
A FAST SIMPLE ALGORITHM FOR COMPUTING THE POTENTIAL
OF CHARGES ON A LINE

ZYDRUNAS GIMBUTAS,
National Institute of Standards and Technology, Boulder, CO 80305, USA

NICHOLAS F. MARSHALL,
Department of Mathematics, Princeton University, Princeton, NJ 08540, USA

VLADIMIR ROKHLIN
Program in Applied Mathematics, Yale University, New Haven, CT 06511, USA

Abstract

We present a fast method for evaluating expressions of the form

uj = ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n,

where αi are real numbers, and xi are points in a compact interval of ℝ. This expression can be

viewed as representing the electrostatic potential generated by charges on a line in ℝ3. While fast

algorithms for computing the electrostatic potential of general distributions of charges in ℝ3 exist,

in a number of situations in computational physics it is useful to have a simple and extremely fast

method for evaluating the potential of charges on a line; we present such a method in this paper,

and report numerical results for several examples.

2010 Mathematics Subject Classification

31C20 (primary) and 41A55; 41A50 (secondary)

Keywords

Fast multipole method; Chebyshev system; generalized Gaussian quadrature

1. Introduction and motivation

1.1. Introduction.

In this paper, we describe a simple fast algorithm for evaluating expressions of the form

zydrunas.gimbutas@nist.gov.

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
Appl Comput Harmon Anal. 2020 ; 49(3): .N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript

uj = ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n, (1)

where αi are real numbers, and xi are points in a compact interval of ℝ. This expression can

be viewed as representing the electrostatic potential generated by charges on a line in ℝ3. We

remark that fast algorithms for computing the electrostatic potential generated by general

distributions of charges in ℝ3 exist, see for example the Fast Multipole Method [9] whose

relation to the method presented in this paper is discussed in §1.2. However, in a number of

situations in computational physics it is useful to have a simple and extremely fast method

for evaluating the potential of charges on a line; we present such a method in this paper.

Under mild assumptions the presented method involves O(n log n) operations and has a small

constant. The method is based on writing the potential 1/r as

1
r = ∫0

∞
e−rtdt .

We show that there exists a small set of quadrature nodes t1, … , tm and weights w1, … , wm

such that for a large range of values of r we have

1
r ≈ ∑

j = 1

m
wje−rtj, (2)

see Lemma 4.5, which is a quantitative version of (2). Numerically the nodes t1, … , tm and

weights w1, … , wm are computed using a procedure for constructing generalized Gaussian

quadratures, see §5.2. An advantage of representing 1/r as a sum of exponentials is that the

translation operator

1
r

1
r + r′ (3)

can be computed by taking an inner product of the weights (w1 , … , wm) with a diagonal

transformation of the vector (e−rt1 , … , e−rtm). Indeed, we have

1
r + r′ ≈ ∑

j = 1

m
wje−(r + r′)tj = ∑

j = 1

m
wje−r′tje−rtj . (4)

The algorithm described in §3 leverages the existence of this diagonal translation operator to

efficiently evaluate (1).

1.2. Relation to past work.

We emphasize that fast algorithms for computing the potential generated by arbitrary

distributions of charges in ℝ3 exist. An example of such an algorithm is the Fast Multipole

Method that was introduced by [9] and has been extended by several authors including [7,

10, 16]. In this paper, we present a simple scheme for the special case where the charges are

GIMBUTAS et al. Page 2

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

on a line, which occurs in a number of numerical calcuations, see 1.3. The presented scheme

has a much smaller runtime constant compared to general methods, and is based on the

diagonal form (4) of the translation operator (3). The idea of using the diagonal form of this

translation operator to accelerate numerical computations has been studied by several

authors; in particular, the diagonal form is used in algorithms by Dutt, Gu and Rokhlin [6],

and Yavin and Rokhlin [22] and was subsequently studied in detail by Beylkin and Monzón

[1, 2].

The current paper improves upon these past works by taking advantage of robust generalized

Gaussian quadrature codes [4] that were not previously available; these codes construct a

quadrature rule that is exact for functions in the linear span of a given Chebyshev system,

and can be viewed as a constructive version of Lemma 4.2 of Kreĭn [13]. The resulting fast

algorithm presented in §3 simplifies past approaches, and has a small runtime constant; in

particular, its computational cost is similar to the computational cost of 5-10 Fast Fourier

Transforms on data of a similar length, see 5.

1.3. Motivation.

Expressions of the form (1) appear in a number of situations in computational physics. In

particular, such expressions arise in connection with the Hilbert Transform

Hf(x) = lim
ε 0

1
π∫∣ x − y ∣ ≥ ε

f(y)
y − xdy .

For example, the computation of the projection Pmf of a function f onto the first m + 1

functions in a family of orthogonal polynomials can be reduced to an expression of the form

(1) by using the Christoffel–Darboux formula, which is related to the Hilbert transform; we

detail the reduction of Pmf to an expression of the form (1) in the following.

Let {pk}k = 0
∞ be a family of monic polynomials that are orthogonal with respect to the

weight w(x) ≥ 0 on (a, b) ⊆ ℝ. Consider the projection operator

Pmf(x) ≔ ∫a
b ∑

k = 0

m pk(x)pk(y)
ℎk

f(y)w(y)dy,

where ℎk ≔ ∫a
bpk(x)2w(x)dx. Let x1 , … , xn and w1 , … , wn be the n > m/2 point Gaussian

quadrature nodes and weights associated with {pk}k = 0
∞ , and set

uj ≔ ∑
i = 1

n
∑

k = 0

m pk(xj)pk(xi)
ℎk

f(xi)w(xi), for j = 1, …, n . (5)

By construction the polynomial that interpolates the values u1 , … , un at the points x1 , … ,

xn will accurately approximate Pmf on (a, b) when f is sufficiently smooth, see for example

§7.4.6 of Dahlquist and Björck [5]. Directly evaluating (5) would require Ω(n2) operations.

