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ABSTRACT

It is well established that 5-methylcytosine (5mC) in genomic DNA of mammalian cells can be
oxidized into 5-hydroxymethylcytosine (5hmC) and other derivates by DNA dioxygenase TETs.
While conversion of 5mC to 5hmC plays an important role in active DNA demethylation through
further oxidation steps, a certain proportion of 5hmCs remain in the genome. Although 5hmCs
contribute to the flexibility of chromatin and protect bivalent promoters from hypermethylation,
the direct effect of 5hmCs on gene transcription is unknown. In this present study, we have
engineered a zinc-finger protein-based P16-specific DNA dioxygenase (P16-TET) to induce P16
hydroxymethylation and demethylation in cancer cells. Our results demonstrate, for the first time,
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that although the hydroxymethylated P16 alleles retain transcriptionally inactive, hydroxymethy-
lation could increase the susceptibility of reactivation of methylated P16 alleles.

Introduction

It is well known that ten-eleven translocation methyl-
cytosine dioxygenases (TET1/2/3) oxidize 5-methyl-
cytosine (5mC) to 5-hydroxymethylcytosine (5ShmC),
5-formylcytosine  (5fC), and 5-carboxylcytosine
(5caC) in the genome [1-4]. Oxidation of 5mC leads
to active DNA demethylation, while a certain propor-
tion of 5ShmC sites remain in the genome and serves as
a regulatory function [5-9]. It has been reported that
the levels of 5ShmC of some genes is positively corre-
lated with increased gene expression [8], it is unclear
whether ShmC itself contributes to the reactivation of
gene transcription.

Typical bisulphite-based assays cannot discriminate
5mCs from 5hmCs. The classic term ‘DNA methyla-
tion’ is in fact total DNA methylation, which includes
true methylation and hydroxymethylation of genes.
Total methylation of the CpG island (CGI) flanking
the transcription start site (TSS) of the PI6 gene
(CDKN2A) has been shown to be prevalent in
human cancer and precancerous tissues [10,11] and
is linked to increased cancer development from

epithelial dysplasia in many organs [12-18]. P16
methylation (P16M) not only directly inactivates P16
transcription [19] but also represses ANRIL transcrip-
tion [20]. Our recent study demonstrates the presence
of dense 5hmCs in the P16 exon-1 CGI in HCT116
cells, and no mRNA transcripts from the hydroxy-
methylated P16 (P16H) alleles were detected in the
cells [21,22]. P16H was detected in 9.3% of human oral
epithelial dysplasia (OED) tissues, and the malignant
transformation risk was similar between P16M-
positive OED patients with and without P16H [23].
It is a fundamental question in epigenetic research to
clarify whether hydroxymethylation of TSS-CGIs
affects transcriptional activation of genes includ-
ing P1I6.

To elucidate the possible role of P16H, we con-
structed an epigenetic editing tool, PI16-specific
TET1 (P16-TET), and a transcription editing tool,
P16-specific artificial transcription factor (P16-ATF)
[24] to induce P16H and reactivate P16M in cancer
cell lines. Our data showed, for the first time, that
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although stable P16H could not reactivate gene tran-
scription, however, dense 5ShmCs in TSS-CGIs could
increase the susceptibility of reactivation of previously
methylated P16 alleles.

Results
Induction of P16H by P16-TET

In order to study the effects of P16H on gene
transcription, PI6-specific dioxygenase P16-TET

