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a b s t r a c t 

The world has been facing the biggest virological invasion in the form of Covid-19 pandemic since the 

beginning of the year 2020. In this paper, we consider a deterministic epidemic model of four compart- 

ments based on the health status of the populations of a given country to capture the disease progres- 

sion. A stochastic extension of the deterministic model is further considered to capture the uncertainty 

or variation observed in the disease transmissibility. In the case of a deterministic system, the disease- 

free equilibrium will be globally asymptotically stable if the basic reproduction number is less than unity, 

otherwise, the disease persists. Using Lyapunov functional methods, we prove that the infected popula- 

tion of the stochastic system tends to zero exponentially almost surely if the basic reproduction number 

is less than unity. The stochastic system has no interior equilibrium, however, its asymptotic solution is 

shown to fluctuate around the endemic equilibrium of the deterministic system under some parametric 

restrictions, implying that the infection persists. A case study with the Covid-19 epidemic data of Spain 

is presented and various analytical results have been demonstrated. The epidemic curve in Spain clearly 

shows two waves of infection. The first wave was observed during March-April and the second wave 

started in the middle of July and not completed yet. A real-time reproduction number has been given to 

illustrate the epidemiological status of Spain throughout the study period. Estimated cumulative numbers 

of confirmed and death cases are 1,613,626 and 42,899, respectively, with case fatality rate 2.66% till the 

deadly virus is eliminated from Spain. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The world never thought that it would witness the worst catas- 

rophe in the form of a pandemic viral disease when the first case 

f Covid -19 was detected in Wuhan, China, in December 2019 

1] . This highly infectious disease spread in 216 countries or ter- 

itories within a short span of time, making it the largest pan- 

emic in the history of infectious disease. This virus predominantly 

nfects lungs as the spike protein (S-protein) on the cell surface 

f SARS-CoV-2 has high affinity to ACE2 (angiotensin converting 

nzyme 2) receptor, which is highly abundant on lung epithelial 

ells of human [2,3] . This is the third attack of coronavirus in the

wenty-first century after the SARS CoV-1 in 20 02–20 03 and MERS 

n 2012. However, there are significant differences between the 
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ARS CoV-2 infection and previous two covid infection in terms 

f total infected & death cases and terms of affected countries, 

hough SARS-CoV-1 and SRAS-CoV-2 have more than 99% similar- 

ty in their genome sequence [4] . Understanding the severity of 

019-nCov, the World Health Organization declared a public health 

mergency on January 30, 2020, to alert the whole world and to 

et ready to fight against this highly infectious unusual pneumo- 

ia [5] . The WHO cry, however, was in vain and the virus spread 

n 114 countries with 118,0 0 0 positive cases and 4291 casualties as 

f March 11. Assessing the “alarming levels of spread and sever- 

ty, and by the alarming levels of inaction”, the Director General 

f WHO on March 11 announced Covid-19 outbreak as pandemic 

6] . As of October 10, 2020, Covid-19 infection has spread in 216 

ountries/territories with cumulative confirmed cases more than 

6 million and death cases over 1.05 million [1] . 

Covid-19 infection spreads from human-to-human through con- 

act and inhaling the droplets containing the virus [5] . In ab- 

ence of specific vaccine and drugs, human-to-human transmis- 

ion of this virus can be reduced and prevented through non- 

harmaceutical interventions (NPIs), which include using of musk, 

https://doi.org/10.1016/j.chaos.2020.110381
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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aintaining individual hygiene & safe distancing, lockdown, etc. 

7,8] . Such control measures can reduce the epidemic load by re- 

ucing the social mixing and can delay in achieving the epidemic 

eak [9,10] . 

Mathematical model of infectious disease is central in epidemi- 

logy and might play an important role in forecasting the epidemi- 

logical burden of infectious disease [11] . A realistic model can 

redict the expected numbers of individuals to be infected and 

ied during an epidemic [12] . It is also possible to predict time 

f attaining an epidemic peak and the expected cases at this peak. 

uch predictions help the healthcare providers and the government 

n resource planning and taking decision regarding control mea- 

ures [13] . In the ongoing Covid-19 pandemic, countries like UK 

nd USA have used mathematical models like a decision tool. For 

xample, on the basis of mathematical model’s forecast of Imperial 

ollege, London, it was predicted that the UK health care system 

ill be jeopardized with Covid-19 cases, and the country might 

ave 50 0,0 0 0 deaths, and the UK Government after that put strict 

ovement restriction [14] . The same epidemic model alerts USA by 

rojecting that the country might face 2.2 million deaths if no con- 

rolling measures are imposed. Based on this mathematical result, 

SA implemented new guidelines for maintaining social distance 

14] . 

Lots of mathematical models have been developed to give early 

tage epidemic predictions for the ongoing Covid-19 pandemic 

9,10] , [15–24] . All these models are deterministic type and do not 

onsider uncertainty and variations in the parameters though it is 

bvious in the case of a growing epidemic. In particular, it has 

een shown that uncertainty is certain in the disease transmis- 

ion rate of Covid-19 and there are large variation in its range 

25] . Taking this into account, some stochastic models have been 

roposed for Covid-19 epidemic to address various epidemiologi- 

al issues based on the simulation results [26–30] . In this work, we 

onsider a deterministic SLIR (susceptible → latent → infected → 

ecovered) epidemic model to encapsulate the Covid-19 epidemic 

f a given region and then extend this deterministic model to in- 

orporate the stochasticity through parameter perturbation tech- 

ique. Analysing both the deterministic and stochastic models, we 

ive the disease extinction and persistence condition with respect 

o the basic reproduction number. We also verify our analytical re- 

ults by performing a case study. 

The remaining portion of this paper is arranged in the follow- 

ng sequence. The immediate next section describes the determin- 

stic and stochastic model for Covid-19. Analysis of the determinis- 

ic model is presented in Section 3 and the same for the stochastic 

ystem is presented in the next section. A case study is performed 

ith the Covid-19 epidemic data of Spain in Section 5 . The paper 

nds with a discussion in Section 6 . 

. Mathematical model 

To construct a minimal model for Covid-19 disease transmission 

odel, we divided the total population at any time t, N(t) , of a 

eographical region into four compartments depending on the dis- 

ase status of its population. All population, irrespective of age and 

ex, are assumed to be members of the susceptible class S. Suscep- 

ible population after coming into effective contact of infectious in- 

ividuals I join the latent class L, whose individuals carry the virus 

ut not infectious. Individuals of latent class on an average spent 
1 
ω units of time in L class and then join infectious class I. Individu- 

ls of I class remain infectious for 1 
γ units of time and then either 

ecovers at a rate γ or die due to covid infection at a rate μ. Thus,

t any arbitrary time t, N(t) = S(t) + L (t) + I(t) + R (t) . We further

ssume a death class D to represent the disease related death. The 

eason for considering this class is that death data is available for 

ovid-19 pandemic and can be used to fit the model parameters. 
2 
his rate equation can also be used in the prediction of case fa- 

ality. If � be the constant input in susceptible class and δ is the 

atural death rate then the growth equation of each compartment 

an be represented by the following coupled nonlinear differential 

quations: 

dS 
dt 

= � − λSI 
N 

− δS, 

dL 
dt 

= 

λSI 
N 

− (ω + δ) L, 
dI 
dt 

= ωL − (γ + μ + δ) I, 
dR 
dt 

= γ I − δR, 

dD 
dt 

= μI. 