GIMBUTAS et al. Page 3

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

In contrast, the algorithm of this paper together with the Christoffel–Darboux Formula can

be used to evaluate (5) in O(n log n) operations. The Christoffel-Darboux formula states that

∑
k = 0

m pk(x)pk(y)
ℎk

= 1
ℎm

pm + 1(x)pm(y) − pm(x)pm + 1(y)
x − y , (6)

see §18.2(v) of [17]. Using (6) to rewrite (5) yields

uj = 1
ℎm

f(xj) + ∑
i = 1, i ≠ j

m pm + 1(xj)pm(xi) − pm(xj)pm + 1(xi)
xj − xi

f(xi)w(xi) , (7)

where we have used the fact that the diagonal term of the double summation is equal to f(xj)/

hm. The summation in (7) can be rearranged into two expressions of the form (1), and thus

the method of this paper can be used to compute a representation of Pmf in O(n log n)
operations.

Remark 1.1. Analogs of the Christoffel–Darboux formula hold for many other families of

functions; for example, if Jν(w) is a Bessel function of the first kind, then we have

∑
k = 1

∞
2(ν + k)Jν + k(w)Jv + k(z) = wz

w − z(Jν + 1(w)Jν(z) − Jν(w)Jν + 1(z)),

see [21]. This formula can be used to write a projection operator related to Bessel functions

in an analogous form to (7), and the algorithm of this paper can be similarly applied

Remark 1.2. A simple modification of the algorithm presented in this paper can be used to

evaluate more general expressions of the form

vj = ∑
i = 1

n αi
xi − yj

, for j = 1, …, m,

where x1 , … , xn are source points, and y1 , … , ym are target points. For simplicity, this

paper focuses on the case where the source and target points are the same, which is the case

in the projection application described above.

2. Main result

2.1. Main result.

Our principle analytical result is the following theorem, which provides precise accuracy and

computational complexity guarantees for the algorithm presented in this paper, which is

detailed in §3.

Theorem 2.1. Let x1 < … < xn ∈ [a, b] and α1 , … , αn ∈ ℝ be given. Set

GIMBUTAS et al. Page 4

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

uj ≔ ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n .

Given δ > 0 and ε > 0, the algorithm described in §3 computes values u j such

∣ u j − uj ∣
∑i = 1

n ∣ αi ∣
≤ ε, for j = 1, …, n (8)

in O (n log(δ−1) log(ε−1) + Nδ) operations, where

Nδ ≔ ∑
j = 1

n
#{xi : ∣ xj − xi ∣ < δ(b − a)} . (9)

The proof of Theorem 2.1 is given in §4. Under typical conditions, the presented algorithm

involves O(n log n) operations. The following corollary describes a case of interest, where the

points x1, … , xn are Chebyshev nodes for a compact interval [a, b] (we define Chebyshev

nodes in §4.2).

Corollary 2.1. Fix ε = 10−15, and let the points x1 , … , xn be Chebyshev nodes on [a, b]. If
δ = 1/n, then the algorithm of §3 involves O(n log n) operations.

The proof of Corollary 2.1 is given in §4.4. The following corollary states that a similar

result holds for uniformly random points.

Corollary 2.2. Fix ε = 10−15, and suppose that x1 , … , xn are sampled uniformly at random
from [a, b]. If δ = 1/n, then the algorithm of §3 involves O(n log n) operations with high
probability.

The proof of Corollary 2.2 is immediate from standard probabilistic estimates. The

following remark describes an adversarial configuration of points.

Remark 2.1. Fix ε > 0, and let x1 , … , x2n be a collection of points such that x1 , … , xn

and xn+1, … , x2n are evenly spaced in [0, 2−n] and [1 − 2−n, 1], respectively, that is

xj = 2−n j − 1
n − 1 , and xn + j = 1 + 2−n j − n

n − 1 , for j = 1, …, n .

We claim that Theorem 2.1 cannot guarantee a complexity better than O(n2) for this

configuration of points. Indeed, if δ ≥ 2−n, then Nδ ≥ n2/2, and if δ < 2−n, then log2(δ−1) > n.

In either case

n log(δ−1) + Nδ = Ω(n2) .

GIMBUTAS et al. Page 5

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

This complexity is indicative of the performance of the algorithm for this point

configuration; the reason that the algorithm performs poorly is that structures exist at two

different scales. If such a configuration were encountered in practice, it would be possible to

modify the algorithm of §3 to also involve two different scales to achieve evaluation in

O(n log n) operations.

3. Algorithm

3.1. High level summary.

The algorithm involves passing over the points x1 , … , xn twice. First, we pass over the

points in ascending order and compute

u j
+ ≈ ∑

i = 1

j − 1 αi
xi − xj

, for j = 1, …, n, (10)

and second, we pass over the points in descending order and compute

u j
− ≈ ∑

i = j + 1

n αi
xi − xj

, for j = 1, …, n . (11)

Finally, we define u j ≔ u j
+ + u j

− for j = 1, … , n such that

u j ≈ ∑
i = 1, i ≠ j

n αi
xi − xj

, for j = 1, …, n .

We call the computation of u1
+, … , un

+ the forward pass of the algorithm, and the

computation of u1
−, … , un

+ the backward pass of the algorithm. The forward pass of the

algorithm computes the potential generated by all points to the left of a given point, while

the backward pass of the algorithm computes the potential generated by all points to the

right of a given point. In §3.2 and §3.3 we give an informal and detailed description of the

forward pass of the algorithm. The backward pass of the algorithm is identical except it

considers the points in reverse order.

