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Abstract

We present a fast method for evaluating expressions of the form

uj = ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n,

where αi are real numbers, and xi are points in a compact interval of ℝ. This expression can be 

viewed as representing the electrostatic potential generated by charges on a line in ℝ3. While fast 

algorithms for computing the electrostatic potential of general distributions of charges in ℝ3 exist, 

in a number of situations in computational physics it is useful to have a simple and extremely fast 

method for evaluating the potential of charges on a line; we present such a method in this paper, 

and report numerical results for several examples.
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1. Introduction and motivation

1.1. Introduction.

In this paper, we describe a simple fast algorithm for evaluating expressions of the form
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uj = ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n, (1)

where αi are real numbers, and xi are points in a compact interval of ℝ. This expression can 

be viewed as representing the electrostatic potential generated by charges on a line in ℝ3. We 

remark that fast algorithms for computing the electrostatic potential generated by general 

distributions of charges in ℝ3 exist, see for example the Fast Multipole Method [9] whose 

relation to the method presented in this paper is discussed in §1.2. However, in a number of 

situations in computational physics it is useful to have a simple and extremely fast method 

for evaluating the potential of charges on a line; we present such a method in this paper. 

Under mild assumptions the presented method involves O(n log n) operations and has a small 

constant. The method is based on writing the potential 1/r as

1
r = ∫0

∞
e−rtdt .

We show that there exists a small set of quadrature nodes t1, … , tm and weights w1, … , wm 

such that for a large range of values of r we have

1
r ≈ ∑

j = 1

m
wje−rtj, (2)

see Lemma 4.5, which is a quantitative version of (2). Numerically the nodes t1, … , tm and 

weights w1, … , wm are computed using a procedure for constructing generalized Gaussian 

quadratures, see §5.2. An advantage of representing 1/r as a sum of exponentials is that the 

translation operator

1
r

1
r + r′ (3)

can be computed by taking an inner product of the weights (w1 , … , wm) with a diagonal 

transformation of the vector (e−rt1 , … , e−rtm). Indeed, we have

1
r + r′ ≈ ∑

j = 1

m
wje−(r + r′)tj = ∑

j = 1

m
wje−r′tje−rtj . (4)

The algorithm described in §3 leverages the existence of this diagonal translation operator to 

efficiently evaluate (1).

1.2. Relation to past work.

We emphasize that fast algorithms for computing the potential generated by arbitrary 

distributions of charges in ℝ3 exist. An example of such an algorithm is the Fast Multipole 

Method that was introduced by [9] and has been extended by several authors including [7, 

10, 16]. In this paper, we present a simple scheme for the special case where the charges are 
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on a line, which occurs in a number of numerical calcuations, see 1.3. The presented scheme 

has a much smaller runtime constant compared to general methods, and is based on the 

diagonal form (4) of the translation operator (3). The idea of using the diagonal form of this 

translation operator to accelerate numerical computations has been studied by several 

authors; in particular, the diagonal form is used in algorithms by Dutt, Gu and Rokhlin [6], 

and Yavin and Rokhlin [22] and was subsequently studied in detail by Beylkin and Monzón 

[1, 2].

The current paper improves upon these past works by taking advantage of robust generalized 

Gaussian quadrature codes [4] that were not previously available; these codes construct a 

quadrature rule that is exact for functions in the linear span of a given Chebyshev system, 

and can be viewed as a constructive version of Lemma 4.2 of Kreĭn [13]. The resulting fast 

algorithm presented in §3 simplifies past approaches, and has a small runtime constant; in 

particular, its computational cost is similar to the computational cost of 5-10 Fast Fourier 

Transforms on data of a similar length, see 5.

1.3. Motivation.

Expressions of the form (1) appear in a number of situations in computational physics. In 

particular, such expressions arise in connection with the Hilbert Transform

Hf(x) = lim
ε 0

1
π∫∣ x − y ∣ ≥ ε

f(y)
y − xdy .

For example, the computation of the projection Pmf of a function f onto the first m + 1 

functions in a family of orthogonal polynomials can be reduced to an expression of the form 

(1) by using the Christoffel–Darboux formula, which is related to the Hilbert transform; we 

detail the reduction of Pmf to an expression of the form (1) in the following.

