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Abstract

The first hypotheses about how the immune system affects cancers were proposed in the early 20th century. These early
concepts about cancer immunosurveillance were further developed in the decades that followed, but a detailed
understanding of cancer immunity remained elusive. It was only recently, through the advent of high-throughput
technologies, that scientists gained the ability to profile tumors with a resolution that allowed for granular assessment of
both tumor cells and the tumor microenvironment. The advent of immune checkpoint inhibitors (ICIs), which have proven
to be effective cancer therapies in many malignancies, has spawned great interest in developing biomarkers for efficacy, an
endeavor that highlighted the value of dissecting tumor immunity using large-scale methods. Response to ICI therapy has
been shown to be a highly complex process, where the dynamics of tumor and immune cells is key to success. The need to
understand the biologic mechanisms at the tumor–immune interface has given rise to the field of cancer immunogenomics,
a discipline that aims to bridge the gap between cancer genomics and classical immunology. We provide a broad overview of
this emerging branch of translational science, summarizing common platforms used and recent discoveries in the field,
which are having direct clinical implications. Our discussion will be centered around the genetic foundations governing
tumor immunity and molecular determinants associated with clinical benefit from ICI therapy. We emphasize the
importance of molecular diversity as a driver of anti-tumor immunity and discuss how these factors can be probed using
genomic approaches.

Introduction
Cancer has affected humans throughout history. Although its
first descriptions go back to ancient Egypt (1), it was not until
the 18th century, with the advent of microscopy, that tumors
were recognized as collections of individual cells (2). The tech-
nological revolution that ensued in the following decades led to
a growing number of realizations about cancer biology, and by
the early 1900s, the first hypotheses about cancer evolution (3)
and immune surveillance (4) were being proposed. These ideas
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served as the basis for the study of cancer immunology, eventu-
ally leading to the modern understanding that tumors represent
dynamic cell populations able to evolve and diversify in response
to environmental pressures such as immune surveillance (5).

The significant degree of heterogeneity that exists within
tumors continues to pose a significant challenge to cancer
research (6). The pervasiveness of intratumoral heterogeneity
(ITH) as well as its association with poor prognosis has been
extensively reported (7,8). ITH has been described at many
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levels—from mutations and chromosomal aberrations in the
genome (9–13) to the transcriptome (14) and the epigenome
(15,16). However, somatic genetic heterogeneity is the most well
documented in the literature, and investigators have been able
to demonstrate that genomic ITH arises as a result of ongoing
tumor evolution and clonal selection (17,18). Genomic instability
has been proposed as one of the primary mechanisms driving
these evolutionary forces (19,20), characterized by a process
where cell transition from a normal stable genome to one that is
plastic and ever changing, characterized by the ability to adapt
to new environments and grow indiscriminately (5,6). Opposing
this tendency for tumor cells to grow are microenvironmental
factors, which limit tumor cell growth or keep growth in check.
It has been shown that tumor cell accumulation is greatly
dependent on interactions between tumors and host cells
that populate the tumor microenvironment (TME) (21). Some
of the key mechanisms that regulate tumor growth include
neovascularization (22), intercellular growth signaling (23) and
immune evasion (24). Notably, TMEs often contain large amount
of immune cells, which are known to cooperate and perform
activities of immune surveillance (25). It has been shown that
the continuous predation of tumors by the immune system
puts a strong evolutionary pressure on tumor cells to adapt
in order to avoid destruction, leading to phenomena such as
immunoediting (19,26,27).