3.2. Informal description.

In the following, we give an informal description of the forward pass of the algorithm that

computes

u j
+ ≈ ∑

i = 1

j − 1 αi
xi − xj

, for j = 1, …, n .

Assume that a small set of nodes t1, … , tm and weights w1, … , wm such that

GIMBUTAS et al. Page 6

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

1
r ≈ ∑

i = 1

m
wie−rti for r ∈ [δ(b − a), b − a], (12)

where δ > 0 is given and fixed. The existence and computation of such nodes and weights is

described in §4.4 and §5.2. We divide the sum defining uj
+ into two parts:

u j
+ ≈ ∑

i = 1

j0 αi
xi − xj

+ ∑
i = j0 + 1

j − 1 αi
xi − xj

, (13)

where j0 = max {i : xi − xi > δ(b − a)}. By definition, the points x1, … , xj0 are all distance at

least δ(b − a) from xj. Therefore, by (12)

u j
+ ≈ − ∑

i = 1

j0
∑

k = 1

m
wkαie−(xj − xi)tk + ∑

i = j0 + 1

j − 1 αi
xi − xj

.

If we define

gk(j0) = ∑
i = 1

j0
αie

−(xj0 − xi)tk, for k = 1, …, m, (14)

then it is straightforward to verify that

u j
+ ≈ − ∑

k = 1

m
wkgk(j0)e−(xj − xj0)tk + ∑

i = j0 + 1

j − 1 αi
xi − xj

. (15)

Observe that we can update gk(j0) to gk(j0 + 1) using the following formula

gk(j0 + 1) = αj0 + e−(xj0 + 1 − xj0)tkgk(j0), for k = 1, …, m . (16)

We can now summarize the algorithm for computing u1
+, … , un

+. For each j, we compute u j
+

by the following three steps:

1. Update g1, … , gm as necessary

2. Use g1, … , gm to evaluate the potential from xi such that xj − xi > δ(b − a)

3. Directly evaluate the potential from xi such that 0 < xj − xi < δ(b − a)

By (16), each update of g1, … , gm requires O(m) operations, and we must update g1, … , gm

at most n times, so we conclude that the total cost of the first step of the algorithm is O(nm)
operations. For each j = 1, … , n, the second and third step of the algorithm involve O(m) and

O(#{xi :0 < xj − xi < δ(b − a)}) operations, respectively, see (15). It follows that the total cost

of the second and third step of the algorithm is O(nm + Nδ) operations, where Nδ is defined

GIMBUTAS et al. Page 7

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

in (9). We conclude that u1
+, … , un

+ can be computed in O(nm + Nδ) operations. In §4, we

complete the proof of the computational complexity guarantees of Theorem 2.1 by showing

that there exist m = O(log(δ−1) log(ε−1)) nodes t1, … , tm and weights w1, … , wm that satisfy

(12), where ε > 0 is the approximation error in (12).

3.3. Detailed description.

In the following, we give a detailed description of the forward pass of the algorithm that

computes u1
+, … , un

+. Suppose that δ > 0 and ε > 0 are given and fixed. We describe the

algorithm under the assumption that we are given quadrature nodes t1, … , tm and weights

w1, … , wm such that

1
r − ∑

j = 1

m
wje−rtj ≤ ε for r ∈ [δ(b − a), b − a] . (17)

The existence of such weights and nodes is established in §4.4, and the computation of such

nodes and weights is discussed in §5.2. To simplify the description of the algorithm, we

assume that x0 = −∞ is a placeholder node that does not generate a potential.

GIMBUTAS et al. Page 8

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Algorithm 3.1. Input: x1 < ⋯ < xn ∈ [a, b], α1, …, αn ∈ ℝ . Output: u1
+, …, un

+ .

1: j0 = 0 and g1 = ⋯ = gm = 0
2:
3: main loop:
4: for j = 1, …, n
5:
6: update g1, …, gm and j0:
7: while xj − xj0 + 1 > δ(b − a)

8: for i = 1, …, m

9: gi = gie
−(xj0 + 1 − xj0)ti + αi

10: end for
11: j0 = j0 + 1
12: end while
13:
14: compute potential from xi sucℎ tℎat xi ≤ xj0 :

15: u j
+ = 0

16: for i = 1, …, m

17: u j
+ = u j

+ − wigie
−(xj − xj0)ti

18: end for
19:
20: compute potential form xi sucℎ tℎat xj0 + 1 ≤ xi ≤ xj − 1
21: for i = j0 + 1, …, j − 1

22: u j
+ = u j

+ + αi ∕ (xi − xj) .
23: end for
24: end for

Remark 3.1. In some applications, it may be necessary to evaluate an expression of the form

(1) for many different weights α1, … , αn associated with a fixed set of points x1, … , xn.

For example, in the projection application described in §1.3 the weights α1, … , αn

correspond to a function that is being projected, while the points x1, … , xn are a fixed set of

quadrature nodes. In such situations, pre-computing the exponentials e−(xj−xj0)ti used in the

Algorithm 3.1 will significantly improve the runtime, see §5.1.

4. Proof of Main Result

4.1. Organization.

In this section we complete the proof of Theorem 2.1; the section is organized as follows. In

§4.2 we give mathematical preliminaries. In § 4.3 we state and prove two technical lemmas.

In §4.4 we prove Lemma 4.5, which together with the analysis in §3 establishes Theorem

2.1. In §4.5 we prove Corollary 2.1, and Corollary 2.2.

GIMBUTAS et al. Page 9

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

4.2. Preliminaries.

Let a < b ∈ ℝ and n ∈ ℤ > 0 be fixed, and suppose that f :[a, b] ℝ, and x1 < … < xn ∈ [a, b]

are given. The interpolating polynomial P of the function f at x1, … , xn is the unique

polynomial of degree at most n − 1 such that

P(xj) = f(xj), for j = 1, …, n .