(1) 

 very popular and effective technique to incorporate stochasticity 

nto a deterministic model is parametric perturbation method [31–

5] . Following parametric perturbation, the force of infection, λ, is 

eplaced by 

→ λ + σ dB (t) , (2) 

here B (t) is a standard independent Brownian motion and σ is 

he intensity of the noise. Thus, we extend the deterministic model 

1) by incorporating white noise in the disease transmission term 

as 

d S = 

(
� − λSI 

N 
− δS 

)
d t − σ SI 

N 
d B (t) , 

dL = 

(
λSI 
N 

− (ω + δ) L 
)
dt + 

σ SI 
N 

dB (t) , 

d I = ( ωL − (γ + μ + δ) I ) d t, 
dR = ( γ I − δR ) dt, 
dD = μIdt. 

(3) 

t is worth mentioning that the system (1) and (3) will be identical 

hen σ = 0 . Both the systems (1) and (3) will be analyzed with

he initial conditions 

(0) > 0 , L (0) ≥ 0 , I(0) ≥ 0 , R (0) = 0 , D (0) = 0 . (4)

n the following, we always consider that the standard Brownian 

otion is defined on a complete probability space (Ω, F ; P ) with 

 filtration { F t } t∈ R + satisfying the usual conditions (i.e., it is right 

ontinuous and increasing while F 0 contains all P -null sets). 

. Analysis of the deterministic model 

From the biological point of view, we first show that the solu- 

ions of the system (1) exist uniquely, remain positive and bounded 

henever starts with positive initial values. 

roposition 3.1. For the initial conditions specified in (4) , solutions 

f the system (1) are nonnegative and uniformly bounded in 

= 

{
(S(t) , L (t) , I(t) , R (t)) ∈ R 

4 
+ 

0 < S(t) + L (t) + I(t) + R (t) ≤ �

δ

}
. (5) 

roof. By adding the equations of system (1) , we get 

d 
dt 

[ S(t) + L (t) + I(t) + R (t)] + δ[ S(t) + L (t) + I(t) + R (t)] 
= � − μI(t) ≤ �

⇒ lim t→∞ 

[ S(t) + L (t) + I(t) + R (t)] ≤ �
δ
. 

(6) 

ence all the solutions of the system (1) are ultimately bounded 

n the region 	. The following lemma due to Nagumo [36] will 

e used to show that all solutions of the system (1) with initial 

onditions (4) are positive for all t ≥ 0 . 

emma 3.1. Consider a system 

˙ X = F (X ) , where F (X ) = 

 F 1 (X ) , F 2 (X ) , . . . , F n (X )] , X ∈ R 

n , with initial condition X(0) =
 0 ∈ R 

n + . If for X i = 0 , i = 1 , 2 , . . . , n, F i (X ) | X i =0 ≥ 0 , then any so-

ution of ˙ X = F (X ) with given initial condition, say, X(t) = X(t; X 0 )

ill be positive, i.e., X(t) ∈ R 

n + . 
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Define X(t) = (S(t ) , L (t ) , I(t ) , R (t )) . It is straight forward to

how that 

dS 

dt 

)
X=0 

= �, 

(
dL 

dt 

)
X=0 

= 

(
dI 

dt 

)
X=0 

= 

(
dR 

dt 

)
X=0 

= 0 . (7) 

emma 3.1 then gives that all solutions of the system (1) starting 

ith the initial conditions (4) are positive. Again, 

dS 
dt 

| S=0 = � > 0 , dL 
dt 

| L =0 = 

λSI 
N 

> 0 , dI 
dt 

| I=0 = ωL > 0 , 

dR 
dt 

| R =0 = γ I > 0 . 
(8) 

hus, following [37] , 	 is an invariant set of R 

4 + . Therefore, all so-

utions of the system (1) with initial conditions (4) are positively 

nvariant and ultimately bounded in 	. �

.1. Basic reproduction number 

We determine the basic reproduction number (BRN), R 0 , asso- 

iated with the deterministic system (1) using the “next genera- 

ion matrix” approach [38,39] . The infection subsystem of system 

1) that describes the production of new infections and changes in 

he states capable of creating new infections in a completely sus- 

eptible scenario is given by 

dL 
dt 

= 

λSI 
N 

− (ω + δ) L, 

dI 
dt 

= ωL − (γ + δ + μ) I. 
(9) 

he transmission matrix and transition matrix associated with this 

nfection subsystem (9) are, respectively, given by T and �, where 

 = −
(

0 λ
0 0 

)
and � = 

(
−(ω + δ) 0 

ω −(γ + δ + μ) 

)
. 

(10) 

hen the basic reproduction number is given by 

 0 = ρ(T�−1 ) = 

λω 

(ω + δ)(γ + δ + μ) 
. (11) 

.2. Equilibrium points 

The system (1) has two equilibrium points, namely the disease- 

ree equilibrium E 1 
(

�
δ

, 0 , 0 , 0 
)
, which always exists and the en- 

emic equilibrium denoted by E ∗(S ∗, L ∗, I ∗, R ∗) . Define 

∗ = 

λI ∗

N 

∗ (12) 

o that the equilibrium population densities of the system (1) at 

 

∗ can be expressed as 

S ∗ = 

�
θ ∗+ δ , L ∗ = 

�θ ∗
(θ ∗+ δ)(ω+ δ) 

, I ∗ = 

ω�θ ∗
(γ + δ+ μ)(θ ∗+ δ)(ω+ δ) 

, 

R 

∗ = 

�ωγ θ ∗

δ(γ + δ)(ω+ δ)(θ ∗+ δ) 
. 

(13) 

hen (12) gives 

∗
[ 
(γ + δ + μ) + ω + 

γω 

δ

] 
+ (ω + δ)(γ + μ + δ)(1 − R 0 ) = 0 , 

(14) 

here R 0 is given by (11) . Clearly, we would get a unique positive
∗ and eventually a unique interior equilibrium E ∗ of the system 

1) if R 0 > 1 . 