The degree to which tumors are able to avoid recognition and
destruction by immune cells is only beginning to be more clearly
understood, and initial discoveries in this field have led to the
development of a new class of drugs known as immune check-
point inhibitors (ICIs), drugs capable of reinvigorating immune
cells to facilitate tumor clearance (28,29). ICIs have begun to
challenge the paradigms of cancer therapy, while at the same
time renewing interest in the interplay between cancer cells and
immune microenvironment. Indeed, it is becoming clear that
tumors are composed of a heterogeneous population of aberrant
cells and how these tumor cells behave is, in large part, dictated
by the interaction of these cells with distinct immune cell pop-
ulations (30–32). This realization has led to growing efforts to
develop tools that allow for ever more detailed assessment of
the TME. Through the development of high-throughput next-
generation sequencing (NGS), we have acquired the ability to
interrogate these genetic features of the evolving TME at useful
resolution (33). The use of these platforms in cancer research
has led to an exponential expansion in our knowledge of cancer
evolution and anti-tumor immune responses, as well as changed
the way we think about and treat cancer (34). Both genotypic
and phenotypic features of tumor and immune cells have been
shown to have predictive ability for ICI therapy response (28).
We will discuss some of the most common platforms used in
the field of immunogenomics as well as some of the molecular
features that can be explored with these tools to evaluate the
tumor–immune interface. Our goal is to provide a general sum-
mary of the field of immunogenomics—touching on the main
technologies used, the biologic processes that can be interro-
gated and some of the key findings that have been made in
recent years. A review on the established and emerging biomark-
ers of response to ICI therapy has been presented elsewhere
(28).

High-throughput sequencing approaches to
dissecting immune phenotypes
As mentioned previously, NGS has exponentially increased the
amount and depth of the molecular data obtained from tumor

profiling, bringing both new opportunities and challenges. These
technologies now allow scientists to interrogate the highly vari-
able tumor genome and look for characteristics that might help
affect disease course and response to therapy (34); by enabling
a high-resolution and reproducible assessment of the genome
or transcriptome, these approaches allow us to take ‘snapshots’
of dynamic processes (6). Implementation of these technologies
has significantly increased our understanding of clonal dynam-
ics and immune evasion (27). However, there is still a pressing
need to continue to develop and improve more accurate bioin-
formatic tools (33). Bulk sequencing platforms, such as exome-
wide and whole-genome sequencing, allow for a comprehensive
assessment of somatic DNA alterations, while at the same time
enabling the assessment of certain germline features that are
known to influence tumor dynamics (28). Our increased ability
to target and manipulate DNA and RNA sequences has led to the
development of even more sophisticated technologies, specifi-
cally geared to answer questions about tumor and immune het-
erogeneity. Examples include approaches such as T-cell receptor
(TCR) and B-cell receptor repertoire sequencing, which allows
characterization of the immune repertoire (35), and single-cell
sequencing (36).

Exome-wide and targeted DNA sequencing: examining
genomic features and tumor evolution associated with
immunosurveillance

Exome-wide sequencing is a relatively common platform that
involves capture-based sequencing of all the exons of the
genome (37). Given that it provides a good balance between
coverage and depth of sequencing (6), this approach allows
investigators to evaluate a wide array of somatic aberrations,
such as mutations, copy number alterations (CNAs) and
translocations, as well as genomic signatures such as presence
of microsatellite instability (MSI) (38,39). Exome sequencing can
be used to measure tumor mutational burden (TMB), which has
been shown to be a strong predictor of clinical benefit from
immune checkpoint therapy and adoptive cell therapy with
tumor infiltrating lymphocyte treatment. Other DNA sequencing
platforms that target a smaller subset of genes have also been
used in the field of cancer genomics, and their utility in the
detection of somatic mutations and CNAs has been widely
demonstrated (40,41). These assays often involve a higher
sequencing depth (typically >500×), improving the detection
of subclonal mutations in target genes (6). Because targeted
sequencing has been easier to implement and can be done at
lower cost, companies such as Foundation Medicine or Tempest
that provide clinical sequencing services have adopted this
approach first. The utility of targeted panels in the assessment
of genome-wide features such as the TMB or MSI is possible, and
the results have been largely consistent with those from exome
sequencing as long as the panels sample adequate amount of the
genome (42). For example, the concordance of TMB as measured
by targeted panels and whole-exome sequencing is good as
long as the panels sample at least 1.1–1.3 megabases (MB).
Recently, the Food and Drug Administration (FDA) has approved
pembrolizumab for the treatment of TMB-hi tumors in patients
who have not responded to previous therapies, regardless of
tumor histology. This approval was based on the use of the
FoundationOne NGS panel. Although this is a first step towards
utilizing TMB in the clinic, the extensive variability in probe
design that exists between different platforms can make cross
platform comparisons difficult. As such, there is still a need to
harmonize methods to calculate TMB. Exome sequencing, on
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the other hand, is a rather less biased alternative to targeted
panel sequencing and may, in many ways, provide a reasonable
alternative, especially as sequencing prices continue to drop
over time.