Let {pk}k = 0
∞  be a family of monic polynomials that are orthogonal with respect to the 

weight w(x) ≥ 0 on (a, b) ⊆ ℝ. Consider the projection operator

Pmf(x) ≔ ∫a
b ∑

k = 0

m pk(x)pk(y)
ℎk

f(y)w(y)dy,

where ℎk ≔ ∫a
bpk(x)2w(x)dx. Let x1 , … , xn and w1 , … , wn be the n > m/2 point Gaussian 

quadrature nodes and weights associated with {pk}k = 0
∞ , and set

uj ≔ ∑
i = 1

n
∑

k = 0

m pk(xj)pk(xi)
ℎk

f(xi)w(xi), for j = 1, …, n . (5)

By construction the polynomial that interpolates the values u1 , … , un at the points x1 , … , 

xn will accurately approximate Pmf on (a, b) when f is sufficiently smooth, see for example 

§7.4.6 of Dahlquist and Björck [5]. Directly evaluating (5) would require Ω(n2) operations. 
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In contrast, the algorithm of this paper together with the Christoffel–Darboux Formula can 

be used to evaluate (5) in O(n log n) operations. The Christoffel-Darboux formula states that

∑
k = 0

m pk(x)pk(y)
ℎk

= 1
ℎm

pm + 1(x)pm(y) − pm(x)pm + 1(y)
x − y , (6)

see §18.2(v) of [17]. Using (6) to rewrite (5) yields

uj = 1
ℎm

f(xj) + ∑
i = 1, i ≠ j

m pm + 1(xj)pm(xi) − pm(xj)pm + 1(xi)
xj − xi

f(xi)w(xi) , (7)

where we have used the fact that the diagonal term of the double summation is equal to f(xj)/

hm. The summation in (7) can be rearranged into two expressions of the form (1), and thus 

the method of this paper can be used to compute a representation of Pmf in O(n log n)
operations.

Remark 1.1. Analogs of the Christoffel–Darboux formula hold for many other families of 

functions; for example, if Jν(w) is a Bessel function of the first kind, then we have

∑
k = 1

∞
2(ν + k)Jν + k(w)Jv + k(z) = wz

w − z (Jν + 1(w)Jν(z) − Jν(w)Jν + 1(z)),

see [21]. This formula can be used to write a projection operator related to Bessel functions 

in an analogous form to (7), and the algorithm of this paper can be similarly applied

Remark 1.2. A simple modification of the algorithm presented in this paper can be used to 

evaluate more general expressions of the form

vj = ∑
i = 1

n αi
xi − yj

, for j = 1, …, m,

where x1 , … , xn are source points, and y1 , … , ym are target points. For simplicity, this 

paper focuses on the case where the source and target points are the same, which is the case 

in the projection application described above.

2. Main result

2.1. Main result.

Our principle analytical result is the following theorem, which provides precise accuracy and 

computational complexity guarantees for the algorithm presented in this paper, which is 

detailed in §3.

Theorem 2.1. Let x1 < … < xn ∈ [a, b] and α1 , … , αn ∈ ℝ be given. Set
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uj ≔ ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n .

Given δ > 0 and ε > 0, the algorithm described in §3 computes values u j such

∣ u j − uj ∣
∑i = 1

n ∣ αi ∣
≤ ε, for j = 1, …, n (8)

in O (n log(δ−1) log(ε−1) + Nδ) operations, where

Nδ ≔ ∑
j = 1

n
#{xi : ∣ xj − xi ∣ < δ(b − a)} . (9)

The proof of Theorem 2.1 is given in §4. Under typical conditions, the presented algorithm 

involves O(n log n) operations. The following corollary describes a case of interest, where the 

points x1, … , xn are Chebyshev nodes for a compact interval [a, b] (we define Chebyshev 

nodes in §4.2).

Corollary 2.1. Fix ε = 10−15, and let the points x1 , … , xn be Chebyshev nodes on [a, b]. If 
δ = 1/n, then the algorithm of §3 involves O(n log n) operations.

The proof of Corollary 2.1 is given in §4.4. The following corollary states that a similar 

result holds for uniformly random points.

Corollary 2.2. Fix ε = 10−15, and suppose that x1 , … , xn are sampled uniformly at random 
from [a, b]. If δ = 1/n, then the algorithm of §3 involves O(n log n) operations with high 
probability.

The proof of Corollary 2.2 is immediate from standard probabilistic estimates. The 

following remark describes an adversarial configuration of points.

Remark 2.1. Fix ε > 0, and let x1 , … , x2n be a collection of points such that x1 , … , xn 

and xn+1, … , x2n are evenly spaced in [0, 2−n] and [1 − 2−n, 1], respectively, that is

xj = 2−n j − 1
n − 1 , and xn + j = 1 + 2−n j − n

n − 1 , for j = 1, …, n .

We claim that Theorem 2.1 cannot guarantee a complexity better than O(n2) for this 

configuration of points. Indeed, if δ ≥ 2−n, then Nδ ≥ n2/2, and if δ < 2−n, then log2(δ−1) > n. 

In either case

n log(δ−1) + Nδ = Ω(n2) .
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This complexity is indicative of the performance of the algorithm for this point 

configuration; the reason that the algorithm performs poorly is that structures exist at two 

different scales. If such a configuration were encountered in practice, it would be possible to 

modify the algorithm of §3 to also involve two different scales to achieve evaluation in 

O(n log n) operations.