In the following, we prove the stability results of different equi- 

ibrium points. 
3 
.2.1. Stability analysis 

heorem 3.1. The disease-free equilibrium E 1 is globally asymptoti- 

ally stable if R 0 ≤ 1 . 

roof. Consider the Lyapunov function given by 

 1 = 

ω 

(ω + δ)(γ + δ + μ) 
L + 

1 

γ + δ + μ
I. (15) 

ifferentiating V 1 along the solutions of (1) , we have 

˙ V 1 = 

ω 
(ω+ δ)(γ + δ+ μ) 

˙ L + 

1 
γ + δ+ μ ˙ I 

= 

ω 
(ω+ δ)(γ + δ+ μ) 

[
λSI 
N 

− (ω + δ) L 
]

+ 

1 
γ + δ+ μ [ ωL − (γ + δ) I] . 

oting that S(t) ≤ S(t) + L (t) + I(t) + R (t) = N(t) for all t ≥ 0 , 

˙ 
 1 ≤ ω 

(ω + δ)(γ + δ + μ) 
[ λI − (ω + δ) L ] 

+ 

1 

γ + δ + μ
[ ωL − (γ + δ + μ) I] = [ R 0 − 1] I. 

hus, ˙ V 1 ≤ 0 if R 0 ≤ 1 with equality occurring at the disease 

ree equilibrium E 1 . Therefore, using LaSalle’s invariance prin- 

iple [40] , one obtains (L (t) , I(t)) → 0 as t → ∞ . It gives that

im sup t→∞ 

I(t) = 0 . Therefore, for any sufficiently small ε > 0 , 

here exists a positive constant M > 0 such that lim sup t→∞ 

I(t) ≤ ε
or all t > M. From (1) , one can have 

dR 

dt 
≤ γ ε − δR ⇒ lim sup 

t→∞ 

R (t) ≤ γ ε

δ
. (16) 

etting ε → 0 , we obtain lim sup t→∞ 

R (t) ≤ 0 . Again, using the fact 

hat lim inf t→∞ 

I(t) = 0 , one can have lim inf t→∞ 

R (t) ≥ 0 . Thus, 

e get lim t→∞ 

R (t) = 0 . In a similar manner, one can show that

im t→∞ 

S(t) = 

�
δ

. Therefore, all solutions of the system (1) with 

nitial conditions in 	 eventually converge to the disease-free equi- 

ibrium E 1 if R 0 ≤ 1 . Hence the theorem is proven. �

heorem 3.2. If exists, then the endemic equilibrium E ∗ is globally 

symptotically stable. 

roof. Define κ1 = ω + δ, κ2 = γ + δ + μ and consider the follow- 

ng Lyapunov function 

 2 = S − S ∗ − S ∗ ln 

(
S 

S ∗

)
+ L − L ∗ − L ∗ ln 

(
L 

L ∗

)

+ 

κ1 

ω 

[ 
I − I ∗ − I ∗ ln 

(
I 

I ∗

)] 
. (17) 

ifferentiating (17) along the solutions of (1) , we have 

˙ V 2 = 

(
1 − S ∗

S 

)
˙ S + 

(
1 − L ∗

L 

)
˙ L + 

κ1 

ω 

(
1 − I ∗

I 

)
˙ I 

= 

(
1 − S ∗

S 

)(
� − λSI 

N 
− δS 

)
+ 

(
1 − L ∗

L 

)(
λSI 
N 

− (ω + δ) L 
)

+ 

κ1 

ω 

(
1 − I ∗

I 

)
[ ωL − (γ + δ + μ) I] 

= �
(
1 − S ∗

S 

)
− δS 

(
1 − S ∗

S 

)
+ 

λS ∗I 
N 

+ 

κ1 κ2 

ω I ∗ + κ1 L 
∗

− κ1 κ2 

ω I − λSIL ∗
LN 

− κ1 I 
∗L 

I 
. 

(18) 

t E ∗, one have � = 

λS ∗I ∗
N ∗ + δS ∗, κ1 = 

λS ∗I ∗
N ∗L ∗ , κ2 = 

ωL ∗
I ∗ . The above

xpression then becomes 

˙ V 2 = δS ∗
(
1 − S ∗

S 

)
− δ

(
1 − S ∗

S 

)
+ 3 

λS ∗I ∗
N ∗ + 

λS ∗I 
N 

− λ(S ∗) 2 I ∗
N ∗S 

− λS ∗I 
N ∗ − λSIL ∗

LN 
− λS ∗(I ∗) 2 L 

N ∗L ∗I 

= − δ
S 
(S − S ∗) 2 + 

λS ∗I ∗
N ∗

[
4 − S ∗

S 
− SIL ∗N ∗

S ∗I ∗NL 
− LI ∗

IL ∗ − N 
N ∗

]
+ λS ∗N 

(
I 
N 

− I ∗
N ∗

)(
1 
N 

− 1 
N ∗

)
. 

(19) 

sing the fact that A.M ≥ G.M, one can write 4 < 

S ∗
S + 

SIL ∗N ∗
S ∗I ∗NL + 

LI ∗
IL ∗ +

N 
∗ . Define 
N 



D. Adak, A. Majumder and N. Bairagi Chaos, Solitons and Fractals 142 (2021) 110381 

T  

I  

N  

g

C

c  

a

t

g  

o  

a  

l

a

a

F  

i  

w

s  

H

R

t

t

m

4

T  

t  

s  

a  

(

P

(

(  

(  

p  

b

(  

N

τ

H

τ
u

T

P

T

P

N  

(  

d

V  

W

e

O  

p

s

d

L  

m

d  

I  

t

N

W

t

o

o  

m

�

w  

∞
r

f (S, L, I, R ) = 

I 

S + L + I + R 

= 

I 

N 

and 

g(S, L, I, R ) = 

1 

S + L + I + R 

= 

1 

N 

. (20) 

hus, f (S, L, I ∗, R ) = 

I ∗
S+ L + I ∗+ R . It should be noted that whenever

 = I ∗ holds then S = S ∗, L = L ∗ and R = R ∗, giving rise to N =
 

∗. Therefore, f (S, L, I ∗, R ) = f (S ∗, L ∗, I ∗, R ∗) . Similarly, g(S, L, I ∗, R ) =
(S ∗, L ∗, I ∗, R ∗) . Thus, from (19) , we get 

˙ V 2 ≤ λS ∗N 

(
I 
N 

− I ∗
N ∗

)(
1 
N 

− 1 
N ∗

)
= λS ∗N[ f (I, S, L, R ) − f (I ∗, S ∗, L ∗, R 

∗)] 

× [ g(I, S, L, R ) − g(I ∗, S ∗, L ∗, R 

∗)] . 

(21) 

learly, f is monotone increasing in I, but g is monotone de- 

reasing in I . So, if I > I ∗ then [ f (I, S, L, R ) − f (I ∗, S ∗, L ∗, R ∗)] > 0

nd [ g(I, S, L, R ) − g(I ∗, S ∗, L ∗, R ∗)] < 0 . However, if I < I ∗

hen [ f (I, S, L, R ) − f (I ∗, S ∗, L ∗, R ∗)] < 0 and [ g(I, S, L, R ) −
(I ∗, S ∗, L ∗, R ∗)] > 0 . In any case, ˙ V 2 ≤ 0 . Moreover, the equality

ccurs when S = S ∗, L = L ∗, I = I ∗. Therefore, by LaSalle’s invari-

nce principle [40] , (S(t) , L (t) , I(t)) → (S ∗, L ∗, I ∗) as t → ∞ . Hence

im sup t→∞ 

I(t) = I ∗. Thus, for sufficiently small ε > 0 , there exists 

 positive constant M 1 > 0 such that lim sup t→∞ 

I(t) ≤ I ∗ + ε for 

ll t > M 1 . Then, from the fourth equation of (1) , we get 

dR 

dt 
≤ γ (I ∗ + ε) − δR ⇒ lim sup 

t→∞ 

R (t) ≤ γ (I ∗ + ε) 

δ
. 

or ε → 0 , we then have lim sup t→∞ 

R (t) ≤ γ I ∗
δ

= R ∗. Similarly, us-

ng lim inf t→∞ 

R (t) ≥ R ∗, we obtain lim t→∞ 

R (t) = R ∗. It follows,

henever the endemic equilibrium E ∗ exists, all solutions of the 

ystem (1) with initial conditions in 	 converge to E ∗ as t → ∞ .

ence the theorem is proven. �

emark 3.1. It is to be mentioned that the considered system has 

wo equilibrium points and stability of one hinders the stability of 

he other. As both the equilibrium points is globally stable, they 

ust be locally stable under the same condition. 