Although there is a lot of flexibility in the design of these DNA
sequencing assays, those that encompass sequencing of tumor
and normal specimens have unique advantages over tumor-only
sequencing platforms (40). For example, the detection of somatic
mutations is simplified by comparing the tumor and normal
sequences with the reference genome, while simultaneously
allowing for the distinction between somatic and germline vari-
ants (43). Without matched normal sequencing, upwards of 10–
20% of potential germline variants may be mistaken for somatic
alterations, even with the use of the latest germline reference
databases. Germline sequencing also allows for the assessment
of features such as MSI (39) and germline HLA diversity (44),
which have been implicated in response to ICI therapy (28). Fur-
thermore, by examining allelic frequencies of single-nucleotide
polymorphisms across large regions of the genome, matched
tumor/normal sequencing can infer tumor purity and ploidy
more effectively (45,46), which in combination with conventional
mutation calling algorithms can be used to determine mutation
cancer cell fraction (i.e. the percent of cancer cells bearing a
specific variant) and tumor clonality (12). Although multi-region
tumor sequencing constitutes the preferred approach to assess
ITH (5,6), a decent approximation of tumor heterogeneity can be
obtained through implementation of computational approaches
to model clonality such as PyClone, QuantumClone, PhyloWGS
and others.

Whole transcriptome RNA sequencing: expression
programs of the TME

Whole transcriptome sequencing (WTS) involves sequencing of
all the messenger RNA transcripts present in a given tissue
and has multiple advantages over older RNA assessment tech-
nologies, such as the potential for a more unbiased assessment
of all genes and a more accurate tally of relative transcript
number (47). WTS has already changed the way we study can-
cer, even leading to new tools such as single-cell and spatial
transcriptomics that promise an even more detailed picture
into the transcriptional states in cancer (48). However, the fact
that samples are composed of a heterogeneous mix of tumor
and normal cells poses a significant challenge when trying to
study complex cellular populations. Given the inherent vari-
ability in the expression profiles of different cell types, RNA
analyses can have vastly different interpretations depending on
the analysis approach used. Although bioinformatic algorithms
for the deconvolution of the cellular composition of the sample
have been developed (49–51), these approaches only estimate
the relative frequencies of different cell populations in a given
sample. Deconvolution can at best suggest cell type frequency
based on known gene expression signatures. It cannot identify
novel cell types easily nor can it segregate the cell type-specific
gene expression patterns that are unique to individual popula-
tions of cells. Single-cell sequencing has recently been able to
address that need. Empowering investigators with the ability to
examine the discrete transcriptomes of individual cells, single-
cell sequencing is able to compartmentalize the gene expression
patterns of individual cells so that differences between tran-
scriptional states of cells can be clearly observed. Single-cell
sequencing has enabled the detection and characterization of
immune cell subsets at a level of resolution that was previously
impossible.