and its inactive mutant control vector were
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constructed by fusing an engineered P16 promoter-
specific seven zinc finger protein (7ZFP-6I) [24]
with the catalytic domain (CD) of human TET1
and integrated into the pcDNA3.1 expression vec-
tor (Figure 1a). H1299 cells were chosen because
the epigenetic editing efficiency of the methylated
P16 CGIs by the PI16-specific transcription factor
(P16-ATF; 7ZFP-61-VP64) has been optimized [24].
As expected, QRT-PCR and immunofluorescence
staining showed that the P16M alleles were reacti-
vated in H1299 cells 6 days after transient transfec-
tion with the P16-TET vector (Figure 1b and c).
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Figure 1. Reactivation of methylated P16 alleles in H1299 cells 6 days after P16-TET transient transfection. (a) Core sequences of the
catalytic domain (CD) of the wildtype TETT gene and its T > C H1671Y-mutant counterpart. The P16-TET pcDNA3.1 and pTRIPZ ‘Tet-
on’ expression vectors are also illustrated and used in transient and stable transfection studies, respectively. (b) The results of gRT-
PCR to detect the P16 mRNA levels in H1299 cells transiently transfected with the pcDNA3.1 empty control, P16-TET and its H1671Y
mutant counterpart vectors. (c) Immunofluorescence staining with the mouse monoclonal antibody against the human P16 protein
(Ventana Roche-E6H4, USA). These experiments were performed in triplicate and repeated at least one time. Bar: 50 pum.



620 (&) P.LIETAL

P16 reactivation was not observed in the P16-TET
mutant control cells. This confirmed that the
genetic tool created P16-TET could reactive the
P16 gene and be used in further studies.

To study the possible biological functions of
P16-specific hydroxymethylation, the P16-TET
coding sequence was cloned into the pTRIPZ len-
tivirus vector carrying a “Tet-on’ switch to induci-
bly control the gene expression of P16-TET
(Figure la). In H1299 cells transfected with P16-
TET, TET-Assisted Bisulphite (TAB) methylation-
specific PCR (MSP) analysis showed P16H signals
appeared 3 days after the induction of doxycycline
(Dox; final conc. 0.25 ug/mL) (P16-TET&Dox_3d;
Figure 2a, TAB-MSP), but did not appear in cells
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transfected with the empty vector (control cells
with Dox treatment) (Vector&Dox_14d) or in
P16-TET cells without Dox induction, in which
only nonhydroxymethylated P16 alleles (P16N)
were detected. In the MSP analysis, P16 unmethy-
lated (or demethylated) alleles (P16U) were detect-
able in the P16-TET&Dox cells 3 days following
Dox induction (Figure 2a, MSP). The bisulphite-
denaturing high performance liquid chromatogra-
phy (DHPLC) results showed a low P16U peak
was detected beginning on the 14th day (Figure
S1A, red-arrow). Two P16U clones were also
observed on the 28th day from the bisulphite
sequencing (Figure S1B, red-star). These results
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Figure 2. P16-TET induces hydroxymethylation of P16 CpG islands and reactivates expression of methylated P16 alleles in H1299
cells. (@) TAB-MSP analysis for detecting hydroxymethylated (H)- and nonhydroxymethylated (N)-P76 CpG alleles in H1299 cells stably
transfected with P16-TET or empty control vector after doxycycline treatment. The MSP analysis results were also listed. Genomic
DNA from RKO and BGC823 cells was used as P16M and P16U controls in the MSP assays, respectively. (b) Western blot analysis for
detecting the P16 protein; Dox (+): with or without the doxycycline treatment (final conc. 0.25 pg/mL). Proteins from BGC823 cells

were used as a P16U/active control.

(c) gRT-PCR results for detecting P76 mRNA levels relative to Alu RNA levels; (d)

Immunofluorescence confocal analysis for detecting P16 expression. P16-positive cells with P16-TET (Myc-tag) expression are
highlighted with white dash cycles; P16-negative cells with P16-TET (Myc-tag) expression are highlighted with pink dash cycles.

Bar: 30 um.



indicated that both P16H and P16U were induced
in the P16-TET&Dox cells.

Furthermore, Western blot revealed that P16
protein was detected in the P16-TET&Dox cells
by the 7th day, but not in the Vector&Dox control
cells (7d; Figure 2b). QRT-PCR showed weak reac-
tivation of P16 transcription beginning on the
4th day (Figure 2c). Immunofluorescence confocal
microscopy also confirmed the presence of P16
protein in the nuclei of H1299 cells (Figure 2d).
In addition, the expression of control genes PI5
and P14 was not affected, whereas the expression
level of ANRIL, which is coordinately expressed
with P16 [20], was increased (Figure S2). This
suggests a high specificity for the zinc finger pro-
tein-based P16-TET to induce P16H and P16U.