3. Algorithm

3.1. High level summary.

The algorithm involves passing over the points x1 , … , xn twice. First, we pass over the 

points in ascending order and compute

u j
+ ≈ ∑

i = 1

j − 1 αi
xi − xj

, for j = 1, …, n, (10)

and second, we pass over the points in descending order and compute

u j
− ≈ ∑

i = j + 1

n αi
xi − xj

, for j = 1, …, n . (11)

Finally, we define u j ≔ u j
+ + u j

− for j = 1, … , n such that

u j ≈ ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n .

We call the computation of u1
+, … , un

+ the forward pass of the algorithm, and the 

computation of u1
−, … , un

+ the backward pass of the algorithm. The forward pass of the 

algorithm computes the potential generated by all points to the left of a given point, while 

the backward pass of the algorithm computes the potential generated by all points to the 

right of a given point. In §3.2 and §3.3 we give an informal and detailed description of the 

forward pass of the algorithm. The backward pass of the algorithm is identical except it 

considers the points in reverse order.

3.2. Informal description.

In the following, we give an informal description of the forward pass of the algorithm that 

computes

u j
+ ≈ ∑

i = 1

j − 1 αi
xi − xj

, for j = 1, …, n .

Assume that a small set of nodes t1, … , tm and weights w1, … , wm such that
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1
r ≈ ∑

i = 1

m
wie−rti for r ∈ [δ(b − a), b − a], (12)

where δ > 0 is given and fixed. The existence and computation of such nodes and weights is 

described in §4.4 and §5.2. We divide the sum defining uj
+ into two parts:

u j
+ ≈ ∑

i = 1

j0 αi
xi − xj

+ ∑
i = j0 + 1

j − 1 αi
xi − xj

, (13)

where j0 = max {i : xi − xi > δ(b − a)}. By definition, the points x1, … , xj0 are all distance at 

least δ(b − a) from xj. Therefore, by (12)

u j
+ ≈ − ∑

i = 1

j0
∑

k = 1

m
wkαie−(xj − xi)tk + ∑

i = j0 + 1

j − 1 αi
xi − xj

.

If we define

gk(j0) = ∑
i = 1

j0
αie

−(xj0 − xi)tk, for k = 1, …, m, (14)

then it is straightforward to verify that

u j
+ ≈ − ∑

k = 1

m
wkgk(j0)e−(xj − xj0)tk + ∑

i = j0 + 1

j − 1 αi
xi − xj

. (15)

Observe that we can update gk(j0) to gk(j0 + 1) using the following formula

gk(j0 + 1) = αj0 + e−(xj0 + 1 − xj0)tkgk(j0), for k = 1, …, m . (16)

We can now summarize the algorithm for computing u1
+, … , un

+. For each j, we compute u j
+

by the following three steps:

1. Update g1, … , gm as necessary

2. Use g1, … , gm to evaluate the potential from xi such that xj − xi > δ(b − a)

3. Directly evaluate the potential from xi such that 0 < xj − xi < δ(b − a)

By (16), each update of g1, … , gm requires O(m) operations, and we must update g1, … , gm 

at most n times, so we conclude that the total cost of the first step of the algorithm is O(nm)
operations. For each j = 1, … , n, the second and third step of the algorithm involve O(m) and 

O(#{xi :0 < xj − xi < δ(b − a)}) operations, respectively, see (15). It follows that the total cost 

of the second and third step of the algorithm is O(nm + Nδ) operations, where Nδ is defined 
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in (9). We conclude that u1
+, … , un

+ can be computed in O(nm + Nδ) operations. In §4, we 

complete the proof of the computational complexity guarantees of Theorem 2.1 by showing 

that there exist m = O(log(δ−1) log(ε−1)) nodes t1, … , tm and weights w1, … , wm that satisfy 

(12), where ε > 0 is the approximation error in (12).

3.3. Detailed description.

In the following, we give a detailed description of the forward pass of the algorithm that 

computes u1
+, … , un

+. Suppose that δ > 0 and ε > 0 are given and fixed. We describe the 

algorithm under the assumption that we are given quadrature nodes t1, … , tm and weights 

w1, … , wm such that

1
r − ∑

j = 1

m
wje−rtj ≤ ε for r ∈ [δ(b − a), b − a] . (17)

The existence of such weights and nodes is established in §4.4, and the computation of such 

nodes and weights is discussed in §5.2. To simplify the description of the algorithm, we 

assume that x0 = −∞ is a placeholder node that does not generate a potential.
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Algorithm 3.1. Input: x1 < ⋯ < xn ∈ [a, b], α1, …, αn ∈ ℝ . Output: u1
+, …, un

+ .