TCR sequencing: T-cell repertoire and heterogeneity

DNA and RNA sequencing technologies have also been adapted
to allow for the evaluation of the TCR repertoire (35). By tar-
geting the VDJ segments of the TCR genes, which determine
the antigen specificity of CD8+ T-lymphocytes, researchers are
able to assess the composition of the immune repertoire (52).
However, one of the challenges when trying to do so is the high
degree of diversity in this sequence. The VDJ recombination
that produces functional TCR genes can result in the produc-
tion of up to 1015–1020 different sequences. However, humans
display a significantly lower number (53), suggesting that VDJ
recombination is not completely random and that constraints
and preferences exist in this process. Despite this, the majority
of TCRs are rare, leading to a high degree of inter-individual
variability (54,55). By identifying the individual clonotypes (i.e.
TCR sequences), investigators can evaluate features such as anti-
gen specificity and clonal heterogeneity (52). Population metrics,
such as entropy, evenness, richness and other measures, can be
calculated to provide hints about the diversity of TCR repertoires
and the behaviors of repertoires after specific challenges. Given
that TCRs have been shown to be a source of great diversity
between individuals and that CD8+ T cell dynamics have been
directly implicated in ICI response (30,56–58), they represent
obvious targets of study in the field of immunogenomics. Several
TCR sequencing platforms have been developed, and a detailed
review on the methods of sequencing and analysis has been
presented elsewhere (35). Other platforms targeting additional
immune populations such as B-cells have also been described
(59), but their relationship to ICI response is far from clear.

Single-cell sequencing platforms: maximum resolution
into cell population genetics

The last few years have seen the advent of single-cell sequenc-
ing technologies, which are providing an even bigger lens into
tumor and microenvironmental heterogeneity (36,60,61). These
platforms are still in relatively early phases of development
and refinement, but this has not prevented investigators from
using it to make important insights about cancer and other
biological processes (36,60,62–65). Both single-cell RNA sequenc-
ing (scRNAseq) (36) and single-cell genome sequencing (9) have
been used in the study of cancer biology. Even single-cell TCR
technologies have been reported in the literature (66), effectively
providing the maximum resolution that could be achieved with
this platform (i.e. one TCR per cell). Single-cell technologies rep-
resent a new and promising research frontier, and their increas-
ing adoption will continue to deepen our understanding of the
dynamics at the tumor–immune interface.

Computational assessment of antigen
presentation machinery function
Many cellular processes have been interrogated in the search
for predictors of ICI response (28). The antigen presentation
machinery, and specifically, the major histocompatibility com-
plex (MHC) pathway, has been of particular interest due to its
well-established role in the presentation of antigens that are
targeted by the adaptive immune system (67,68). As discussed
previously, NGS technologies have provided unparalleled scale
and resolution for tumor DNA assessment, and scientists are
now able to take a ‘snapshot’ of the genomes of cancer cells
in order to make predictions on the immunogenicity of the
mutations they bear. We will discuss the molecular features of
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Figure 1. Sources of inter-individual variability in the neoantigen presentation process. A summary of the MHC-I antigen presentation pathway is shown. The integrity of

these processes can be interrogated using sequencing, which also provides an unbiased assessment of many features leading to inter-individual variability in immune

responses. The tumor mutational repertoire, the breadth of the immunopeptidome and the composition of the immune repertoire are sources of inter-individual

variability that can be interrogated. Refinement of these platforms is already paving the way towards the individualization of cancer care.

tumor and immune cells that have been implicated in response
to ICI therapy, with emphasis on properties that can be evaluated
using genomics (Figure 1). A detailed description of the mech-
anisms behind antigen presentation through the MHC class I
pathway, as well as the alterations to this machinery that have
been described in cancer, has been presented elsewhere (69).