This interpolating polynomial P can be explicitly defined by

P(x) = ∑
j = 1

n
f(xj)qj(x), (18)

where qj is the nodal polynomial for xj, that is,

qj(x) = ∏
k = 1, k ≠ j

n x − xk
xj − xk

. (19)

We say x1, … , xn are Chebyshev nodes for the interval [a, b] if

xj = b + a
2 + b − a

2 cos π
j − 1

2
n , for j = 1, …, n . (20)

The following lemma is a classical result in approximation theory. It says that a smooth

function on a compact interval is accurately approximated by the interpolating polynomial of

the function at Chebyshev nodes, see for example §4.5.2 of Dahlquist and Björck [5].

Lemma 4.1. Let f ∈ Cn([a, b]), and x1, … , xn be Chebyshev nodes for [a, b]. If P is the
interpolating polynomial for f at x1, … , xn, then

sup
x ∈ [a, b]

∣ f(x) − P(x) ∣ ≤ 2M
n!

b − a
4

n
,

where

M = sup
x ∈ [a, b]

∣ f(n)(x) ∣ .

In addition to Lemma 4.1, we require a result about the existence of generalized Gaussian

quadratures for Chebyshev systems. In 1866, Gauss [8] established the existence of

quadrature nodes x1, … , xn and weights w1, … , wn for an interval [a, b] such that

GIMBUTAS et al. Page 10

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

∫a
b

f(x)dx = ∑
j = 1

n
wjf(xj),

whenever f(x) is a polynomial of degree at most 2n − 1. This result was generalized from

polynomials to Chebyshev systems by Kreĭn [13]. A collection of functions f0, … , fn on [a,

b] is a Chebyshev system if every nonzero generalized polynomial

g(t) = a0f0(t) + ⋯ + anfn(t), for a0, …, an ∈ ℝ,

has at most n distinct zeros in [a, b]. The following result of Kreĭn says that any function in

the span of a Chebyshev system of 2n functions can be integrated exactly by a quadrature

with n nodes and n weights.

Lemma 4.2 (Kreĭn [13]). Let f0, … , f2n−1 be a Chebyshev system of continuous functions
on [a, b], and w : (a, b) → ℝ be a continuous positive weight function. Then, there exists
unique nodes x1, … , xn and weights w1, …, wn such that

∫a
b

f(x)w(x)dx = ∑
j = 1

n
wjf(xj),

whenever f is in the span of f0, … , f2n−1.

4.3. Technical Lemmas.

In this section, we state and prove two technical lemmas that are involved in the proof of

Theorem 2.1. We remark that a similar version of Lemma 4.3 appears in [18].

Lemma 4.3. Fix a > 0 and t ∈ [0, ∞), and let r1, … , rn be Chebyshev nodes for [a, 2a]. If
Pt(r) is the interpolating polynomial for e−rt at r1, … , rn, then

sup
r ∈ [a, 2a]

∣ e−rt − Pt(r) ∣ ≤ 1
4n .

Proof. We have

sup
r ∈ [a, 2a]

∂n

∂rn e−rt = sup
r ∈ [a, 2a]

∣ tne−rt ∣ = tne−ta .

By writing the derivative of tne−ta as

d
dt tne−ta = n

a − t atn − 1e−at,

we can deduce that the maximum of tne−ta occurs at t = n/a, that is,

GIMBUTAS et al. Page 11

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

sup
t ∈ [0, ∞)

tne−ta = n
a

n
e−a(n ∕ a) . (21)

By (21) and the result of Lemma 4.1, we conclude that

sup
t ∈ [a, 2a]

∣ e−rt − Pt(r) ∣ ≤ 2(n ∕ a)ne−a(n ∕ a)
n!

a
4

n
= 2nne−n

n!
1
4n .

It remains to show that 2nne−n ≤ n!. Since ln(x) is a increasing function, we have

n ln n − n + 1 = ∫1
n

ln(x)dx ≤ ∫1
n ∑

j = 1

n − 1
χ[j, j + 1](x) ln(j + 1)dx = ∑

j = 1

n
ln(j) .

Exponentiating both sides of this inequality gives enne−n ≤ n!, which is a classical inequality

related to Stirling’s approximation. This completes the proof. □

Lemma 4.4.Suppose that ε > 0 and M > 1 are given. Then, there exists

m = O(log(M) log(ε−1))

values r1, …, rm ∈ [1, M] such that for all r ε [1, M] we have

sup
t ∈ [0, ∞)

e−rt − ∑
j = 1

m
cj(r)e−rjt ≤ ε, (22)

for some choice of coefficients Cj(r) that depend on r.

Proof. We construct an explicit set of m := (⌊log2 M⌋ + 1)(⌊log4 ε−1⌋ + 1) points and

coefficients such that (22) holds. Set n := ⌊log4 ε−1⌋ + 1. We define the points r1, … , rm by

rin + k ≔ 2i − 1 3 + cos π
k − 1

2
n , (23)

for k = 1, … , n and i = 0, …, ⌊log2 M⌋, and define the coefficients c1(r), … , cm(r) by

cin + k(r) ≔ χ[2i, 2i + 1)(r) ∏
l = 1, l ≠ k

log4 ε−1
r − rin + l

rin + l − rin + k
, (24)

for k = 1, …, n and i = 0, … , ⌊log2 M⌋. We claim that

sup
r ∈ [1, M]

sup
t ∈ [0, ∞)

e−rt − ∑
j = 1

m
cj(r)e−rjt ≤ ε .