. Analysis of the stochastic model 

heorem 4.1. For any initial values (S(0) , L (0) , I(0) , R (0)) ∈ R 

4 + ,
here exists a unique global solution (S(t) , L (t) , I(t) , R (t)) ∈ R 

4 + of the

ystem (3) for all t ≥ 0 and the solution will remain in R 

4 + with prob-

bility 1, i.e., (S(t) , L (t) , I(t) , R (t)) ∈ R 

4 + for all t ≥ 0 almost surely

a.s). 

roof. Since the coefficients of the equations of system 

3) are locally Lipscitz continuous for any initial value 

S(0) , L (0) , I(0) , R (0)) ∈ R 

4 + , there is a unique local solution

S(t) , L (t) , I(t) , R (t)) ∈ R 

4 + for all t ∈ [0 , τ
′ 
) , where τ

′ 
is the ex-

losion time [48] . We now prove τ
′ = ∞ a.s., so that the solution

ecomes global. 

Let ν0 > 0 be sufficiently large for every coordinate 

S(0) , L (0) , I(0) , R (0)) ∈ R 

4 + lying within the interval 

[ 
1 
ν0 

, ν0 

] 
.

ow, for every integer ν > ν0 , we define the stopping time 

ν = inf 

{ 

t ∈ [0 , τ
′ 
) : x (t) / ∈ 

(
1 

ν
, ν

)
or y (t) / ∈ 

(
1 

ν
, ν

)} 

. (22) 

ere τν is increasing as ν → ∞ . Set lim ν→∞ 

τν = τ∞ 

, when τ∞ 

≤
′ 

a.s. We show that τ∞ 

= ∞ by the method of contradiction. Let 

s assume that our claim is not true and there exists two constants 

 > 0 and ε ∈ (0 , 1) such that 

 (τ∞ 

≤ T ) > ε. (23) 

hus, there exists an integer ν1 ≥ ν0 such that 

 (τν ≤ T ) ≥ ε ∀ ν ≥ ν1 . (24) 
4 
oticing that u + 1 − ln u > 0 for all u > 0 and

S(t) , L (t) , I(t) , R (t)) ∈ R 

4 + , we define the following positive

efinite function 

 = (S + 1 − ln S) + (L + 1 − ln L ) + (I + 1 − ln I) + (R + 1 − ln R ) .

(25) 

e consider I(t) ≥ 1 and L (t) ≥ 1 when the endemic equilibrium 

xists. Differentiating V using Ito’s formula [48] , one can have 

dV = 

(
1 − 1 

S 

)
d S + 

1 
2 S 2 

(d S) 2 + 

(
1 − 1 

L 

)
d L + 

1 
2 L 2 

(d L ) 2 

+ 

(
1 − 1 

I 

)
d I + 

(
1 − 1 

R 

)
d R 

= 

(
1 − 1 

S 

)[(
� − λSI 

N 
− δS 

)
d t − σ SI 

N 
d B (t) 

]
+ 

σ 2 I 2 

2 N 2 
d t + 

(
1 − 1 

L 

)(
λSI 
N 

− (ω + δ) L 
)
d t 

+ 

(
1 − 1 

L 

)
σ SI 
N 

d B (t) + 

σ 2 I 2 

2 N 2 L 2 
d t 

+ 

(
1 − 1 

I 

)
[ ωL − (γ + δ + μ) I] dt + 

(
1 − 1 

R 

)
[ γ I − δR ] dt. 

(26) 

bserve that u ≤ 2(u + 1 − ln u ) for all u > 0 and as N is the total

opulation, we get I 2 ≤ N 

2 and I 2 ≤ N 

2 L 2 . Hence, the above expres- 

ion becomes 

V ≤ [� + 4 δ + ω + γ + μ + σ 2 ] dt + [2(S + 1 − ln S) 

+ 2 ω(L + 1 − ln L ) + 2 γ (I + 1 − ln I) 

+ 2(R + 1 − ln R )] dt + σdB (t) . 

et, �1 = � + 4 δ + ω + γ + μ + σ 2 , �2 = max { 2 , 2 ω, 2 γ } , �3 =
ax { �1 , �2 } . Hence, 

 V ≤ (�1 + �2 V ) d t + σd B (t) ≤ �3 (1 + V ) dt + σdB (t) . (27)

ntegrating both sides of (27) from 0 to t 1 ∧ τν for any t ≤ T and

aking expectation, we obtain 

E V (S(t 1 ∧ τν ) , L (t 1 ∧ τν ) , I(t 1 ∧ τν ) , R (t 1 ∧ τν )) 

≤ V (S(0) , L (0) , I(0) , R (0)) + �3 E 

∫ t 1 ∧ τν

0 (1 + V ) dt 
≤ V (S(0) , L (0) , I(0) , R (0)) + �3 t 1 

+ �3 E 

∫ t 1 ∧ τν

0 V dt 
≤ V (S(0) , L (0) , I(0) , R (0)) + �3 T 

+ �3 E 

∫ t 1 
0 V (S(τν ∧ t) , L (τν ∧ t) , I(τν ∧ t) , R (τν ∧ t)) dt 

≤ V (S(0) , L (0) , I(0) , R (0)) + �3 T 

+ �3 

∫ t 1 
0 E V (S(τν ∧ t) , L (τν ∧ t) , I(τν ∧ t) , R (τν ∧ t )) dt . 

(28) 

ow Gronwell’s inequality gives 

E V (S(t 1 ∧ τν ) , L (t 1 ∧ τν ) , I(t 1 ∧ τν ) , R (t 1 ∧ τν )) 

≤ (V (S(0) , L (0) , I(0) , R (0)) + �3 T ) e 
�3 (t 1 ∧ τν ) = �4 (say). 