1: j0 = 0 and g1 = ⋯ = gm = 0
2:
3: main loop:
4: for j = 1, …, n
5:
6: update g1, …, gm and j0:
7: while xj − xj0 + 1 > δ(b − a)

8: for i = 1, …, m

9: gi = gie
−(xj0 + 1 − xj0)ti + αi

10: end for
11: j0 = j0 + 1
12: end while
13:
14: compute potential from xi sucℎ tℎat xi ≤ xj0 :

15: u j
+ = 0

16: for i = 1, …, m

17: u j
+ = u j

+ − wigie
−(xj − xj0)ti

18: end for
19:
20: compute potential form xi sucℎ tℎat xj0 + 1 ≤ xi ≤ xj − 1
21: for i = j0 + 1, …, j − 1

22: u j
+ = u j

+ + αi ∕ (xi − xj) .
23: end for
24: end for

Remark 3.1. In some applications, it may be necessary to evaluate an expression of the form 

(1) for many different weights α1, … , αn associated with a fixed set of points x1, … , xn. 

For example, in the projection application described in §1.3 the weights α1, … , αn 

correspond to a function that is being projected, while the points x1, … , xn are a fixed set of 

quadrature nodes. In such situations, pre-computing the exponentials e−(xj−xj0)ti used in the 

Algorithm 3.1 will significantly improve the runtime, see §5.1.

4. Proof of Main Result

4.1. Organization.

In this section we complete the proof of Theorem 2.1; the section is organized as follows. In 

§4.2 we give mathematical preliminaries. In § 4.3 we state and prove two technical lemmas. 

In §4.4 we prove Lemma 4.5, which together with the analysis in §3 establishes Theorem 

2.1. In §4.5 we prove Corollary 2.1, and Corollary 2.2.
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4.2. Preliminaries.

Let a < b ∈ ℝ and n ∈ ℤ > 0 be fixed, and suppose that f : [a, b] ℝ, and x1 < … < xn ∈ [a, b] 

are given. The interpolating polynomial P of the function f at x1, … , xn is the unique 

polynomial of degree at most n − 1 such that

P (xj) = f(xj), for j = 1, …, n .

This interpolating polynomial P can be explicitly defined by

P (x) = ∑
j = 1

n
f(xj)qj(x), (18)

where qj is the nodal polynomial for xj, that is,

qj(x) = ∏
k = 1, k ≠ j

n x − xk
xj − xk

. (19)

We say x1, … , xn are Chebyshev nodes for the interval [a, b] if

xj = b + a
2 + b − a

2 cos π
j − 1

2
n , for j = 1, …, n . (20)

The following lemma is a classical result in approximation theory. It says that a smooth 

function on a compact interval is accurately approximated by the interpolating polynomial of 

the function at Chebyshev nodes, see for example §4.5.2 of Dahlquist and Björck [5].

Lemma 4.1. Let f ∈ Cn([a, b]), and x1, … , xn be Chebyshev nodes for [a, b]. If P is the 
interpolating polynomial for f at x1, … , xn, then

sup
x ∈ [a, b]

∣ f(x) − P (x) ∣ ≤ 2M
n!

b − a
4

n
,

where

M = sup
x ∈ [a, b]

∣ f(n)(x) ∣ .

In addition to Lemma 4.1, we require a result about the existence of generalized Gaussian 

quadratures for Chebyshev systems. In 1866, Gauss [8] established the existence of 

quadrature nodes x1, … , xn and weights w1, … , wn for an interval [a, b] such that
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∫a
b

f(x)dx = ∑
j = 1

n
wjf(xj),

whenever f(x) is a polynomial of degree at most 2n − 1. This result was generalized from 

polynomials to Chebyshev systems by Kreĭn [13]. A collection of functions f0, … , fn on [a, 

b] is a Chebyshev system if every nonzero generalized polynomial

g(t) = a0f0(t) + ⋯ + anfn(t), for a0, …, an ∈ ℝ,

has at most n distinct zeros in [a, b]. The following result of Kreĭn says that any function in 

the span of a Chebyshev system of 2n functions can be integrated exactly by a quadrature 

with n nodes and n weights.

Lemma 4.2 (Kreĭn [13]). Let f0, … , f2n−1 be a Chebyshev system of continuous functions 
on [a, b], and w : (a, b) → ℝ be a continuous positive weight function. Then, there exists 
unique nodes x1, … , xn and weights w1, …, wn such that

∫a
b

f(x)w(x)dx = ∑
j = 1

n
wjf(xj),

whenever f is in the span of f0, … , f2n−1.

4.3. Technical Lemmas.

In this section, we state and prove two technical lemmas that are involved in the proof of 

Theorem 2.1. We remark that a similar version of Lemma 4.3 appears in [18].

Lemma 4.3. Fix a > 0 and t ∈ [0, ∞), and let r1, … , rn be Chebyshev nodes for [a, 2a]. If 
Pt(r) is the interpolating polynomial for e−rt at r1, … , rn, then

sup
r ∈ [a, 2a]

∣ e−rt − Pt(r) ∣ ≤ 1
4n .