GIMBUTAS et al. Page 12

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Indeed, fix r ∈ [1, M], and let i0 ∈ {0, … , ⌊log2 M⌋} be the unique integer such that r ∈ [2i0,

2i0+1). By the definition of the coefficients, see (24), we have

∑
j = 1

m
cj(r)e−rjt = ∑

k = 1

n
e−ri0n + kt ∏

l = 1, l ≠ k

log4 ε−1
r − ri0n + l

ri0n + l − ri0n + k
.

We claim that the right hand side of this equation is the interpolating polynomial Pt,i0 (r) for

e−rt at ri0n+k, … , r(i0+1)n, that is,

∑
k = 1

n
e−ri0n + kt ∏

l = 1, l ≠ k

log4 ε−1
r − ri0n + l

ri0n + l − ri0n + k
= Pt, i0(r) .

Indeed, see (18) and (19). Since the points ri0n+k, … , r(i0+1)n are Chebyshev nodes for the

interval [2i0, 2i0+1], and since i0 was chosen such that r ∈ [2i0, 2i0+1), it follows from Lemma

4.3 that

∣ e−rt − Pt, i0(r) ∣ ≤ 1
4n for t ∈ [0, ∞) .

Since n = ⌊log4 ε−1⌋ + 1 the proof is complete. □

Remark 4.1. The proof of Lemma 4.4 has the additional consequence that the coefficients

c1(r), … , cm(r) in (22) can be chosen such that they satisfy

∣ cj(r) ∣ ≤ 2 for j = 1, …, m .

Indeed, in (24) the coefficients Cj (r) are either equal zero or equal to the nodal polynomial,

see (19), for Chebyshev nodes on an interval that contains r. The nodal polynomials for

Chebyshev nodes on an interval [a, b] are bounded by 2 on [a, b], see for example [18]. The

fact that e−rt can be approximated as a linear combination of functions e−r1t, … , e−rmt with

small coefficients means that the approximation of Lemma 4.4 can be used in finite

precision environments without any unexpected catastrophic cancellation.

4.4. Completing the proof of Theorem 2.1.

Previously in §3.2, we proved that the algorithm of §3 involves O(nm + Nδ) operations. To

complete the proof of Theorem 2.1 it remains to show that there exists

m = O(log(ε−1) log(δ−1))

points t1, … , tm and weights w1, … , wm that satisfy (17); we show the existence of such

nodes and weights in the following lemma, and thus complete the proof of Theorem 2.1. The

computation of such nodes and weights is described in §5.2.

GIMBUTAS et al. Page 13

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Lemma 4.5. Fix a < b ∈ ℝ, and let δ > 0 and ε > 0 be given. Then, there exists

m = O(log(ε−1) log(δ−1)) nodes t1, … , tm and weights w1, … , wm such that

1
r − ∑

j = 1

m
wje−rtj ≤ ε, for r ∈ [δ(b − a), b − a] . (25)

Proof. Fix a < b ∈ ℝ, and let δ, ε > 0 be given. By the possibility of rescaling r, wj, and tj, we

may assume that b − a = δ−1 such that we want to establish (25) for r ∈ [1, δ−1]. By Lemma

4.4 we can choose 2m = O(log(ε−1) log(δ−1)) points r0, … , r2m−1 ∈ [1, δ−1], and coefficients

c0(r), … , c2m−1(r) depending on r such that

sup
r ∈ [1, δ−1]

sup
t ∈ [0, ∞)

e−rt − ∑
j = 0

2m − 1
cj(r)e−rjt ≤ ε

2 log(2ε−1)
. (26)

The collection of functions e−r0t, … , e−r2m−1t form a Chebyshev system of continuous

functions on the interval [0, log(2ε−1)], see for example [12]. Thus, by Lemma 4.2 there

exists m quadrature nodes t1, … , tm and weights w1, … , wm such that

∫0
log(2ε−1)

f(t)dt = ∑
j = 1

m
wjf(tj),

whenever f(t) is in the span of e−r0t, … , e−r2m−1t. By the triangle inequality

1
r − ∑

j = 1

m
wje−rtj

≤ 1
r − ∫

0

log(2ε−1)
e−rtdt

+ ∫
0

log(2ε−1)
e−rtdt − ∑

j = 1

m
wjertj .

(27)

Recall that we have assumed r ∈ [1, δ−1], in particular, r ≥ 1 so it follows that

1
r − ∫

0

log(2ε−1)
e−rtdt ≤ ε ∕ 2 . (28)

By (26), the function e−rt can be approximated to error ε/(2log(2ε−1)) in the L∞-norm on [0,

log(2ε−1)] by functions in the span of e−r0t, … , e−r2m−1t. Since our quadrature is exact for

these functions, we conclude that

∫
0

log(2ε−1)
e−rtdt − ∑

j = 1

m
wjertj ≤ ε ∕ 2 . (29)

GIMBUTAS et al. Page 14

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Combining (27), (28), and (29) completes the proof. □

4.5. Proof of Corollary 2.1.

In this section, we prove Corollary 2.1, which states that the algorithm of §3 involves

O(n log n) operations when x1, … , xn are Chebyshev nodes, ε = 10−15, and δ = 1/n.

Proof of Corollary 2.1. By rescaling the problem we may assume that [a, b] = [−1, 1] such

that the Chebyshev nodes x1, … , xn are given by

xj = cos π
j − 1

2
n , for j = 1, …, n .

By the result of Theorem 2.1, it suffices to show that Nδ = O(n log n), where

Nδ ≔ ∑
j = 1

m
xi : ∣ xj − xi ∣ < 1

n .