HLA diversity and the immunopeptidome

Virtually all nucleated cells express some type of cell defense
mechanism against pathogens such as viruses, which reproduce
by using cellular machinery for reproduction. The MHC-I path-
way is a line of defense against viruses. MHC-I presents both
pathogen peptides and self-antigens on the cell surface and,
hence, plays critical roles in dictating immune tolerance and
pathogen recognition (67). The genes that encode the molecules
directly responsible for antigen presentation [i.e. the human
leukocyte antigen (HLA) genes] are the most polymorphic across
the human species (70–72), leading to a high degree of inter-
individual immunopeptidome variability (i.e. the total collection
of peptides that a cell is potentially able to present as antigens).
This diversity appears to be a result of different microbial pres-
sure exerted upon human populations during their evolution
(70,71,73). Notably, some of the polymorphisms described in the

HLA genes (i.e. HLA-A, HLA-B, HLA-C) have been implicated in dif-
ferences in effectiveness of antiviral immune responses (74,75)
as well as in a wide array of immunologic-related diseases (76).
However, their importance in anti-tumor immune responses is
only beginning to be understood. Although polymorphisms in
other immune-related genes have been described in association
with response to ICI therapy (77), the HLA genotype imparts the
strongest effects by far.

The ability of tumor cells to present antigens depends first
and foremost on the genetic background from which they orig-
inate. It has been shown that individuals with a more diverse
array of HLA-I alleles are more likely to experience clinical
benefit after ICI therapy (58,78). Additionally, the presence of a
specific HLA supertype (i.e. clusters of HLA alleles with similar
anchor specificities (79)), such as HLA-B44, has also been asso-
ciated with an increased likelihood of response to ICI therapy in
specific tumor types (58). Consistent with these initial reports,
investigators have demonstrated that the degree of evolutionary
divergence exhibited by an individual’s HLA alleles (80) is in
direct association with improved response and survival after ICI
therapy (81). HLA diversity could represent a potential biomarker
in the quest to personalize immunotherapy, and further research
is needed to establish the utility of these features in the clinical
setting.
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TMB and neoantigen immunogenicity

Tumor cells can present peptides to the immune system through
the MHC-I pathway in very much the same way that normal cells
do. Briefly, expressed intracellular proteins are processed in the
proteasome and converted into short peptides (of 8–11 amino
acids in length) that fit the HLA-I binding pocket (82,83). These
peptides are then transported to the endoplasmic reticulum
where they are bound to MHC-I molecules and are transported
by the secretory pathway through the Golgi apparatus, until
they finally migrate to the cell membrane for presentation (84–
86). Somatic alterations in the coding regions of the exome can
result in the production of a neopeptides that can be presented
as neoantigens (56,87–91). The degree to which somatic muta-
tions are able to produce an immunogenic neoantigen is a topic
under active study (57), and several features have been shown
to affect the likelihood that a mutation is presented. First, the
degree of change in the amino acid sequence can have a great
impact on the likelihood of presentation. Mutations leading to
frameshifts, such as insertions or deletions, can produce new
protein sequence that is drastically different than any sequence
in the germline. The amount of small insertions and deletion
mutations has been linked to ICI response in several studies
(92–94). Missense mutations can change a single amino acid
in either anchor locations or more central regions of the epi-
tope that contact the CDR3 domain of TCRs. These types of
mutations, while producing more subtle changes in amino acid
sequence, can also produce immunogenic neoantigen peptides.
Point mutations involving the MHC anchor positions can make a
peptide that was previously not presented by MHC molecules to
ones that are presented. These types of mutations can produce
very immunogenic epitopes (95).

Many bioinformatic methods have been developed to predict
whether antigens are presented by MHC molecules or are
immunogenic. Neoantigens have been characterized based on
their predicted MHC-binding affinity by using the differential
agretopicity index (DAI), a measure that expresses binding
affinity relative to the wild-type sequence (95). Neoantigen
DAI has been shown to be a surrogate of clinical benefit after
ICI therapy in melanoma cohorts (96,97). Similarly, sequence
homology methods, using previously validated immunogenic
microbial epitopes as reference, have been proposed as a
means to evaluate neoantigen immunogenicity (98). However,
given the complexity of the actual presentation process,
and the need to individualize predictions to each tumor
context, no single approach has proven sufficient to accurately
predict immunogenicity. Challenges still remain and many
improvements need to be made to improve the accuracy of
prediction methods. Recent attempts have been made using
multi-parametric machine learning algorithms (99,100), and
these have shown substantial promise.