Proof. We have

sup
r ∈ [a, 2a]

∂n

∂rn e−rt = sup
r ∈ [a, 2a]

∣ tne−rt ∣ = tne−ta .

By writing the derivative of tne−ta as

d
dt tne−ta = n

a − t atn − 1e−at,

we can deduce that the maximum of tne−ta occurs at t = n/a, that is,
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sup
t ∈ [0, ∞)

tne−ta = n
a

n
e−a(n ∕ a) . (21)

By (21) and the result of Lemma 4.1, we conclude that

sup
t ∈ [a, 2a]

∣ e−rt − Pt(r) ∣ ≤ 2(n ∕ a)ne−a(n ∕ a)
n!

a
4

n
= 2nne−n

n!
1
4n .

It remains to show that 2nne−n ≤ n!. Since ln(x) is a increasing function, we have

n ln n − n + 1 = ∫1
n

ln(x)dx ≤ ∫1
n ∑

j = 1

n − 1
χ[j, j + 1](x) ln(j + 1)dx = ∑

j = 1

n
ln(j) .

Exponentiating both sides of this inequality gives enne−n ≤ n!, which is a classical inequality 

related to Stirling’s approximation. This completes the proof. □

Lemma 4.4.Suppose that ε > 0 and M > 1 are given. Then, there exists

m = O(log(M) log(ε−1))

values r1, …, rm ∈ [1, M] such that for all r ε [1, M] we have

sup
t ∈ [0, ∞)

e−rt − ∑
j = 1

m
cj(r)e−rjt ≤ ε, (22)

for some choice of coefficients Cj(r) that depend on r.

Proof. We construct an explicit set of m := (⌊log2 M⌋ + 1)(⌊log4 ε−1⌋ + 1) points and 

coefficients such that (22) holds. Set n := ⌊log4 ε−1⌋ + 1. We define the points r1, … , rm by

rin + k ≔ 2i − 1 3 + cos π
k − 1

2
n , (23)

for k = 1, … , n and i = 0, …, ⌊log2 M⌋, and define the coefficients c1(r), … , cm(r) by

cin + k(r) ≔ χ[2i, 2i + 1)(r) ∏
l = 1, l ≠ k

log4 ε−1
r − rin + l

rin + l − rin + k
, (24)

for k = 1, …, n and i = 0, … , ⌊log2 M⌋. We claim that

sup
r ∈ [1, M]

sup
t ∈ [0, ∞)

e−rt − ∑
j = 1

m
cj(r)e−rjt ≤ ε .
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Indeed, fix r ∈ [1, M], and let i0 ∈ {0, … , ⌊log2 M⌋} be the unique integer such that r ∈ [2i0, 

2i0+1). By the definition of the coefficients, see (24), we have

∑
j = 1

m
cj(r)e−rjt = ∑

k = 1

n
e−ri0n + kt ∏

l = 1, l ≠ k

log4 ε−1
r − ri0n + l

ri0n + l − ri0n + k
.

We claim that the right hand side of this equation is the interpolating polynomial Pt,i0 (r) for 

e−rt at ri0n+k, … , r(i0+1)n, that is,

∑
k = 1

n
e−ri0n + kt ∏

l = 1, l ≠ k

log4 ε−1
r − ri0n + l

ri0n + l − ri0n + k
= Pt, i0(r) .

Indeed, see (18) and (19). Since the points ri0n+k, … , r(i0+1)n are Chebyshev nodes for the 

interval [2i0, 2i0+1], and since i0 was chosen such that r ∈ [2i0, 2i0+1), it follows from Lemma 

4.3 that

∣ e−rt − Pt, i0(r) ∣ ≤ 1
4n for t ∈ [0, ∞) .

Since n = ⌊log4 ε−1⌋ + 1 the proof is complete. □

Remark 4.1. The proof of Lemma 4.4 has the additional consequence that the coefficients 

c1(r), … , cm(r) in (22) can be chosen such that they satisfy

∣ cj(r) ∣ ≤ 2 for j = 1, …, m .

Indeed, in (24) the coefficients Cj (r) are either equal zero or equal to the nodal polynomial, 

see (19), for Chebyshev nodes on an interval that contains r. The nodal polynomials for 

Chebyshev nodes on an interval [a, b] are bounded by 2 on [a, b], see for example [18]. The 

fact that e−rt can be approximated as a linear combination of functions e−r1t, … , e−rmt with 

small coefficients means that the approximation of Lemma 4.4 can be used in finite 

precision environments without any unexpected catastrophic cancellation.