(29) 

e set �ν = { τν ≤ T } for all ν ≥ ν1 . Following (24) , we 

hen get P (�ν ) ≥ ε for all α ∈ �ν . Clearly, at least one 

f S(τν , α) , L (τν, α) , I(τν, α) , R (τν, α) is equal to either ν
r 1 

ν . Hence V (S(τν ) , L (τν ) , I(τν ) , R (τν )) is no less than

in 

{
ν + 1 − ln ν, 1 

ν + 1 + ln ν
}

. From (23) and (29) , we obtain 

4 ≥ E [1 �ν
V (S(τν, α) , L (τν, α) , I(τν, α) , R (τν, α))] 

≥ ε
[ 
(ν + 1 − ln ν) ∧ 

(
1 

ν
+ 1 + ln ν

)] 
, (30) 

here 1 �ν is the indicator function of �ν . Letting ν → ∞ , one gets

 > �4 = ∞ , a contradiction. Hence τ∞ 

= ∞ a.s. Hence the theo- 

em is proven. �
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L 3) with positive initial value 

t

P kholder-Davis-Gundy inequality [48] and Theorem 4.1 , we get 

t θ/ 2 , 

(31) 

w < ε < 

θ
2 − 1 , applying Doob’s martingle inequality [48] and using (31) , 

w

P
C θ [(n + 1) ν] 

θ
2 

(nν) 1+ ε+ θ2 
≤ 2 

θ
2 M θC θ

(nν) 1+ ε . (32) 

T  �, we obtain 

(33) 

H

l (34) 

L

l

T onstant K(α) and a set �ν such that P (�ν ) ≥ 1 − ν and for t ≥ K(α) , 

α

0 (35) 

T

t ) 
dB (τ ) = 0 a.s. 

H

R opulation, we consider N(t) ≥ 1 for all t ≥ 0 . Hence, 

F

t

σ S(τ ) I(τ ) 

L (τ ) + (ω + δ) I(τ )] 
dB (τ ) = 0 a.s. 

T ) of system (3) tends to zero exponentially almost surely if R 0 < 1 , where 

R

P ) with positive initial value 

V (36) 

D

 (t) 

 S ≤ N] 

∵ I ≤ I + 

(
ω 

ω+ δ
)
L 
]
. 

I

(37) 
emma 4.1. Let (S(t) , L (t) , I(t) , R (t)) ∈ R 

4 + be a solution of system (

(S(0) , L (0) , I(0) , R (0)) ∈ R 

4 + . Then 

lim 

→∞ 

1 

t 

∫ t 

0 

σ S(τ ) I(τ ) 

ωL (τ ) + (ω + δ) I(τ ) 
dB (τ ) = 0 . 

roof. Let M(t) = 

∫ t 
0 

σ S(τ ) I(τ ) 
ωL (τ )+(ω+ δ) I(τ ) 

dB (τ ) and θ > 2 . Hence, by Bur

E 

[
sup 0 ≤τ≤t | M(τ ) | θ ] ≤ C θE 

[ ∫ t 
0 

σ 2 S 2 (τ ) I 2 (τ ) 
[ ωL (τ )+(ω+ δ) I(τ )] 2 

dτ
] θ/ 2 

≤ C θ t θ/ 2 
E 

[ 
sup 0 ≤τ≤t 

σ θ S θ (τ ) I θ (τ ) 
[ ωL (0)+(ω+ δ) I(0)] 2 

] 
≤ M θC θ

here M θ = 

σθ N 2 θ

[ ωL (0)+(ω+ δ) I(0)] 2 
, C θ = 

(
θθ+1 

2(θ−1) θ−1 

)θ/ 2 

. Then for any 0 

e get 

 

{
α : sup 

nν≤t≤(n +1) ν

| M(t) | θ > (nν) 1+ ε+ θ2 
}

≤ E (| M(n + 1) ν| θ ) 

4 

≤ M θ

hus, applying Borel-Cantelli lemma [48] on (32) , for almost all α ∈

ln | M(t) | θ
ln t 

≤
(
1 + ε + 

θ
2 

)
ln (nν) 

ln (nν) 
= 1 + ε + 

θ

2 

. 

ence, from (33) , we have 

im sup 

t→∞ 

ln | M(t) | 
ln t 

≤ 1 + ε + 

θ
2 

θ
. 

etting ε → 0 in (34) , one has 

im sup 

t→∞ 

ln | M(t) | 
ln t 

≤ 1 

2 

+ 

1 

θ
a.s. 

hen, for arbitrary positive constant ν
(
ν < 

1 
2 − 1 

θ

)
, there exists a c

∈ �ν, 

 ≤ lim inf 
t→∞ 

| M(t) | 
t 

≤ lim sup 

t→∞ 

| M(t) | 
t 

≤ lim sup 

t→∞ 

t 
1 
2 + 1 θ + ν

t 
= 0 a.s. 

herefore, following (35) , one can get 

lim 

→∞ 

| M(t) | 
t 

= 0 a.s. ⇒ lim 

t→∞ 

M(t) 

t 
= lim 

t→∞ 

1 

t 

∫ t 

0 

σ S(τ ) I(τ ) 

ωL (τ ) + (ω + δ) I(τ

ence the lemma is proven. �

emark 4.1. As N(t) is the number representing the total human p

σ S(t) I(t) 

N(t)[ ωL (t) + (ω + δ) I(t)] 
≤ σ S(t) I(t) 

ωL (t) + (ω + δ) I(t) 
. 

ollowing Lemma 4.1 , we have 

lim 

→∞ 

1 

t 

∫ t 

0 

σ S(τ ) I(τ ) 

ωL (τ ) + (ω + δ) I(τ ) 
dB (τ ) = 0 a.s. ⇒ lim 

t→∞ 

1 

t 

∫ t 

0 N(τ )[ ω

heorem 4.2. The latent population L (t) and infected population I(t

 0 is given by (11) . 

roof. Let (S(t) , L (t) , I(t) , R (t)) ∈ R 

4 + be a solution of the system (3

(S(0) , L (0) , I(0) , R (0)) ∈ R 

4 + . Define 

 3 (t) = ωL (t) + (ω + δ) I(t) . 

ifferentiating (36) following Ito’s formula, one can get 

d( ln V 3 (t)) = 

1 
V 3 

[
λωSI 

N 
− (ω + δ)(γ + δ + μ) I 

]
− σ 2 ω 2 S 2 I 2 

2 N 2 V 2 
3 

+ 

σ SI 
NV 3 

d B

⇒ d( ln V 3 (t)) ≤ I 
V 3 

[ λω − (ω + δ)(γ + δ + μ)] + 

σ SI 
NV 3 

dB (t) [ ∵
⇒ d( ln V 3 (t)) ≤ 1 

ω+ δ [ λω − (ω + δ)(γ + δ + μ)] + 

σ SI 
NV 3 

dB (t) 
[

ntegrating both sides of the last inequality from 0 to t, we get 

ln V 3 (t) ≤ 1 
(γ + δ+ μ) 

[ R 0 − 1] t + 

∫ t 
0 

σ S(τ ) I(τ ) 
N(τ ) V 3 (τ ) 

dB (τ ) 

= 

1 
(γ + δ+ μ) 

[ R 0 − 1] t + 

∫ t 
0 

σ S(τ ) I(τ ) 
N(τ )[ ωL (τ )+(ω+ δ) I(τ )] 

dB (τ ) . 
5 
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T t and using Remark 4.1 , we obtain 

l

T in, as ω > 0 , ω + δ > 0 , we assert that lim t→∞ 

[ ωL + (ω + δ) I] = 0 ⇒ 

l

T  (3) with positive initial value 

d 
γ
2 + δ + μ > 

ω 
2 , δ > 

γ
2 are true then 

l R 

∗) 2 ] du ≤ 0 a.s. 

P

d

a

M

A

ω

D

V R 

∗ ln 

R 

R 

∗

)
. 