It is straightforward to verify that the number of Chebyshev nodes within an interval of

radius 1/n around the point −1 < x < 1 is O(1 ∕ 1 − x2), that is,

xi : ∣ x − xi ∣ < 1
n = O 1

1 − x2 , for − 1 < x < 1 .

This estimate, together with the fact that the first and last Chebyshev node are distance at

least 1/n2 from 1 and −1, respectively, gives the estimate

∑
j = 1

n
xi : ∣ xj − xi ∣ < 1

n = O ∫1 ∕ n2
π − 1 ∕ n2 n

1 − cos(t)2dt . (30)

Let π/2 > η > 0 be a fixed parameter; direct calculation yields

∫η
π − η 1

1 − cos(t)2
dt = 2 log cot η

2 = O (log (η−1)) .

Combining this estimate with (30) yields Nδ = O(n log n) as was to be shown. □

5. Numerical results and implementation details

5.1. Numerical results.

We report numerical results for two different point distributions: uniformly random points in

[1, 10], and Chebyshev nodes in [−1, 1]. In both cases, we choose the weights α1, … , αn

uniformly at random from [0, 1], and test the algorithm for

GIMBUTAS et al. Page 15

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

n = 1000 × 2k points, for k = 0, …, 10 .

We time two different versions of the algorithm: a standard implementation, and an

implementation that uses precomputed exponentials. Precomputing exponentials may be

advantageous in situations where the expression

uj = ∑
j = 1

n αi
xi − xj

, for j = 1, …, n, (31)

must be evaluated for many different weights α1, … , αn associated with a fixed set of points

x1, …, xn, see Remark 3.1. We find that using precomputed exponentials makes the

algorithm approximately ten times faster, see Tables 1, 2, and 3. In addition to reporting

timings, we report the absolute relative difference between the output of the algorithm of §3

and the output of direct evaluation; we define the absolute relative difference ϵr between the

output u j of the algorithm of §3 and the output ujd of direct calculation by

ϵr ≔ sup
j = 1, …, n

u j − ujd

ūj
, where ūj ≔ ∑

i = 1

n αi
xi − xj

, (32)

Dividing by ūj accounts were the fact that the calculations are performed in finite precision;

any remaining loss of accuracy in the numerical results is a consequence of the large number

of addition and multiplication operations that are performed. All calculations are performed

in double precision, and the algorithm of §3 is run with ε = 10−15. The parameter δ > 0 is set

via an empirically determined heuristic. The numerical experiments were performed on a

laptop with a Intel Core i5-8350U CPU and 7.7 GiB of memory; the code was written in

Fortran and compiled with gfortran with standard optimization flags. The results are

reported in Tables 1, 2, and 3.

To put the run time of the algorithm in context, we additionally perform a time comparison

to the Fast Fourier Transform (FFT), which also has complexity O(n log n). Specifically, we

compare the run time of the algorithm of §3 on random data using precomputed

exponentials with the run time of an FFT implementation from FFTPACK [20] on random

data of the same length using precomputed exponentials. We report these timings in Table 4;

we find that the FFT is roughly 5-10 times faster than our implementation of the algorithm

of §3; we remark that no significant effort was made to optimize our implementation, and

that it may be possible to improve the run time by vectorization.

5.2. Computing nodes and weights.

The algorithm of §3 is described under the assumption that nodes t1, … , tm and weights w1,

… , wm are given such that

GIMBUTAS et al. Page 16

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

1
r − ∑

j = 1

m
wje−rtj ≤ ε for r ∈ [δ(b − a), b − a], (33)

where ε > 0 and δ > 0 are fixed parameters. As in the proof of Lemma 4.5 we note that by

rescaling r it suffices to find nodes and weights satisfying

1
r − ∑

j = 1

m
wje−rtj ≤ ε for r ∈ [1, δ−1] . (34)

Indeed, if the nodes t1, … , tm and weights w1, … , wm satisfy (34), then the nodes t1/(b − a),

… , tm/(b − a) and weights w1/(b − a), … , wm/(b − a) will satisfy (33). Thus, in order to

implement the algorithm of §3 it suffices to tabulate nodes and weights that are valid for r ∈
[1, M] for various values of M. In the implementation used in the numerical experiments in

this paper, we tabulated nodes and weights valid for r ∈ [1, M] for

M = [1, 4k] for k = 1, …, 10 .

For example, in Tables 5 and 6 we have listed m = 33 nodes t1, … , t33 and weights w1, … ,

w33 such that

1
r − ∑

j = 1

33
wje−rtj ≤ 10−15,

for all r ∈ [1, 1024].

The nodes and weights satisfying (34) can be computed by using a procedure for generating

generalized Gaussian quadratures for Chebyshev systems together with the proof of Lemma

4.4. Indeed, Lemma 4.4 is constructive with the exception of the step that invokes Lemma

4.2 of Kreĭn. The procedure described in [4] is a constructive version of Lemma 4.2: given a

Chebyshev system of functions, it generates the corresponding quadrature nodes and

weights. We remark that generalized Gaussian quadrature generation codes are a powerful

tools for numerical computation with a wide range of applications. The quadrature

generation code used in this paper was an optimized version of [4] recently developed by

Serkh for [19].

Acknowledgements.

The authors would like to thank Jeremy Hoskins for many useful discussions. Certain commercial equipment is
identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it imply that equipment identified is necessarily the
best available for the purpose.

N.F.M. was supported in part by NSF DMS-1903015.

V.R. was supported in part by AFOSR FA9550-16-1-0175 and ONR N00014-14-1-0797.

