shape parameters for the Normal Class beta 
distribution. In addition, the bismark CpG coverage files 
derived from bismark2bedGraph were used to determine 
the methylation level at each CpG site within the given 
marker region for the normal plasma WGBS samples 
and these values were added to the Normal Class beta 
distribution for each corresponding training set. Once 
shape parameters were learnt, these were recorded and 
used as inputs into CancerDetector. Methylation patterns 
of reads overlapping each marker region of interest were 
also used as input for test set samples to determine their 
tumor fraction values.

Marker regions
For ZNF154, we used the marker region chr19:58220195-
58220937, which was used previously as a marker 
region in CancerDetector for liver cancer [25]. To 
identify additional markers hypermethylated in liver 
cancer, we computed the median difference in beta 
values using TCGA LIHC 450K methylation array data 
for CpG probes between the 50 matched tumor and 
normal LIHC samples and took the top 3 that (1) did 
not correspond to a SNP, (2) the maximum beta value in 
normals was < 0.2, (3) were hypermethylated in tumors 
relative to normals, (4) overlapped with a marker region 
previously defined in the CancerDetector study. This 
resulted in: marker 6263 chr2:208989109-208989679; 
marker 5594 chr2:127782982-127783470; marker 29305 
chr13:107187077–107187512.

EpiClass combined marker analysis
When classifying test set samples using multiple markers, 
a support vector machine classifier using a linear kernel 
was trained on the normalized methylated read counts 
above the methylation density cutoff for each marker 
region being assessed for each sample of the training 
set. The classifier was then applied to the test sample set. 
This was done using sklearn.svm.SVC (kernel = ’linear’, 
probability = True, random_state = 0) from sklearn 
(v0.23.1) [63].

Lists of training and test sample set shape parameters 
used in CancerDetector and the EpiClass optimal 
methylation density cutoffs can be found in Additional 
file 2: Table S3.

Statistical analyses and plotting
Plotting and statistical analyses were performed using 
custom Python-3.7.4 (https​://pytho​n.org) and R-3.4.4 
[64] scripts available at https​://githu​b.com/Elnit​skila​b/
EpiCl​ass. To compare epiallelic fractions or mean locus 
methylation between groups, boxplot comparisons were 
performed. Statistical significance was evaluated using 

https://python.org
https://github.com/Elnitskilab/EpiClass
https://github.com/Elnitskilab/EpiClass
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the two-sided Wilcoxon rank sum test. The true- and 
false-positive rates, associated thresholds, as well as the 
area under the curve (AUC) for the receiver operating 
characteristic analyses were generated using the python 
package sklearn (v0.23.1) [63] with the module sklearn.
metrics. AUC 95% confidence intervals were computed 
using the R library pROC [65] and using the ci.auc() 
command with method = ”bootstrap” on the data using 
2000 stratified replicates. Statistical significant difference 
between ROC curves was computed using the roc.test() 
command.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1314​8-020-00939​-w.

Additional file 1. Supplementary figures.

Additional file 2. Supplementary tables.
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