4.4. Completing the proof of Theorem 2.1.

Previously in §3.2, we proved that the algorithm of §3 involves O(nm + Nδ) operations. To 

complete the proof of Theorem 2.1 it remains to show that there exists

m = O(log(ε−1) log(δ−1))

points t1, … , tm and weights w1, … , wm that satisfy (17); we show the existence of such 

nodes and weights in the following lemma, and thus complete the proof of Theorem 2.1. The 

computation of such nodes and weights is described in §5.2.
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Lemma 4.5. Fix a < b ∈ ℝ, and let δ > 0 and ε > 0 be given. Then, there exists 

m = O(log(ε−1) log(δ−1)) nodes t1, … , tm and weights w1, … , wm such that

1
r − ∑

j = 1

m
wje−rtj ≤ ε, for r ∈ [δ(b − a), b − a] . (25)

Proof. Fix a < b ∈ ℝ, and let δ, ε > 0 be given. By the possibility of rescaling r, wj, and tj, we 

may assume that b − a = δ−1 such that we want to establish (25) for r ∈ [1, δ−1]. By Lemma 

4.4 we can choose 2m = O(log(ε−1) log(δ−1)) points r0, … , r2m−1 ∈ [1, δ−1], and coefficients 

c0(r), … , c2m−1(r) depending on r such that

sup
r ∈ [1, δ−1]

sup
t ∈ [0, ∞)

e−rt − ∑
j = 0

2m − 1
cj(r)e−rjt ≤ ε

2 log(2ε−1)
. (26)

The collection of functions e−r0t, … , e−r2m−1t form a Chebyshev system of continuous 

functions on the interval [0, log(2ε−1)], see for example [12]. Thus, by Lemma 4.2 there 

exists m quadrature nodes t1, … , tm and weights w1, … , wm such that

∫0
log(2ε−1)

f(t)dt = ∑
j = 1

m
wjf(tj),

whenever f(t) is in the span of e−r0t, … , e−r2m−1t. By the triangle inequality

1
r − ∑

j = 1

m
wje−rtj

≤ 1
r − ∫

0

log(2ε−1)
e−rtdt

+ ∫
0

log(2ε−1)
e−rtdt − ∑

j = 1

m
wjertj .

(27)

Recall that we have assumed r ∈ [1, δ−1], in particular, r ≥ 1 so it follows that

1
r − ∫

0

log(2ε−1)
e−rtdt ≤ ε ∕ 2 . (28)

By (26), the function e−rt can be approximated to error ε/(2log(2ε−1)) in the L∞-norm on [0, 

log(2ε−1)] by functions in the span of e−r0t, … , e−r2m−1t. Since our quadrature is exact for 

these functions, we conclude that

∫
0

log(2ε−1)
e−rtdt − ∑

j = 1

m
wjertj ≤ ε ∕ 2 . (29)
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Combining (27), (28), and (29) completes the proof. □

4.5. Proof of Corollary 2.1.

In this section, we prove Corollary 2.1, which states that the algorithm of §3 involves 

O(n log n) operations when x1, … , xn are Chebyshev nodes, ε = 10−15, and δ = 1/n.

Proof of Corollary 2.1. By rescaling the problem we may assume that [a, b] = [−1, 1] such 

that the Chebyshev nodes x1, … , xn are given by

xj = cos π
j − 1

2
n , for j = 1, …, n .

By the result of Theorem 2.1, it suffices to show that Nδ = O(n log n), where

Nδ ≔ ∑
j = 1

m
# xi : ∣ xj − xi ∣ < 1

n .

It is straightforward to verify that the number of Chebyshev nodes within an interval of 

radius 1/n around the point −1 < x < 1 is O(1 ∕ 1 − x2), that is,

# xi : ∣ x − xi ∣ < 1
n = O 1

1 − x2 , for − 1 < x < 1 .

This estimate, together with the fact that the first and last Chebyshev node are distance at 

least 1/n2 from 1 and −1, respectively, gives the estimate

∑
j = 1

n
# xi : ∣ xj − xi ∣ < 1

n = O ∫1 ∕ n2
π − 1 ∕ n2 n

1 − cos(t)2dt . (30)

Let π/2 > η > 0 be a fixed parameter; direct calculation yields

∫η
π − η 1

1 − cos(t)2
dt = 2 log cot η

2 = O (log (η−1)) .

Combining this estimate with (30) yields Nδ = O(n log n) as was to be shown. □

5. Numerical results and implementation details

5.1. Numerical results.

We report numerical results for two different point distributions: uniformly random points in 

[1, 10], and Chebyshev nodes in [−1, 1]. In both cases, we choose the weights α1, … , αn 

uniformly at random from [0, 1], and test the algorithm for
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n = 1000 × 2k points, for k = 0, …, 10 .