A

d δ + μ) I] + 

(
R − R 

∗

R 

)
[ γ I − δR ] . (38) 

W xists. Hence, from (38) , we get 

 

∗) − δ(R − R 

∗) 2 

 

∗|| I − I ∗| 

 

ω 
2 
(L − L ∗) 2 

) 2 − δ(R − R 

∗) 2 [
δ − γ

2 

]
(R − R 

∗) 2 . 

(39) 

U n 

{
δ
2 , 

ω+ δ
2 , 

γ
2 + δ + μ − ω 

2 , δ − γ
2 

}
, from the last inequality of (39) , we 

g

d (40) 

I

 (R (u ) − R 

∗) 2 ] du 

 ] du ≤ V 4 (0) 
ϑ 

 (R (u ) − R 

∗) 2 ] du ≤ 0 . 

T

5

ic data of Spain, which witnessed the largest Covid-19 positive cases in 

E es as of October 9, 2020, in Spain are 890,367 and 32,929, respectively, 

s [41] . The first phase lockdown with restricted movement was imposed 

i nto force on March 30, [42] after observing 10,857 covid positive cases 

o

aking limit superior as t → ∞ after dividing both sides of (37) by 

im sup 

t→∞ 

( ln V 3 (t)) ≤ 1 

(γ + δ + μ) 
[ R 0 − 1] if R 0 < 1 . 

hen lim t→∞ 

V 3 (t) = lim t→∞ 

[ ωL + (ω + δ) I] = 0 a.s if R 0 < 1 . Aga

im t→∞ 

L (t) = lim t→∞ 

I(t) = 0 . Hence the result. �

heorem 4.3. Let (S(t) , L (t) , I(t) , R (t)) ∈ R 

4 + be a solution of system

(S(0) , L (0) , I(0) , R (0)) ∈ R 

4 + . If E ∗(S ∗, L ∗, I ∗, R ∗) exists uniquely an

im sup 

t→∞ 

1 

t 

∫ t 

0 

[(S(u ) − S ∗) 2 + (L (u ) − L ∗) 2 + (I(u ) − I ∗) 2 + (R (u ) −

roof. System (3) can be written as 

 

⎛ 

⎜ ⎝ 

S(t) 
L (t) 
I(t) 
R (t) 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

� − λSI 
N 

− δS 
λSI 
N 

− (ω + δ) L 
ωL − (γ + δ + μ) I 

γ I − δR 

⎞ 

⎟ ⎠ 

d t + 

⎛ 

⎜ ⎝ 

− σ SI 
N 

d B (t) 
σ SI 
N 

d B (t) 
0 

0 

⎞ 

⎟ ⎠ 

nd the diffusion matrix is 

ˆ 
 = 

⎛ 

⎜ ⎝ 

σ 2 S 2 I 2 

N 2 
0 0 0 

0 

σ 2 S 2 I 2 

N 2 
0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

. 

t E ∗, we have 

L ∗ − (γ + δ + μ) I ∗ = 0 and γ I ∗ − δR 

∗ = 0 . 

efine a C 2 function V 4 : R 

4 + → R + as 

 4 (S, L, I, R ) = 

1 

2 

(S − S ∗ + L − L ∗) + 

(
I − I ∗ − I ∗ ln 

I 

I ∗

)
+ 

(
R − R 

∗ −

pplying Ito’s formula on V 4 , one gets 

V 4 = (S − S ∗ + L − L ∗)[� − δS − (ω + δ) L ] + 

(
I − I ∗

I 

)
[ ωL − (γ + 

e consider I(t) ≥ 1 and R (t) ≥ 1 when the endemic equilibrium e

dV 4 ≤ −δ(S − S ∗) 2 − (ω + 2 δ)(L − L ∗)(S − S ∗) − (ω + δ)(L − L ∗) 2 

+ ω(L − L ∗)(I − I ∗) − (γ + δ + μ)(I − I ∗) 2 + γ (I − I ∗)(R − R

≤ −δ(S − S ∗) 2 + δ| L − L ∗|| S − S ∗| − (ω + δ)(L − L ∗) 2 + ω| L − L

− (γ + δ + μ)(I − I ∗) 2 + γ | I − I ∗|| R − R 

∗| − δ(R − R 

∗) 2 

≤ −δ(S − S ∗) 2 + 

δ
2 
(L − L ∗) 2 + 

δ
2 
(S − S ∗) 2 − (ω + δ)(L − L ∗) 2 +

+ 

ω 
2 
(I − I ∗) 2 − (γ + δ + μ)(I − I ∗) 2 + 

γ
2 
(I − I ∗) 2 + 

γ
2 
(R − R 

∗

≤ − δ
2 
(S − S ∗) 2 − ω+ δ

2 
(L − L ∗) 2 −

[(
γ
2 

+ δ + μ
)

− ω 
2 

]
(I − I ∗) 2 −

nder the restrictions 
γ
2 + δ + μ > 

ω 
2 , δ > 

γ
2 and defining ϑ = mi

et 

V 4 ≤ −ϑ[(S − S ∗) 2 + (L − L ∗) 2 + (I − I ∗) 2 + (R − R 

∗) 2 ] . 

ntegrating both sides of (40) from 0 to t, we have 

V 4 (t) − V 4 (0) ≤ ϑ 

∫ t 
0 [(S(u ) − S ∗) 2 + (L (u ) − L ∗) 2 + (I(u ) − I ∗) 2 +

⇒ 

∫ t 
0 [(S(u ) − S ∗) 2 + (L (u ) − L ∗) 2 + (I(u ) − I ∗) 2 + (R (u ) − R 

∗) 2

⇒ lim sup t→∞ 

1 
t 

∫ t 
0 [(S(u ) − S ∗) 2 + (L (u ) − L ∗) 2 + (I(u ) − I ∗) 2 +

his completes the proof. �

. Case study 

Here we perform a case study considering the Covid-19 epidem

urope. The numbers of confirmed Covid-19 positive and death cas

ince the first case of Covid-19 was detected on January 31, 2020 

n Spain on March 16, however, a more strict lockdown was came i

n a single day as of March 20, [43] . 
6 
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Fig. 1. Stochastic model fitting: Simulated and actual values of the cumulative confirmed and death cases in Spain for the time span February 25, to October 9, 2020, are 

represented, respectively, by blue and green colour curves with σ = 0 . 4 and different force of infection, λ. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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The data used in this study were taken from the online freely 

vailable repository Worldometer [43] . This study considers 228 

ays time series data of confirmed and death cases of Spain for 

he time span of February 25, when the Covid-19 positive cases 

ere only 6 with zero death, to October 9, 2020, the completion 

ate of the study period (both days included). The population of 

pain as of January 1, 2020, was 47,431,256 [44] and this value 

as considered as the initial value of the susceptible population. 