Similar to what we observed in H1299, on the
7th day following Dox induction, transcriptional
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reactivation of P16 was also observed in P16-TET
stably transfected gastric cancer AGS cells, in
which PI6 alleles are homogenously methylated
(Figure 3a-e). Interestingly, P16H signals were
observed in the TAB-DHPLC and TAB sequen-
cing results in P16-TET AGS cells after Dox
induction for 11 days (P16-TET&Dox_11d)
(Figure 3b and d) and P16U signals were not
detected in the bisulphite-DHPLC and bisulphite
sequencing analyses (Figure 3a and c), indicating
that hydroxymethylation occurred earlier than
demethylation at P16 CGIs. A few baseline
5hmCs were also found in the PI6 exon-1 anti-
sense-strand of AGS mock control cells. Although
weak P16 mRNA signals were detected in P16-
TET AGS cells after Dox induction for 7 days
and 11 days according to sensitive RT-PCR analy-
sis (Figure 3e), P16 protein was not detected in
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Figure 3. P16-TET induces hydroxymethylation of P16 CpG islands and reactivates expression of methylated-P16 alleles in AGS cells.
(@) Bisulphite-DHPLC analysis for detecting methylated-P76 (P16M) and unmethylated-P76 (P16U) PCR products for the exon-1
antisense strand in P16-TET-transfected AGS cells with different doxycycline induction times. (b) The TAB-DHPLC analysis detected
the hydroxymethylated P76 (P16H) PCR products and nonhydroxymethylated P76 (P16N) PCR products. (c and d) Bisulphite and TAB
sequencing for detecting 5mC and 5hmC sites, respectively, in the same PCR products as were analysed by DHPLC. (e and f) The
results of RT-PCR and Western blot analysis for detecting P16 reactivation in AGS cells.
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these cells according to the insensitive Western
blot analysis (figure 3f).

Transcription silencing of P16 alleles by
hydroxymethylation

To deduce whether DNA hydroxymethylation or
demethylation contributes to P16 reactivation, we
further analysed the hydroxymethylation status of
P16 CGIs in cell subpopulations with strong, weak,
and no P16 staining (P16(+), P16(+), and P16(-)
that were sorted from P16-TET&Dox _21d H1299
cells (Figure 4a). Interestingly, P16H signal was
detected only in the P16(-) subpopulation, but
not in the P16(+) and P16(+) subpopulations in

sequencing also showed dense 5hmCs among 3
of the 14 clones (21.4%) of the exon-1 antisense-
strand TAB-PCR products from the P16(-) subpo-
pulation, with an average hydroxymethylation
density of 95.2% for these 3 clones (Figure 4c).
The occurrence of 5hmCs in the promoter was not
detected in the TAB-DHPLC and TAB sequencing
results (data not shown).

The above results were further confirmed in
AGS cells. P16 protein could not be detected in
P16-TET&Dox AGS cells after Dox treatment for
11 days (tigure 3f). To obtain a P16(+) AGS sub-
population by FACS, the DNA methyltransferase
inhibitor 5-aza-deoxycytidine (DAC, final concen-
tration 20 nmol/L) was used to increase the P16
protein level within P16-TET AGS cells. In the

the TAB-MSP analysis (Figure 4b). TAB
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Figure 4. Characterization of P16H in FACS-sorted subpopulations of H1299 cells with various levels of of P16 expression
reactivation. (a) FACS sorting of P16-TET stably transfected H1299 cells with and without Dox treatment. The confocal images of
the P16 protein staining status are also attached. Bar: 30 pm. (b) Detection of the DNA hydroxymethylation status of P16 alleles in
various FACS-sorted H1299 subpopulations with strong, weak, and no P16 immunostaining (P16(+)/(x)/(-)) in the TAB-MSP analysis.
(c) The results of TAB sequencing for the P16 CpG islands in the P16-negative subpopulation.