Despite the complexity of the antigen presentation process,
TMB is known to strongly correlate with neoantigen burden
(101). In line with this, response to ICI therapy was first described
in cancer types with high TMBs such as melanoma (101–103)
and NSCLC (104–108). Furthermore, high TMB has been shown
to predict for response to ICI therapy in these (101,108,109) and
other solid malignancies (42,110,111). Examples include tumors
such as HPV-negative head and neck squamous cell carcinoma
(112), urothelial carcinoma (113) and small cell lung cancer (114).
However, TMB is not the only factor determining response, and
notable exceptions to this rule have been described in tumors
such as renal cell (115) and certain subtypes of Merkel cell
carcinomas (116), which are responsive to ICI therapy despite an

overall low TMB. In these tumor types, high TMB does not seem
to be sufficient alone to predict benefit after ICI therapy (42,110).
The bulk of the evidence, and the consistency of the findings
across multiple disease contexts, has led to the FDA approval of
pembrolizumab for the treatment of any solid malignancy with
a high TMB (≥10 mutations/megabase) (117).

It is important to note, however, that some tumors with high
TMB such as melanoma and NSCLC are known to arise in the
context of exposure to carcinogenic agents like ultraviolet light
and smoke (118). As a consequence, the neoantigens derived
from these mutations will be most likely derived from these
mutational processes. The type of mutation may play a role in
immunogenicity and not just the quantity of mutations. Fur-
thermore, clonality of neoantigens may also be important. The
clonality of neoantigens has been proposed as a contributor to
the immunogenicity of mutations (30,119).

Antigen presentation disruption and immune escape

Owing to the fact that the MHC-I pathway represents a key
factor in the development of cellular anti-tumor immune
responses, tumors are under constant selective pressure to
‘lose’ these mechanisms in order to avoid immune recog-
nition (27,120,121). Examples of tumors displaying somatic
aberrations that promote immune evasion have been reported
in the literature (121–125), and detailed reviews have been
presented elsewhere (123,126,127). We will focus on the genomic
aberrations described in the MHC-I pathway, which have been
linked not only to immune evasion but also to poor prognosis
(128,129) and resistance to ICI therapy in different contexts
(58,130). Among the proteins that have been found to be
somatically inactivated are the HLA molecules themselves (131),
the beta-2-microglobulin protein (B2M gene) (131–133) and the
transporter associated with antigen processing (TAP1 gene)
(125,128,129,132,134). Notably, tumors that show disruption of
key components of the MHC-I pathway seem to be able to
tolerate higher neoantigen burdens in their genomes, providing
evidence of ongoing immunoediting (44,131). Interestingly, the
frequency in which these alterations occur is relatively low. Of
particular interest are the HLA genes, which seem to be recurrent
substrates of immune evasion. Both somatic mutations and
CNAs (including unbalanced losses and copy-neutral loss-of-
heterozygosity) have been described in these genes in the setting
of immune escape (58,121,135), and the polymorphic nature
of these loci represents a special challenge to their evaluation
using DNA sequencing. Although this has already prompted
researchers to develop specific computational algorithms for
their assessment (44,135,136), further research is needed both to
refine them and to evaluate their clinical utility (137).

Genomic features of tumors associated with
immune response
We briefly mentioned some of the mechanisms by which tumors
can ‘learn’ how to avoid immune recognition. However, cer-
tain intrinsic tumor characteristics have been implicated in ICI
response. For example, certain mutational signatures (i.e. pat-
terns of base changes in the DNA that serve as indicators of
causal processes of mutations) (118), such as the smoking and
the APOBEC signatures in NSCLC specimens, have been shown
to be associated with clinical benefit after ICI therapy (107,138).
Similarly, the presence of certain broad genomic characteris-
tics, such as MSI (139), and alterations that result in a defi-
ciency of DNA mismatch repair, leading to subsequent mutation
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accumulation (140), have been associated with response to ICIs
(141). Solid tumors with mismatch repair deficiency have been
approved by the FDA to be treated with pembrolizumab therapy
regardless of tumor histology (142).