he value of constant input into the susceptible class through birth 

 �) was considered as 1165 [45] . The average life expectancy of 

panish people is given to be 82.5 years [44] . Noting that 1 
δ

is the

verage life expectancy, the value of the parameter δ was then cal- 

ulated as δ = 

1 
82 . 5 ×365 = 3 . 33 × 10 −5 . A Covid-19 infected individ- 

al remains in the latent class about 5.2 days [4] , which gives rise

o ω = 0 . 1924 . The remaining three system parameters λ, γ and μ
ere estimated by fitting the model with the real data of infected 

nd death cases in Spain. Effect of different non-pharmaceutical 

ontrolling measures affects the parameter λ, the disease trans- 

ission efficiency or force of infection. The value of this param- 

ter gradually decreases with the increasing length of lockdown, 

owever, it increases with the withdrawal of lockdown. We, there- 

ore, estimated λ in eight intervals each of 28 days (except the last 

ne): (i) the first one from 25th February to 24th March, (ii) the 

econd one from 25th March to 21st April, (iii) the third one from 

2nd April to 19th May, (iv) the fourth one is from 20th May to 

6th June, (v) the fifth one is from 17th June to 14th July, (vi) the

ixth one is from 15th July to 11th August, (vii) the seventh one is 

rom 12th August to 8th September and (viii) the final one is from 

th September to 9th October. We then used fminsearch optimiza- 

ion toolbox, SDE solver of Matlab and nonlinear least-square tech- 

ique for the estimation of three parameters using our stochastic 

odel (3) . In Fig. 1 , the actual data of infected and death cases

ere best fitted ( r-squared values are 0.9994 and 0.9991) with λ = 

 . 542 , 0 . 315 , 0 . 192 , 0 . 151 , 0 . 164 , 0 . 183 , 0 . 271 , 0 . 193 for the consecu-

ive time intervals with γ = 0 . 095 , μ = 0 . 11 and σ = 0 . 4 . One can

otice that the infection rate decreased during the lockdown pe- 

iod and then again increased due to its withdrawal. In fact, the 

aily positive cases were gradually declined after observing the 

aximum 961 cases on a single day on April 2. Then the sec- 

nd wave of covid infection in Spain started from the middle of 

uly and peaked during the middle of September and reduced af- 

er that. Data fitting by the deterministic model (1) with the same 

arameter values is shown in Fig. 2 . Sensitivity analysis primarily 

dentifies how the variation in the output of a system is affected 

y the variations of its input parameters. Applying the Latin Hyper- 

ube Sampling and Partial Rank Correlation Coefficient (LHS-PRCC) 
7 
ensitivity analysis, we evaluated the PRCC values of the system 

arameters corresponding to each of the five variables, see Fig. 3 . 

ength of bars represents the effect of parameters on the system 

ariables. It shows that the force of infection λ is the most sen- 

itive one and has a strong effect on the growth of system pop- 

lations with PRCCs significant to 0.0 0 0 01 ( p-values < 0 . 0 0 0 01 ),

urther justifying our assumption of taking randomness in the pa- 

ameter λ. 

Basic reproduction number R 0 is strongly dependent on the 

orce of infection, while the number of infected individuals grows 

ith increasing R 0 . In fact, the critical value R 0 = 1 separates the 

ndemic state (for R 0 > 1 ) from the disease-free state (for R 0 < 1 ).

his has been demonstrated in Fig. 4 by the time series results. 

t shows that both the latent and infected class individuals of the 

eterministic system go to extinction for R 0 < 1 (left upper panel) 

nd persist for R 0 > 1 (right upper panel). This result confirms the 

lobal stability of the two equilibrium points of the deterministic 

ystem with respect to the basic reproduction number, following 

he Theorems 3.1 and 3.2 . Similar results for the stochastic system 

3) are shown in the lower panel of Fig. 4 . 

Real-time reproduction number (RTRN) is a data-driven analy- 

is, which describes the epidemic status at every instant of time 

46] . Considering the Covid-19 confirmed case data of Spain for 

he period March 3, to October 9, we plotted the real-time repro- 

uction number, R t ( Fig. 5 ) with 95% confidence interval using the 

piEstim package of R software [47] . It is observed that RTRN goes 

elow 1 on March 22 from its initial value 2.15 on March 3. Af- 

er this date, the RTRN goes above one on September 1, however, 

t again goes below unity after 20th September. It is to be noticed 

hat the daily cases during the second wave were maximum during 

he middle of September, which matches with the date of real-time 

eproduction number. 

Though the stochastic system (3) originated from the determin- 

stic system (1) , the stochastic system has no interior equilibrium 

oint but the later has. To compare the asymptotic behaviour of 

he solutions of the stochastic system (3) with that of the deter- 

inistic system (1) , following Theorem 4.3 , we plotted solutions of 

oth the system in Fig. 6 . It shows that solution of the stochastic 

ystem fluctuates around the deterministic solution, however, both 

olutions become identical as the noise intensity becomes too low. 

In Fig. 7 , we plotted per day actual data of confirmed cases with 

ed colour and then plotted the simulation results in blue colour 

o predict the daily cases. It is interesting to note that Covid-19 in- 

ection was contained in Spain during May beginning to the first 

eek of July. During this period the per day new cases was be- 
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Fig. 2. Deterministic model fitting: Simulated and actual values of the cumulative confirmed and death cases in Spain for the period February 25, to October 9, 2020, are 

represented, respectively, by blue and green colour curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 3. Global sensitivity analysis of the system parameters. Each parameter was 

varied over a range of ±2 fold from the baseline value. Partial ranked correla- 

tion coefficients (PRCC) sensitivity analysis (p < 0 . 0 0 0 01) shows that the disease 

transmission coefficient, λ, is the most sensitive parameter. Baseline parameters are 

� = 1165 , ω = 0 . 1924 , λ = 0 . 54 , γ = 0 . 095 , δ = 3 . 37 × 10 −5 , μ = 0 . 11 . 

l

o  

Fig. 5. Real-time reproduction number (RTRN) of Spain for the period of March 3, 

to October 9, is represented by black line with 95% confidence interval. Parameters 

are as in Fig. 3 . 

t  

g

w

[

t
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d

t
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i

a

ow 10 0 0. The situation, however, changed after the second week 

f July. The per day new case crossed 10 0 0 and steadily increased
ig. 4. Disease extinction and persistence with respect to the basic reproduction numbe

nitial values go extinct (left panel) for R 0 = 0 . 94 (< 1) and persist asymptotically (right 

nd the lower panel for the stochastic case. Parameters are as in Fig. 3 with λ = 0 . 18 for 

8 
o 14,0 0 0 on September 18, by crossing 10,0 0 0 at the end of Au-

ust. The epidemic curve again started to decline during the last 

eek of September and reached to 60 0 0 per day on October 9, 

43] . Fig. 7 thus shows two waves of infection. 

We also predicted the daily cases if the current trend is main- 

ained. This prediction was based on the stochastic model simu- 

ation results with λ = 0 . 193 and σ = 0 . 4 . It shows that the epi-

emic curve has a Gaussian distribution with a long right tail. In 

he absence of any vaccine and if the present trend is maintained 
r. Solutions of L and I classes of the deterministic system starting from different 

panel) for R 0 = 3 . 77 (> 1) . The upper panel corresponds to the deterministic case 

the left figure and λ = 0 . 74 for the right figure. 
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Fig. 6. Upper panel: Asymptotic solutions of the deterministic and stochastic system populations with noise intensity σ = 0 . 4 . Lower panel: Behaviour of the solutions for 

low value of the noise, σ = 0 . 01 . Parameters are as in Fig. 3 . 