GIMBUTAS et al. Page 17

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

References

[1]. Beylkin Gregory and Monzón Lucas, Approximation by exponential sums revisited, Appl.
Comput. Harmon. Anal 28 (2010), no. 2, 131–149. MR2595881

[2]. Beylkin Gregory and Monzón Lucas, On approximation of functions by exponential sums, Appl.
Comput. Harmon. Anal 19 (2005), no. 1, 17–48. MR2147060

[3]. Braess Dietrich, Nonlinear approximation theory, Springer Series in Computational Mathematics,
vol. 7, Springer-Verlag, Berlin, 1986. MR866667

[4]. Bremer James, Gimbutas Zydrunas, and Rokhlin Vladimir, A nonlinear optimization procedure for
generalized Gaussian quadratures, SIAM J. Sci. Comput 32 (2010), no. 4, 1761–1788.
MR2671296

[5]. Dahlquist Germund and Björck Åke, Numerical methods, Dover Publications, Inc., Mineola, NY,
2003, Translated from the Swedish by Ned Anderson, Reprint of the 1974 English translation.
MR1978058

[6]. Dutt A, Gu M, and Rokhlin V, Fast algorithms for polynomial interpolation, integration, and
differentiation, SIAM J. Numer. Anal 33 (1996), no. 5, 1689–1711. MR1411845

[7]. Fong William and Darve Eric, The black-box fast multipole method, J. Comput. Phys 228 (2009),
no. 23, 8712–8725. MR2558773

[8]. Gauss CF. Methodus nova integralium valores per approximationen inveniendi, Werke, 3 (1866),
1630–196.

[9]. Greengard Leslie, The rapid evaluation of potential fields in particle systems, ACM Distinguished
Dissertations, MIT Press, Cambridge, MA, 1988. MR936632

[10]. Greengard Leslie and Rokhlin Vladimir, A new version of the fast multipole method for the
Laplace equation in three dimensions, Acta numerica, 1997, Acta Numer., vol. 6, Cambridge
Univ. Press, Cambridge, 1997, pp. 229–269. MR1489257

[11]. Jakob-Chien Rüdiger and Alpert Bradley K., A fast spherical filter with uniform resolution,
Journal of Computational Physics 136 (1997), no. 2, 580–584.

[12]. Karlin Samuel and Studden William J., Tchebycheff systems: With applications in analysis and
statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons,
New York-London-Sydney, 1966. MR0204922

[13]. Kreĭn MG, The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of
integrals and their further development, Amer. Math. Soc. Transl. (2) 12 (1959), 1–121.
MR0113106

[14]. Ma J, Rokhlin V, and Wandzura S, Generalized Gaussian quadrature rules for systems of arbitrary
functions, SIAM J. Numer. Anal 33 (1996), no. 3, 971–996. MR1393898

[15]. Martinsson Per-Gunnar, Rokhlin Vladimir, and Tygert Mark, On interpolation and integration in
finite-dimensional spaces of bounded functions, Commun. Appl. Math. Comput. Sci 1 (2006),
133–142. MR2244272

[16]. Nabors K, Korsmeyer FT, Leighton FT, and White J, Preconditioned, adaptive, multipole-
accelerated iterative methods for three-dimensional first-kind integral equations of potential
theory, SIAM J. Sci. Comput 15 (1994), no. 3, 713–735, Iterative methods in numerical linear
algebra (Copper Mountain Resort, CO, 1992). MR1273161

[17]. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.22 of
2019-03-15. Olver FWJ, Olde Daalhuis AB, Lozier DW, Schneider BI, Boisvert RF, Clark CW,
Miller BR and Saunders BV, eds

[18]. Rokhlin V, A fast algorithm for the discrete Laplace transformation, J. Complexity 4 (1988), no.
1, 12–32. MR939693

[19]. Serkh Kirill, On the Solution of Elliptic Partial Differential Equations on Regions with Corners,
ProQuest LLC, Ann Arbor, MI, 2016, Thesis (Ph.D.)–Yale University. MR3564124

[20]. Swarztrauber PN, Vectorizing the FFTs, Parallel Computations (Rodrigue G, ed.), Academic
Press, 1982, pp. 51–83.

[21]. Tygert M. Analogues for Bessel Functions of the Christoffel-Darboux Identity. Yale Tech. Rep
(2016).

GIMBUTAS et al. Page 18

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://dlmf.nist.gov/

[22]. Yarvin Norman and Rokhlin Vladimir, An improved fast multipole algorithm for potential fields
on the line, SIAM J. Numer. Anal 36 (1999), no. 2, 629–666. MR1675269

[23]. Yarvin N and Rokhlin V, Generalized Gaussian quadratures and singular value decompositions of
integral operators, SIAM J. Sci. Comput 20 (1998), no. 2, 699–718. MR1642612

GIMBUTAS et al. Page 19

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

GIMBUTAS et al. Page 20

Table 1.

Key for column labels of Tables 2, 3, and 4.

Label Definition

n number of points

tw time of algorithm of §3 without precomputation in seconds

tp time of precomputing exponentials for algorithm of §3 in seconds

tu time of algorithm of §3 using precomputed exponentials in seconds

td time of direct evaluation in seconds

ϵr maximum absolute relative difference defined in (32)

tf time of FFT using precomputed exponentials (for time comparison only)

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

GIMBUTAS et al. Page 21

Table 2.