Other somatic alterations that have been implicated in the
development of anti-tumor immune responses after ICI ther-
apy include somatic aberrations that produce inactivation of
genes in the IFNγ -JAK/STAT signaling pathway (143–145) and
copy number events such as PD-L1 amplifications (146), which
have been implicated in ICI resistance and sensitivity, respec-
tively. Additionally, somatic mutations commonly used to sub-
classify tumors can have important clinical implications in the
immunotherapy context. For example, patients with mutant
BRAF melanomas have been reported to respond better to ICI
combination therapy (147) as a group; and the KRAS mutant
STK11/LKB1 mutant subtype of NSCLC has been shown to be
rather unresponsive to PD-1 inhibitors (148). Other examples
of tumor subtypes with differential ICI sensitivity include the
higher response rates to PD-L1 inhibitors in the luminal cluster II
subtype of urothelial carcinoma (113) and the relative resistance
to checkpoint inhibition reported in tumors with PTEN inactiva-
tion (149,150). Mutations in chromatin remodeling genes, such
as PBRM1, have also been proposed as potential biomarkers of
response to ICI therapy in tumors like renal cell carcinoma (151),
but conflicting findings have been reported (115) and initial
results reporting the association of PBRM1 inactivation with sen-
sitivity to immunotherapy were likely confounded by previous
treatment with anti-angiogenic agents.

Finally, another pervasive feature of cancer that has been
implicated in anti-tumor immune response is the degree of
genomic instability displayed by tumor cells, a feature com-
monly represented by the overall burden of CNAs observed in
the tumor genome (152). Somatic CNA profiles can be effec-
tively assessed using DNA sequencing technologies (45,46), and
the burden of these chromosomal anomalies has been associ-
ated with poor prognosis, immune evasion and ICI resistance
(121,152–155). However, this metric is not yet used in the clinic
and additional research is needed to standardize copy number
algorithms, validate these findings and explore their practical
utility.

Microenvironment composition: gene
expression and immune cell activity
As discussed briefly before, the microenvironmental com-
position of the tumor plays an important role in tumor
adaptation, survival and therapeutic response (156). For the
purposes of this discussion, we will consider the tumor as
having three compartments: the tumor compartment, whose
genomic alterations have already been discussed; the immune
compartment of the TME, composed of several immune
subpopulations; and the non-immune compartment of the TME,
which encompasses the rest of the stromal cells. Because the
individual cells composing each of these groups are deeply
intermixed with those from the other groups, expression assays
such as bulk WTS can only measure a combined expression
signal from the entire specimen (47). RNA expression signatures
(i.e. phenotypic profiles based on the expression of groups
of genes) have been widely studied in the setting of ICI
therapy. Notably, some of the expression profiles that have been
associated with response to ICI include T-cell inflamed (157,158),
T-cell dysfunction (159) and T-cell effector/IFN-γ signatures
(115). Similarly, TGF-β phenotypes (160,161) and an innate
anti-PD-1 resistance signature (162) have been proposed to
be enriched in non-responders. These findings make clear

that microenvironmental signals determining response to ICI
therapy are partly driven by the immune microenvironment
(163). Interestingly, CD8+ TIL populations that show high PD-
1 expression have been implicated in both response (164,165)
and resistance to checkpoint inhibition (164,166), and questions
remain about implications of these findings.