Fig. 7. Daily cases in Spain. Actual values for the period February 25, to October 9, are represented by red bars. Predicted values for the period October 10, 2020, to August 

25, 2021, are presented by blue bars. This figure clearly shows the second wave of Covid-19 infection during July-October after the first wave in March-April. The distribution 

curve is shown by the blue curve. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Cumulative confirmed and death cases in Spain from February 25, to October 9, are represented by magenta colour and the predicted values for the subsequent 

times are represented by blue colour with 95% confidence interval. It shows that the disease will be eliminated in the fourth week of August 2021, where the cumulative 

confirmed curve becomes flat. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Estimated cumulative covid positive and death cases in Spain in 

the absence of vaccine and if the current trend is maintained. 

Date Confirmed cases Death cases CFR (%) 

23.10.2020 986,606 33,629 3.41 

06.11.2020 1,078,178 34,622 3.21 

20.11.2020 1,156,394 35,267 3.05 

04.12.2020 1,237,538 35,667 2.88 

25.08.2021 1,613,626 42,899 2.66 

a

I

ithout further destruction, elimination of infection may be pos- 

ible at the end of August 2021 ( Fig. 8 ). The predicted number of

onfirmed and death cases on different dates are given in Table 1 . 

he case fatality rate, death per one hundred positive cases, is ob- 

erved to vary from 3 . 41% to 2 . 66% . 

. Discussion 

Mathematical models are vital in infectious disease modelling. 

n epidemic models, the health status of the population of a given 

ountry is classified into different compartments and the flow of 

ndividuals from one compartment to other is then represented by 
9 
 set of differential equations of deterministic or stochastic types. 

n the first type of epidemic models, all rate constants are assumed 
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o be constant, though it is certain that the parameters, particu- 

arly the force of infection, are not constant but fluctuate around 

ome mean value. Such fluctuations or randomness in the parame- 

ers may be successfully encapsulated by considering the stochastic 

xtension of the deterministic model through parameter perturba- 

ion technique [48] . Acknowledging that both types of models have 

heir own merits and demerits, it has been suggested that the re- 

ults of the deterministic system should be verified with the re- 

ults of the stochastic system. In this paper, we classified the entire 

opulation of a given geographical region into five compartments, 

iz., susceptible, latent, infectious and recovered classes, to repre- 

ent the health status of its population infected by the coronavirus. 

 deterministic model was then proposed by considering the rate 

quations of each compartment. Different experimental and case 

tudies have confirmed that there is a large variation in the infec- 

ion rate of SARS-CoV-2 [25] . Furthermore, SARS-CoV-2 is a novel 

irus, whose aetiology is still not completely known. In such a case, 

t would be prudent to consider uncertainty in the infection rate. 

e, therefore, incorporated uncertainty in the disease transmission 

oefficient by adding the Gaussian white noise, assumed to be a 

ood replicator of fluctuating phenomena [49] . Our PRCC analysis 

lso showed that the force of infection was the most sensitive pa- 

ameter of the system, giving further confirmation in adding noise 

o this parameter. 

Both the deterministic and stochastic models were rigorously 

nalyzed, and the disease eradication conditions were established. 

he basic reproduction number, which is assumed to be a mile- 

tone in every epidemic, was found to be the determinant of the 

pidemic fate. The basic reproduction number, computed from the 

ext generation matrix of the deterministic system, was found to 

e sufficient to eliminate the infection if its value does not exceed 

, otherwise, the disease persists globally in the deterministic sys- 

em. The same condition was found to be sufficient to eliminate 

he infection from the stochastic system (see Theorem 4.2 ), though 

he extinction time and nature of the solutions are quite different 

rom its deterministic counterpart, they give the same result (see 

ig. 4 ). The persistence result of the stochastic system significantly 

iffers from the deterministic result. While the existing condition 

f the interior equilibrium is sufficient for the global disease per- 

istency of the deterministic system, the stochastic system needs 

urther conditions (see Theorem 4.3 ). Simulation results show that 

he solutions of the stochastic system fluctuate around the solution 

f the stochastic system, but the results become identical if the 

oise intensity is considered very small (see Fig. 6 ). In this sense, 

 stochastic solution is a generalization of the deterministic solu- 

ion because one can obtain the deterministic solution from the 

tochastic solution but the converse is not true. 

A case study with the Covid-19 epidemic data of Spain is per- 

ormed by fitting our epidemic models. A real-time reproduction 

umber (RTRN) has been presented to illustrate the epidemiologi- 

al status of Spain on the daily basis. Covid-19 epidemic curve of 

pain shows two waves of infection. The first wave was observed 

uring March-April and the second wave was started at the mid- 

le of July and the wave is not completed yet. The epidemic peak 

uring the first wave was observed on March 20, and the same 

as observed in the second wave after six months, September 18. 

he Covid-19 epidemic curve took a u-tern thereafter (see Fig. 7 ). 

he daily basis reproduction number curve also reciprocated the 

ame feature of the epidemic situation. RTRN (real-time reproduc- 

ion number) curve crossed the epidemic threshold value 1 twice, 

rst time at the end of March and the second time on September 

0, ( Fig. 5 ). It indicates that the epidemic is in declined trained af-

er these dates. RTRN as of October 9, is 0.86 and this value should 

e reduced close to zero for the elimination of infection. According 

o our prediction, if there is no vaccine and the system is not fur- 

her perturbed, Spain will eliminate SARS-CoV-2 infection at the 
10 
nd of August 2021 with 1,613,626 infectives and 42,899 deaths, 

iving rise to 2 . 66% case fatality. The Covid-19 situation in Spain 

ndicates that infection may return if there is a lack of strong mon- 

toring. Strong participation of common people in the containment 

rogram of coronavirus is a must, otherwise, multiple waves of in- 

ection may occur unless as there is no vaccine. 

It is to be mentioned that we have kept our model simple, 

eeping only the most vital compartments required to represent 

he SARS-CoV-2 infection spreading mechanism. Although there 

re more complex models that include other epidemic compart- 

ents of coronavirus disease. This simple model, however, allowed 

s to determine analytically the disease extinction and persistence 

riteria for both the deterministic and stochastic systems. Secondly, 

e wanted to fit our models with the Covid-19 epidemic data of 

 country. The data in different repositories give only three classi- 

ed data of confirmed, recovered and death cases. Thus, a higher 

ompartmental model, which involves many additional parameters, 

ill inherently accumulate more errors in the processes of estima- 

ion of the additional parameters, simply due to unavailability of 

ata from which they can be estimated. The simple mathematical 

odel has been used successfully in estimating infection horizon 

f Covid-19 with a data-driven approach [19] . Once more classified 

ata are available, specifically the age-structured data, then more 

omplex models would be helpful for in-depth study of Covid- 

9 pandemic. Despite its simplicity, the model can be used suc- 

essfully in predicting the epidemiological burden of Covid-19 epi- 

emic of any country. 
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