immunostaining cell analysis, nucleic P16 protein
was detected in 3.5% of P16-TET AGS cells after
DAC treatment for 10 days (P16-TET&DAC_10d,
with baseline P16-TET expression without Dox
induction), while nucleic P16 protein was detected
in only 0.5% of the AGS cells treated with DAC
alone (Figure S3). Next, the P16(+), P16(%), and
P16(-) subpopulations were sorted from these P16-
TET&DAC_10d AGS cells (Figure 5a). Once

a P16 (- cells, n=610,949 (7.0%)
P16 (+) cells,:n=115,376 (1.2%)

P16 (-)

[Sorted cells]
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again, the P16H signal was detected only in the
P16(-) subpopulation, and not in the P16(+) and
P16(+) cells by the TAB-MSP and TAB-DHPLC
assays (Figure 5b and c). In contrast, P16N signal
was detected in all three subpopulations, and was
confirmed by TAB sequencing. Dense 5hmCs were
observed in the P16 exon-1 antisense-strand in the
P16(-) subpopulation, but not in the P16(+) sub-
population (Figure 5d).
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Figure 5. Characterization of P16H in FACS-sorted subpopulations of AGS cells with various levels of P16 expression reactivation. (a)
FACS-sorting of P16-TET stably transfected AGS cells with and without DAC treatment. The confocal images of the P16 protein
staining status are also attached. Bar: 50 um. The sorted AGS cells not treated with doxycycline only expressed P16-TET at the
baseline level. (b) Detection of the DNA hydroxymethylation status of P76 alleles in various FACS sorted AGS subpopulations with
strong, weak, and no P16-immunostaining (P16(+)/(£)/(-)) in the TAB-MSP analysis. (c) The results of TAB-DHPLC for the P16 CpG
islands in three subpopulations. (d) The results of TAB sequencing for the antisense strand of P16 exon-1 in P16(+) and P16(-)

subpopulations.
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Collectively, the above results indicate that
P16H occurs only in P16(-) cells, and not in P16
(+) and P16(%) cells, which suggests that P16H
alleles are transcriptionally inactive.

P16 hydroxymethylation increases reactivation
potential

While the wildtype P16 alleles are silenced by
DNA methylation in HCT116 cells, the active
P16 alleles containing a G-insertion in exon-1

that leads to frame-shift mutation and no P16
protein synthesis. It was reported that there
were dense 5hmCs in the PI6 exon-1 in
HCT116 cells [21]. The results of our TAB-
DHPLC and TAB-sequencing analyses further
demonstrated that 5hmCs were enriched mainly
in the antisense-strand of the wild-type P16
exon-1 in HCT116 cells (Figure S4). Thus,
HCT116 cells were used to study possible func-
tions of the endogenous hydroxymethylation of
TSS-CGls.
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Figure 6. Effects of knockdown of TET1/2/3 on reactivation of the P16 gene by DNA methylation inhibitor DAC and P16-specific
artificial transcription factor (P16-ATF) in HCT116 cells. After treated with the TET-specific siRNAs for 48 hrs, these cells were
transiently transfected with the P16-ATF vector for 24 hrs, and then treated with DAC (final conc. 20 nmol/L) for 48 hrs. (a) The
relative mRNA levels of TET1/2/3 in gene-specific siRNA treated cells in qRT-PCR ananlysis; (b) The confocal images of the P16 protein

staining status for various group cells.



To study whether the occurrence of dense
5hmCs of the P16 exon-1 could affect reactiva-
tion potential, P16-ATF [24] and DAC (final
concentration, 20 nmol/L) were used to reacti-
vate the methylation-silenced wildtype P16 allele
in HCT116 cells with and without siRNA-
knockdown of TET1/2/3 genes, respectively.
The mRNA levels of TET1/2/3 genes were sig-
nificantly knocked down by these siRNAs,
respectively (Figure 6a). While P16 protein
staining signal was detected in 2.2% of the P16-
ATF&DAC cells without siTET1/2/3 treatment,
no P16 protein staining signal was detected in
the P16-ATF&DAC cells with the siTET1/2/3
treatment (Figure 6b and S5). These results illus-
trate that blocking the natural occurrence of
5hmCs of the P16 exon-1 inhibits the reactiva-
tion of methylation-silenced wildtype P16 allele
in HCT116 cells.
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The inhibition of tumour growth by P16-TET

Although P16-TET did not affect the proliferation
of H1299 cells in vitro (Figure 7a), our results of
the IncuCyte ZOOM wound-scratch and transwell
assays showed that P16-TET significantly inhibited
H1299 cell migration (Figures S6A and S6B). In
a rescue assay, P16 siRNA-knockdown signifi-
cantly increased the migration of the P16-
TET&Dox H1299 cells (Figure S6C), which further
demonstrates the role of P16-TET in inhibiting
cell migration through P16 reactivation.