Although several transcriptomic features have been impli-
cated in ICI response, none of them have been adopted into
clinical practice. The only exception is the expression of PD-L1
in tumor specimens (which is actually evaluated as an immuno-
histochemical readout), which has been widely described in
the literature in association to clinical benefit after checkpoint
blockade. High PD-L1 expression levels have been shown to serve
as a surrogate for T-cell dysfunction (167) as well as a predictor of
response to ICIs (106,113,168–170). However, conflicting reports
are also widespread in the literature (112,171,172), and the poten-
tial reasons behind these discrepancies have been extensively
discussed before (28,173,174). Besides the biases associated with
single-sample assessment, most inconsistencies are thought to
arise from the lack of standardization among different immuno-
histochemistry (IHC) assays and differences in interpretation
of the staining (175,176). This has prompted some researchers
to argue that a better way to standardize the assessment of
PD-L1 expression levels is using RNA sequencing approaches
(177). However, due to the increased costs associated with this
technology and the relative instability of the RNA molecule, it is
unlikely that an RNA-based assay would be adopted solely for
this purpose, and furthermore, bulk RNA sequencing imposes
inherent restrictions on IHC with regard to spatial resolution,
a factor that has also been implicated in ICI response (160,178).
Nevertheless, one could envision a future where comprehensive
and contextualized assessment of tumor expression profiles
could aid clinicians in individualizing cancer therapeutics.

Finally, the clonal architecture of the T-cell repertoire is also
a topic under active study that is amenable to immunogenomics
approaches, and changes in the diversity of the TCR repertoire
during ICI therapy have been described (30). Notably, clonal T-
cell populations have been shown to arise in ICI responders, in
proportion to the number of neoantigens depleted (30). How-
ever, the ability of TCR repertoire characteristics to predict ICI
response is far from clear, with different studies reporting mixed
findings (104,154,165,179–182). Importantly, prior exposure to ICI
therapy can drastically alter T-cell dynamics (30), suggesting
that the immune repertoire is highly dependent on disease and
therapeutic contexts. Even though T-cell identity and dynamics
are a key factor in the development of anti-tumor responses,
other cell populations have also been implicated. For example, a
cluster of CD4 + FOXP3-PD1hi T cells, which confers a T follicular
helper phenotype, has been associated with anti-tumor immu-
nity and prolonged survival after ICI therapy (183,184), further
emphasizing the subtlety of these findings and the need for new
technologies that provide increased resolution of cellular states.
Tumor microenvironmental composition assessment is an area
of research where scRNAseq technologies promise significant
improvements over current approaches, and studies using these
platforms have already led to important realizations about this
process. For example, a memory-like phenotype of CD8+ T cells,
defined by the expression of TCF7, and certain CD4+ populations
have been linked to ICI response (185).

Conclusion
Tumors represent dynamic cell populations that are constantly
subject to a wide array of environmental pressures. Their
multiplicative nature allows them to respond by evolving and
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adapting to their environment, often leading to the modification
of intrinsic biologic mechanisms to increase their fitness.
Immune evasion has now been recognized as one of the core
hallmarks of cancer, and many biologic mechanisms that
underlie this process have been reported. Realization about
the complexity of the tumor–immune interface dynamics has
pushed investigators to develop assays that can probe cancer
and immune cell populations with increasing resolution.

The field of immunogenomics has thus arisen as a bridge
between classical immunology and cancer genomics, leading
to a new and exciting frontier in translational medicine that
promises to convert a once phenomenological discipline into
one steeped in large-scale data. An example of the utility of
NGS approaches has been the dissection of the complex facets
of how MHC-I presentation plays a role in tumor immunity.
Although several processes have been associated with sensitiv-
ity and resistance to ICI therapy, the MHC-I antigen presentation
pathway is of particular interest to the field due to its direct
relationship with immune evasion as well as the high degree of
inter-individual variability that it exhibits. These features make
it an ideal target for assessment using NGS platforms such as
exome-wide sequencing, which can now be scaled for use with
each individual patient.
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