We time two different versions of the algorithm: a standard implementation, and an 

implementation that uses precomputed exponentials. Precomputing exponentials may be 

advantageous in situations where the expression

uj = ∑
j = 1

n αi
xi − xj

, for j = 1, …, n, (31)

must be evaluated for many different weights α1, … , αn associated with a fixed set of points 

x1, …, xn, see Remark 3.1. We find that using precomputed exponentials makes the 

algorithm approximately ten times faster, see Tables 1, 2, and 3. In addition to reporting 

timings, we report the absolute relative difference between the output of the algorithm of §3 

and the output of direct evaluation; we define the absolute relative difference ϵr between the 

output u j of the algorithm of §3 and the output ujd of direct calculation by

ϵr ≔ sup
j = 1, …, n

u j − ujd

ūj
, where ūj ≔ ∑

i = 1

n αi
xi − xj

, (32)

Dividing by ūj accounts were the fact that the calculations are performed in finite precision; 

any remaining loss of accuracy in the numerical results is a consequence of the large number 

of addition and multiplication operations that are performed. All calculations are performed 

in double precision, and the algorithm of §3 is run with ε = 10−15. The parameter δ > 0 is set 

via an empirically determined heuristic. The numerical experiments were performed on a 

laptop with a Intel Core i5-8350U CPU and 7.7 GiB of memory; the code was written in 

Fortran and compiled with gfortran with standard optimization flags. The results are 

reported in Tables 1, 2, and 3.

To put the run time of the algorithm in context, we additionally perform a time comparison 

to the Fast Fourier Transform (FFT), which also has complexity O(n log n). Specifically, we 

compare the run time of the algorithm of §3 on random data using precomputed 

exponentials with the run time of an FFT implementation from FFTPACK [20] on random 

data of the same length using precomputed exponentials. We report these timings in Table 4; 

we find that the FFT is roughly 5-10 times faster than our implementation of the algorithm 

of §3; we remark that no significant effort was made to optimize our implementation, and 

that it may be possible to improve the run time by vectorization.

5.2. Computing nodes and weights.

The algorithm of §3 is described under the assumption that nodes t1, … , tm and weights w1, 

… , wm are given such that
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1
r − ∑

j = 1

m
wje−rtj ≤ ε for r ∈ [δ(b − a), b − a], (33)

where ε > 0 and δ > 0 are fixed parameters. As in the proof of Lemma 4.5 we note that by 

rescaling r it suffices to find nodes and weights satisfying

1
r − ∑

j = 1

m
wje−rtj ≤ ε for r ∈ [1, δ−1] . (34)

Indeed, if the nodes t1, … , tm and weights w1, … , wm satisfy (34), then the nodes t1/(b − a), 

… , tm/(b − a) and weights w1/(b − a), … , wm/(b − a) will satisfy (33). Thus, in order to 

implement the algorithm of §3 it suffices to tabulate nodes and weights that are valid for r ∈ 
[1, M] for various values of M. In the implementation used in the numerical experiments in 

this paper, we tabulated nodes and weights valid for r ∈ [1, M] for

M = [1, 4k] for k = 1, …, 10 .

For example, in Tables 5 and 6 we have listed m = 33 nodes t1, … , t33 and weights w1, … , 

w33 such that

1
r − ∑

j = 1

33
wje−rtj ≤ 10−15,

for all r ∈ [1, 1024].

The nodes and weights satisfying (34) can be computed by using a procedure for generating 

generalized Gaussian quadratures for Chebyshev systems together with the proof of Lemma 

4.4. Indeed, Lemma 4.4 is constructive with the exception of the step that invokes Lemma 

4.2 of Kreĭn. The procedure described in [4] is a constructive version of Lemma 4.2: given a 

Chebyshev system of functions, it generates the corresponding quadrature nodes and 

weights. We remark that generalized Gaussian quadrature generation codes are a powerful 

tools for numerical computation with a wide range of applications. The quadrature 

generation code used in this paper was an optimized version of [4] recently developed by 

Serkh for [19].
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Table 1.

Key for column labels of Tables 2, 3, and 4.

Label Definition

n number of points

tw time of algorithm of §3 without precomputation in seconds

tp time of precomputing exponentials for algorithm of §3 in seconds

tu time of algorithm of §3 using precomputed exponentials in seconds

td time of direct evaluation in seconds

ϵr maximum absolute relative difference defined in (32)

tf time of FFT using precomputed exponentials (for time comparison only)
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Table 2.

Numerical results for uniformly random points in [1, 10].

n tw tp tu td ϵr

1000 0.74 E −03 0.18 E −02 0.93 E −04 0.66 E −03 0.19 E −14

2000 0.19 E −02 0.31 E −02 0.19 E −03 0.25 E −02 0.30 E −14

4000 0.42 E −02 0.61 E −02 0.43 E −03 0.10 E −01 0.52 E −14

8000 0.85 E −02 0.10 E −01 0.89 E −03 0.37 E −01 0.72 E −14

16000 0.18 E −01 0.25 E −01 0.18 E −02 0.14 E +00 0.92 E −14

32000 0.38 E −01 0.49 E −01 0.37 E −02 0.59 E +00 0.19 E −13

64000 0.84 E −01 0.98 E −01 0.78 E −02 0.23 E +01 0.21 E −13

128000 0.16E +00 0.19 E +00 0.18 E −01 0.95 E +01 0.35 E −13

256000 0.37 E +00 0.53 E +00 0.34 E −01 0.40 E +02 0.59 E −13

512000 0.75 E +00 0.10 E +01 0.71 E −01 0.19 E +03 0.88 E −13

1024000 0.17 E +01 0.23 E +01 0.15 E +00 0.81 E +03 0.14 E −12

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

GIMBUTAS et al. Page 22

Table 3.