In the in vivo experiment, the average weight of
tumour xenografts of the P16-TET stably transfected
cells was significantly lower than that of the control
cells in NOD-SCID mice (n = 8) on the 50th post-
transplantation day (P < 0.001, Figure 7b and c).
Morphologic differences were not observed between
P16-TET and control vector xenografts (Figure 7d).
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Figure 7. Effects of P16H on the proliferation of H1299 cells in vitro and in vivo. (a) Cell proliferation curves for H1299 cells with and
without P16-TET expression in a live content kinetic imaging platform; (b) Comparison of weights of H1299 tumour xenografts with
and without stable P16-TET transfection in SCID mice; (c and d) Images of xenografts on the 50th experimental day.
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These results were confirmed in a repeat experiment
(Figure S7).

Discussion

DNA hydroxymethylomes at the base-resolution
level have been analysed in embryonic stem cells,
adult tissues, and tumours [25-31]. Many func-
tions of DNA hydroxymethylation in the genome
have been illustrated by TET-1/2/3 knockout stu-
dies [5-7,27,31,32]. However, the actual effect of
hydroxymethylation of TSS-CGIs on gene tran-
scription remains elusive. In the present study,
we demonstrated that 5hmCs were enriched in
the antisense-strand of the PI6 exon-1 CGI.
More importantly, this study showed for the first
time that DNA hydroxymethylation itself could
not reactivate P16 gene transcription. Instead,
hydroxymethylation could increase reactivation
potential of methylation-silenced P16 gene by
DNA demethylation, which subsequently inhib-
ited the migration and growth of cancer cells
in vivo.

The global 5hmC levels are decreased in cancer
genomes [29,30], probably through downregula-
tion or mutation of the TET1/2/3 genes in cancer
development [33-35]. However, certain propor-
tion of 5hmCs remain in some cancer or precancer
tissues [23]. Recently, we found that all P16
mRNA clones in the HCT116 cells were tran-
scribed only from the mutant P16U alleles, and
none from the methylated: hydroxymethylated (M:
H) P16 alleles [21], and that both true P16M and
P16H could similarly increase the risk for malig-
nant transformation of oral epithelial dysplasia in
a prospective study [23]. The findings of this pre-
sent study further show that the P16-TET-induced
hydroxymethylation of P16 alleles in both H1299
and AGS cells retained transcriptional silence,
which may provide a possible mechanism to
explain our observations.

It has been reported that triple knockout of TET-1/
2/3 led to bivalent promoter hypermethylation in H1
cells [36]. We previously constructed a P16-ATF
expression vector and fount that transient P16-ATF
transfection combined with DAC (20 nmol/L) treat-
ment could reactivate the methylated-P16 expression
in H1299 cells, although the transient P16-ATF trans-
fection or DAC treatment alone could not reactivate

methylated-P16 gene expression [24]. This phenom-
ena was also observed in the present study. Transient
P16-ATF transfection and DAC combined treatment
could reactivate the expression of wildtype methy-
lated-P16 alleles in HCT116 cells. Interestingly, the
reactivation of methylated-P16 alleles was dismissed
in these cells when the 5hmCs in the P16 exon-1 was
removed by siRNA knockdown of TET1/2/3 genes.
These results unveil that 5ShmCs in TSS-CGIs could
increase the reactivation potential of methylated
genes.

There are many differences between cell culture
and animal models. Although the proliferation of
H1299 cells that are stably transfected with P16-
TET was not changed under in vitro culture condi-
tions, the growth of xenograft tumours from these
cells was obviously inhibited in host mice. The exact
reasons leading to this difference are unknown; how-
ever, the reactivation of methylated P16 alleles via
DNA demethylation by P16-TET may account for
the growth inhibition in vivo. In the rescue assay,
siRNA knockdown of P16-TET-reactivated P16
expression almost completely reversed the inhibition
of P16-TET-induced cell migration. This further
suggests that the inhibition of the cancer cell migra-
tion by P16-TET may be a P16-specific effect.