Numerical results for uniformly random points in [1, 10].

n tw tp tu td ϵr

1000 0.74 E −03 0.18 E −02 0.93 E −04 0.66 E −03 0.19 E −14

2000 0.19 E −02 0.31 E −02 0.19 E −03 0.25 E −02 0.30 E −14

4000 0.42 E −02 0.61 E −02 0.43 E −03 0.10 E −01 0.52 E −14

8000 0.85 E −02 0.10 E −01 0.89 E −03 0.37 E −01 0.72 E −14

16000 0.18 E −01 0.25 E −01 0.18 E −02 0.14 E +00 0.92 E −14

32000 0.38 E −01 0.49 E −01 0.37 E −02 0.59 E +00 0.19 E −13

64000 0.84 E −01 0.98 E −01 0.78 E −02 0.23 E +01 0.21 E −13

128000 0.16E +00 0.19 E +00 0.18 E −01 0.95 E +01 0.35 E −13

256000 0.37 E +00 0.53 E +00 0.34 E −01 0.40 E +02 0.59 E −13

512000 0.75 E +00 0.10 E +01 0.71 E −01 0.19 E +03 0.88 E −13

1024000 0.17 E +01 0.23 E +01 0.15 E +00 0.81 E +03 0.14 E −12

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

GIMBUTAS et al. Page 22

Table 3.

Numerical results for Chebyshev nodes on [−1, 1].

n tw tp tu td ϵr

1000 0.54 E −03 0.12 E −02 0.74 E −04 0.60 E −03 0.11 E −14

2000 0.15 E −02 0.26 E −02 0.15 E −03 0.24 E −02 0.14 E −14

4000 0.38 E −02 0.51 E −02 0.37 E −03 0.99 E −02 0.39 E −14

8000 0.83 E −02 0.10 E −01 0.85 E −03 0.38 E −01 0.35 E −14

16000 0.19 E −01 0.23 E −01 0.17 E −02 0.14 E +00 0.58 E −14

32000 0.41 E −01 0.48 E −01 0.37 E −02 0.62 E +00 0.89 E −14

64000 0.98 E −01 0.90 E −01 0.82 E −02 0.24 E +01 0.12 E −13

128000 0.22 E +00 0.19 E +00 0.23 E −01 0.10 E +02 0.19 E −13

256000 0.44 E +00 0.47 E +00 0.32 E −01 0.40 E +02 0.26 E −13

512000 0.84 E +00 0.94 E +00 0.73 E −01 0.19 E +03 0.52 E −13

1024000 0.19 E +01 0.19 E +01 0.14 E +00 0.84 E +03 0.64 E −13

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

GIMBUTAS et al. Page 23

Table 4.

Time comparison with FFT.

n tu tf

1000 0.91 E − 04 0.16 E − 04

2000 0.28 E − 03 0.37 E − 04

4000 0.41 E − 03 0.44 E − 04

8000 0.93 E − 03 0.85 E − 04

16000 0.18 E − 02 0.24 E − 03

32000 0.38 E − 02 0.41 E − 03

64000 0.81 E − 02 0.88 E − 03

128000 0.18 E − 01 0.19 E − 02

256000 0.38 E − 01 0.59 E − 02

512000 0.71 E − 01 0.12 E − 01

1024000 0.14 E + 00 0.25 E − 01

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

GIMBUTAS et al. Page 24

Table 5.

A list of 33 nodes t1, … , t33.

0.2273983006898589D−03, 0.1206524521003404D−02, 0.3003171636661616D−02,

0.5681878572654425D−02, 0.9344657316017281D−02, 0.1414265501822061D−01,

0.2029260691940998D−01, 0.2809891134697047D−01, 0.3798133147119762D−01,

0.5050795277167632D−01, 0.6643372693847560D−01, 0.8674681067847460D−01,

0.1127269233505314D+00, 0.1460210820252656D+00, 0.1887424688689547D+00,

0.2435986924712581D+00, 0.3140569015209982D+00, 0.4045552087678740D+00,

0.5207726670656921D+00, 0.6699737362118449D+00, 0.8614482005965975D+00,

0.1107074709906516D+01, 0.1422047253849542D+01, 0.1825822499573290D+01,

0.2343379511131976D+01, 0.3006948272874077D+01, 0.3858496861353812D+01,

0.4953559345813267D+01, 0.6367677940017810D+01, 0.8208553424367139D+01,

0.1064261195532074D+02, 0.1396688222191633D+02, 0.1889449184151398D+02

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

GIMBUTAS et al. Page 25

Table 6.

A list of 33 weights w1, …, w33.

0.5845245927410881D−03, 0.1379782337905140D−02, 0.2224121503815854D−02,

0.3150105276431181D−02, 0.4200370923383030D−02, 0.5431379037435571D−02,

0.6918794756934398D−02, 0.8763225538492927D−02, 0.1109565843047196D−01,

0.1408264766413004D−01, 0.1793263393523491D−01, 0.2290557147478609D−01,

0.2932752351846237D−01, 0.3761087060298772D−01,0.4828044150885936D−01,

0.6200636888239893D−01, 0.7964527252809662D−01, 0.1022921587521237D+00,

0.1313462348178323D+00, 0.1685948994092301D+00, 0.2163218289369589D+00,

0.2774479391081561D+00, 0.3557192797195578D+00, 0.4559662159666857D+00,

0.5844792718191478D+00, 0.7495918095861060D+00, 0.9626599456939077D+00,

0.1239869481076760D+01, 0.1605927580173348D+01, 0.2102583514906888D+01,

0.2811829220697454D+01, 0.3937959064316012D+01, 0.6294697335695096D+01

Appl Comput Harmon Anal. Author manuscript; available in PMC 2020 October 20.

	Abstract
	Introduction and motivation
	Introduction.
	Relation to past work.
	Motivation.

	Main result
	Main result.

	Algorithm
	High level summary.
	Informal description.
	Detailed description.

	Table T1
	Proof of Main Result
	Organization.
	Preliminaries.
	Technical Lemmas.
	Completing the proof of Theorem 2.1.
	Proof of Corollary 2.1.

	Numerical results and implementation details
	Numerical results.
	Computing nodes and weights.

	References
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.