Numerical results for Chebyshev nodes on [−1, 1].

n tw tp tu td ϵr

1000 0.54 E −03 0.12 E −02 0.74 E −04 0.60 E −03 0.11 E −14

2000 0.15 E −02 0.26 E −02 0.15 E −03 0.24 E −02 0.14 E −14

4000 0.38 E −02 0.51 E −02 0.37 E −03 0.99 E −02 0.39 E −14

8000 0.83 E −02 0.10 E −01 0.85 E −03 0.38 E −01 0.35 E −14

16000 0.19 E −01 0.23 E −01 0.17 E −02 0.14 E +00 0.58 E −14

32000 0.41 E −01 0.48 E −01 0.37 E −02 0.62 E +00 0.89 E −14

64000 0.98 E −01 0.90 E −01 0.82 E −02 0.24 E +01 0.12 E −13

128000 0.22 E +00 0.19 E +00 0.23 E −01 0.10 E +02 0.19 E −13

256000 0.44 E +00 0.47 E +00 0.32 E −01 0.40 E +02 0.26 E −13

512000 0.84 E +00 0.94 E +00 0.73 E −01 0.19 E +03 0.52 E −13

1024000 0.19 E +01 0.19 E +01 0.14 E +00 0.84 E +03 0.64 E −13
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Table 4.

Time comparison with FFT.

n tu tf

1000 0.91 E − 04 0.16 E − 04

2000 0.28 E − 03 0.37 E − 04

4000 0.41 E − 03 0.44 E − 04

8000 0.93 E − 03 0.85 E − 04

16000 0.18 E − 02 0.24 E − 03

32000 0.38 E − 02 0.41 E − 03

64000 0.81 E − 02 0.88 E − 03

128000 0.18 E − 01 0.19 E − 02

256000 0.38 E − 01 0.59 E − 02

512000 0.71 E − 01 0.12 E − 01

1024000 0.14 E + 00 0.25 E − 01
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Table 5.

A list of 33 nodes t1, … , t33.

0.2273983006898589D−03, 0.1206524521003404D−02, 0.3003171636661616D−02,

0.5681878572654425D−02, 0.9344657316017281D−02, 0.1414265501822061D−01,

0.2029260691940998D−01, 0.2809891134697047D−01, 0.3798133147119762D−01,

0.5050795277167632D−01, 0.6643372693847560D−01, 0.8674681067847460D−01,

0.1127269233505314D+00, 0.1460210820252656D+00, 0.1887424688689547D+00,

0.2435986924712581D+00, 0.3140569015209982D+00, 0.4045552087678740D+00,

0.5207726670656921D+00, 0.6699737362118449D+00, 0.8614482005965975D+00,

0.1107074709906516D+01, 0.1422047253849542D+01, 0.1825822499573290D+01,

0.2343379511131976D+01, 0.3006948272874077D+01, 0.3858496861353812D+01,

0.4953559345813267D+01, 0.6367677940017810D+01, 0.8208553424367139D+01,

0.1064261195532074D+02, 0.1396688222191633D+02, 0.1889449184151398D+02
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Table 6.

A list of 33 weights w1, …, w33.

0.5845245927410881D−03, 0.1379782337905140D−02, 0.2224121503815854D−02,

0.3150105276431181D−02, 0.4200370923383030D−02, 0.5431379037435571D−02,

0.6918794756934398D−02, 0.8763225538492927D−02, 0.1109565843047196D−01,

0.1408264766413004D−01, 0.1793263393523491D−01, 0.2290557147478609D−01,

0.2932752351846237D−01, 0.3761087060298772D−01,0.4828044150885936D−01,

0.6200636888239893D−01, 0.7964527252809662D−01, 0.1022921587521237D+00,

0.1313462348178323D+00, 0.1685948994092301D+00, 0.2163218289369589D+00,

0.2774479391081561D+00, 0.3557192797195578D+00, 0.4559662159666857D+00,

0.5844792718191478D+00, 0.7495918095861060D+00, 0.9626599456939077D+00,

0.1239869481076760D+01, 0.1605927580173348D+01, 0.2102583514906888D+01,

0.2811829220697454D+01, 0.3937959064316012D+01, 0.6294697335695096D+01
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