In conclusion, we found that although P16H
alleles are transcriptionally inactive, hydroxy-
methylation could increase reactivate potential of
the P16 gene in cancer cells.

Methods
Cell lines and culture

The colon cancer cell line HCT116 was purchased
from the American Type Culture Collection
(ATCC). The GC cell line AGS and the lung cancer
cell line H1299 were kindly provided by Prof.
Chengchao Shou from the Peking University
Cancer Hospital and Institute. The colon cancer cell
line, RKO was kindly provided by Prof. Guoren Deng
from the University of California, San Francisco.
RKO cells were cultured in DMED, AGS cells were
cultured in F12 medium, HCT116 and H1299 cells
were cultured in RPMI-1640, containing 10% FBS
and 100 U/mL penicillin/streptomycin (Invitrogen,
California, USA) at 37°C in a humidified incubator
with 5% CO,.



These cell lines were tested and authenticated by
Beijing JianLian Genes Technology Co., LTD
before they were used in this study. STR patterns
were analysed using a Goldeneye™20A STR
Identifiler PCR Amplification Kit. Gene Mapper
v3.2 software (ABI) was used to match the STR
pattern with the ATCC online databases.

Characterization of 5mC and 5hmcC sites in P16
CGls

Total P16M was analysed using 150-bp regular
methylation-specific PCR (MSP) targeted to the
antisense strand of P16 exon-1 [37]. Genomic DNA
of RKO and MGCB803 cells were used as the P16M
and P16U controls [15]. To selectively detect P16H,
the genomic DNA (3 pug), spiked with M.
sssI-methylated and 5ShmC-containing A-DNA con-
trols, was modified using the TET-Assisted
Bisulphite (TAB) Kit, according to manufacturer’s
instructions (WiseGene, Cat# K001). During TAB-
modification [38], 5mC was oxidized to 5caC, and
both 5caC and unmethylated cytosine were subse-
quently converted to wuracil through bisulphite-
induced deamination, whereas 5hmC was protected

Table 1. Sequences of oligonucleotides used as primers in various
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from oxidation via 5hmC-specific B-glucosylation
[25]. The conversion rates of unmethylated cytosine,
5mCs, and 5hmCs in the bisulphite-/TAB-treated \-
DNA controls were 100%, 99.7%, and 1.5%, respec-
tively (Figure S8). P16H was analysed using the
TAB-MSP.

We amplified the sense- and antisense-strands
of the P16 promoter and exon-1 CGIs in HCT116
cells using a corresponding CpG-free primer set,
respectively (Figure S4A; 402-bp and 369-bp for
the sense-strand of the P16 promoter and exon-1,
367-bp and 392-bp for the antisense-strand of the
P16 promoter and exon-1). The proportion of
hydroxymethylated sense- and antisense-strands
of the P16 promoter and exon-1 CGIs were ana-
lysed using DHPLC and clone sequencing, respec-
tively [39,40]. The adjusted ratio of the peak height
for the hydroxymethylated region to that of the
unmethylated region was used to represent the
P16H proportion that was adjusted. The ratio of
the P16M peak height to the P16U peak height for
P16-hemimethylated HCT116 cells was used as
a reference. The sequences of the universal primers
used to amplify these fragments are listed in
Table 1.

PCR-based assays.

Gene name Entrez gene ID Assay Oligo name Primer sequence (5'->3’) Product size (bp) PCR Tm (°C)
P16 1029 gRT-PCR P16-F gctgcccaacgcaccgaata 180 58
P16-R accaccagcgtgtccaggaa
DHPLC/Seq P16-E1F tttttagaggatttgagggatagg 392 57
P16-E1R ctacctaattccaattcccctacaaactt
P16-E1SF gttgtagattttttatttatttggat 369 56
P16-E1SR tccccttacctaaaaaaatacc
P16-PF ttggtagttaggaaggttgtat 367 55
P16-PR tttagaggatttgagggatagg
P16-PSF gttttttaaattttttggagggat 402 55
P16-PSR ttggtgttatagggaaagtatgg
MSP-M/H P16-MF ttattagagggtggggcggatcgc 150 62
P16-MR gaccccgaaccgcgaccgtaa
MSP-U/N P16-UF ttattagagggtggggtggattgt 151 62
P16-UR caaccccaaaccacaaccataa
ANRIL NR_003529 gRT-PCR E3-E4R cagcagaaggtgggcagcagat 145 64
E3-E4F ttcctcgacagggcaggcaggt
P15 1030 gRT-PCR P15-gF agtcaaccgtttcgggaggcg 168 58
P15-gR accaccagcgtgtccaggaag
P14 1029 gRT-PCR P14-qF gccaggggegeccgecgetg 236 62
P14-gR ggcccggtgcageaccacca
ALU qRT-PCR ALU-gF gaggctgaggcaggagaatcg 54
ALU-gR gtcgcccaggctggagtg
GAPDH 2597 (q)RT-PCR GAPDH-F gaaggtgaaggtcggagt 226 62
GAPDH-R gaagatggtgatgggatttc
A-DNA 5hmC-ctrl PCR 5hmC-F ggagttggtatgtagggtagaaagg 202 55
5hmC-R attcactctctcacctactctct
5mC-ctrl PCR 5mC-F tttgggttatgtaagttgattttatg 296 55

5mC-R

caccctacttactaaaatttacacc
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Construction of expression vectors and
transfection

To construct the Pl6-specific DNA dioxygenase
(P16-TET) expression vector, an SP1-like engineered
seven-zinc finger protein (7ZFP-6I) [19] that can
specifically bind to the 21-bp fragment (5'-
gaggaaggaaacggggcgggg-3', including an Spl-
binding site) within the human P16 core promoter
[24,41], was fused with the catalytic domain (CD:
14182136 aa) of human TETI (NM_030625.2) [42]
and inserted into a pcDNA3.1b vector and then used
in transient transfection assays. An inactive P16-TET
mutant containing an H1671Y mutation in the CD
domain vector was also constructed and used as
a negative control vector (Figure 1a). The P16-TET
sequence was further integrated into the expression-
controllable pTRIPZ vector carrying a ‘Tet-on’
switch (Open Biosystem, USA) [19]. Purified P16-
TET pTRIPZ plasmid was mixed with VSVG and
A8.9 (Addgene, USA) to prepare lentivirus transfec-
tion particles. The fresh lentivirus particles were used
to stably infect AGS and H1299 cells containing
homogenously methylated P16 CpG islands.
Doxycycline (Dox; optimized final conc. 0.25 ug/
mL) was added to the medium to induce P16-TET
expression as we described previously [19].

P16-specific siRNAs (5'-ccgua aaugu ccauu uauatt-
3" and 5'-uauaa augga cauuu acggtt-3") and TET-spe-
cific siRNAs for TETI (#1: 5'-gccau cagau cugua
agaaft-3' and 5-uucuu acaga ucuga uggctt-3'; #2:
5-gaagc ccaca guugu aagu#-3’ and 5'-
acuua caacu guggg cuuctt-3'), TET2 (#1: 5'-gccag
uaaac uagcu gcaatt-3' and 5-uugca gcuag uuac
uggctt-3'; #2: 5'-ccauc acaau ugcuu cuuutt-3' and 5'-
aaaga agcaa uugug auggtt-3), and TET3 (#1: 5'-ggaaa
uaaag gcugg ugaatt-3' and 5-uucac cagcc uuuau
uucctt-3'; #2: 5'-gccug ugguu ccucc ugaatt-3" and 5'-
uucag gagga accac aggctt-3') were synthesized
(GenePharma, Shanghai) and used to transiently
transfect cells at a final concentration of 1.0 pug/mL.
Two scrambled siRNAs (5'-uucuc cgaac guguc acgutt-
3’ and 5'-acgug acacg uucgg agaatt-3') were used as
negative controls (NC).

Treatment of 5'-aza-deoxycytidine (DAC)

The AGS cells were treated with DAC (final concen-
tration 20 nmol/L; Abcam ab120842, Cambridge,

UK) for 7 days in the P16-immunostaining assay or
10 days prior to FACS sorting. The HCT116 cells
were treated with DAC (20 nmol/L) for 48 hrs and
used in P16-ATF transient transfection experiment
as previously described [24].

Extraction of RNA and quantitative RT-PCR
(QRT-PCR)

Cells were harvested when they reached a confluency
of approximately 70%. Total RNA was extracted by
TRIzol (Invitrogen, California, USA). The cDNA was
reverse-transcribed using the ImProm-II"™ Reverse
Transcription System (A3800; Promega). The expres-
sion levels of the ANRIL, P16, P15, P14,and TET-1/2/3
genes were analysed by quantitative RT-PCR using the
corresponding primer sets (Table 1), as previously
described [20]. Power SYBR Green PCR Master Mix
(Fermentas, Canada) was used in the qRT-PCR ana-
lyses (ABI-7500FAST). The relative mRNA level was
calculated based on the average Ct value of the target
gene and the Alu reference [2_(Cttarget £ene_Ct A [43].

Western blot and confocal microscopy analysis of
the P16 expression status

The P16 mRNA and protein levels in the cells were
analysed as previously described [19]. Rabbit
monoclonal antibody against human P16 protein
(ab108349, Abcam, Britain) was used in the
Western blot assay, and mouse monoclonal anti-
body against the human P16 protein (Ventana
Roche-E6H4, USA) was used in the immunostain-
ing assay. These experiments were performed in
triplicate and repeated at least one time.

Cell FACS sorting

The P16-TET stably transfected H1299 cells (treated
with doxycycline for 21 days) and AGS cells (treated
with 5-aza-deoxycytidine for 10 days) were fixed with
methanol, permeabilized with 0.1% Tween-20 in PBS,
pretreated with 10% foetal bovine serum and 0.3 M
glycine in PBS, and were then stained with the mouse
monoclonal antibody against the human P16 protein
(Ventana Roche-E6H4, USA) and the FITC-tagged
secondary antibody. The P16-staining cell population
proportion was determined using an immuno-
fluorescence confocal microscope. These cells were



sorted by FACS and divided into three subpopula-
tions, strong-, weak-, and non-P16-staining, using
P16-TET H1299 cells without doxycycline treatment
or AGS cells without DAC treatment as P16 protein
negative controls. According to the confocal analysis
results, we setup the cut-off value to sort definite and
indefinite P16 protein positive (P16(+) and P16(+))
cell subpopulations. The strong and weak FITC-
staining cells were called as the P16(+) and P16(%)
subpopulations, respectively. The sorting experiment
was repeated for at least one time for each cell line.

IncuCyte ZOOM and transwell migration tests

The long-term live content kinetic imaging platform
(IncuCyte Zoom, Essen BioSci, USA) was used to
dynamically detect the proliferation and migration
of live cancer cells. The phase object confluence (%)
was used to generate a cell proliferation curve. The
relative wound density, a measure (%) of the density
of the wound region relative to the density of the cell
region, was used as the metric for cell migration. The
transwell migration test was repeated at least two
times in triplicate as previously described [19].

Xenografts in SCID mice

Cells stably transfected with the P16-TET vector were
induced with 0.25 pg/mL doxycycline for 7 days and
then subcutaneously injected into one lower limb of
each NOD-SCID mouse (10° cells/injection; female,
5 weeks old, 10 ~ 20 g, purchased from Beijing
Huafukang Biotech). The negative control cells stably
transfected with the empty pTRIPZ vector were simul-
taneously injected into the opposite side of each
mouse. These mice were given distilled, sterile water
containing 2 pg/mL doxycycline and were sacrificed
on the 50th post-transplantation day. The xenografts
were weighed and histologically confirmed [19]. Two
repeat experiments were performed.

Statistical analysis

Student’s t-test was used for statistical analysis. All
P-values were two-sided, and a P-value of <0.05
was considered to be statistically significant.
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