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Abstract

s. Circulating tumor DNA (ctDNA) is released from apoptotic and
Lung cancer is one of the leading causes of all cancer-related death
necrotic tumor cells. Several sensitive techniques have been invented and adapted to quantify ctDNA genomic alterations.
Applications of ctDNA in lung cancer include early diagnosis and detection, prognosis prediction, detecting mutations and
structural alterations, minimal residual disease, tumor mutational burden, and tumor evolution tracking. Compared to surgical
biopsy and radiographic imaging, the advantages of ctDNA are that it is a non-invasive procedure, allows real-time monitoring, and
has relatively high sensitivity and specificity. Given the massive research on non-small cell lung cancer, attention should be paid to
small cell lung cancer.
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Introduction MRD identification, therapy response monitoring, and

resistance mechanism characterization. ctDNA, together
Lung cancer causes more cancer-related deaths than
breast, prostate, colorectal, and brain cancers.[1] Early-
stage local lung cancer has good prognosis after curable
surgery, highlighting the essence of screening and early
diagnosis.[2,3] However, the dismal prognosis of metastatic
advanced lung cancer demands a clearer understanding of
the disease.[4] Even the wide usage of surgical tumor biopsy
for identifying therapeutically targetable mutations does
not confer a better survival prolongation.

Tumor DNA can be released from primary tumors,
circulating tumor cells (CTCs), metastatic sites, and
minimal residual disease (MRD) into the bloodstream.[5-7]

Such DNA, generally called circulating tumor DNA
(ctDNA), was reported over 30 years ago. Mutations
identified in tumor biopsy and ctDNA are highly
correlated, subsequently providing an opportunity for
non-invasively characterizing mutational profiles of can-
cer. A series of techniques developed and modified for
ctDNA, such as digital polymerase chain reaction
(dPCR)[8] and next-generation sequencing (NGS),[9]

empower blood examination with both high sensitivity
and specificity in detecting mutations.[10] Further retro-
spective and prospective studies verify the utility of ctDNA
in cancer diagnosis and screening, prognosis prediction,
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with CTCs and tumor exosomes, marks an era of liquid
biopsy and makes a non-invasive and real-time monitoring
of disease progression possible.

Evolution, a guiding principle in understanding tumor
progression, metastasis, and therapeutic response, char-
acterizes cancer hallmarks such as clonal selection and
heterogeneity under selection pressure.[11] Tracking the
evolutionary dynamics using multi-region exome sequenc-
ing in ctDNA helps determine subclones, which can
subsequently result in relapse and metastasis. Tumor
phylogenetic trees, which visually define evolutionary
histories and explicit clonal and subclonal events, empha-
size the clonality of driver events for drug targets and call
for intervention before clinical recurrence.[12,13] The
combination of ctDNA detection and longitudinal evolu-
tionary profiling endows a new dimension in tumor
research.

This review mainly focuses on the clinical application of
ctDNA in lung cancer, including screening and early
diagnosis, predicting prognosis and staging, profiling
cancer-associated mutation and structural alterations,
heterogeneity, relapse, treatment response, and resistance.
A graphic illustration points out the clinical applications of
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ctDNA during the course of lung cancer in the setting
of both early-stage and advanced metastatic disease

cell transformation and tumorigenesis are dependent on
the presence of cfDNA raises the hypothesis of the active

Figure 1: Applications of circulating tumor DNA (ctDNA) in lung cancer across the entire disease course, including screening and early diagnosis, minimal residual disease, prognosis
prediction, genomic profiling, identification of resistance mechanism, and tracking of tumor evolution.
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[Figure 1]. New ctDNA detection techniques are also
discussed in this review.

Biology of ctDNA: Release and Clearance
477
Despite multiple origins, most ctDNAs are released
passively into the circulation as ∼166-bp double-stranded
DNA fragments by apoptotic and necrotic tumor cells.[6,7]

A study that used DNA electrophoresis revealed that
ctDNA could also be released actively from tumor cells.[14]

In addition to ctDNA, CTCs, circulating exosomes,[15] and
blood platelets[16] may also become candidates for liquid
biopsy. According to observation, the median half-life of
ctDNA in non-small cell lung cancer (NSCLC) is
35min,[17] providing possibilities for real-time cancer
evaluation with ctDNA. ctDNA level is relatively lower
compared with cell-free DNA (cfDNA), therefore, adding
difficulty in sensitively detecting ctDNA. Except for
plasma, cerebrospinal fluid has also been demonstrated
as a good source of ctDNA and outperformed tumor
biopsy tissues in detecting genomic alterations in glioblas-
toma.[18] Considering lung cancer, tumor DNA can also be
detected in the sputum and pleural fluids. Correlation
studies focusing on clinical applications of these sources of
tumor DNA should be given intensive attention.

Levels of cfDNA in the circulation are dependent on the
balance between release and clearance. cfDNA clearance
can occur in multiple organs such as the kidney, liver,
spleen, and lymph nodes.[19] In malignant disease, the
balance is broken, and the accumulation of cfDNA occurs
because of a great amount of dying cells and dysfunction of
the clearance system, such as in the kidney.[20] Multiple
research in vitro prompted that ctDNA could enter tissue
cells and, in return, affect the biological behavior of
cells.[21] One interesting research showed a phenomenon
that plasma from colorectal cancer patients could
transform the mouse cell line NIH-3T3.[22] The fact that
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release of ctDNA into the bloodstream to enable the
transformation of distant cells. Moreover, complete
ctDNA clearance in the blood could serve as a prognostic
marker for the efficacy of targeted therapy and chemo-
therapy in NSCLC patients.[23]

Technology Advances of ctDNA Detection
Detection methods for ctDNA have evolved greatly to
achieve higher sensitivity and specificity and a higher
correlation with tumor biopsies. Available techniques
could be divided into targeted technologies and untargeted
technologies. The former approach aims to detect
mutations in a preset gene panel.[24] The latter approach
aims to detect genomic alterations across exomes[20] or
whole genome.[25] The targeted detection method shows
better sensitivity while reducing the detection scope in the
genome.[26] The sensitivity of dPCR ranges from 74% to
82%, and the specificity ranges from 63% to 100%.[27]

The sensitivity of NGS ranges from 79% to 100%, and the
specificity ranges from 94% to 100%.[28] Deeper sequenc-
ing of plasma DNA applied to selected patients with a
higher tumor burden allows for higher sensitivity.

Somatic mutations and copy number alterations (CNAs)
detected in ctDNA widely represent both the primary and
metastatic cancer genome and overcome the limitations of
a repeated invasive biopsy. PCR-based assays are also
utilized to detect recurrent point mutations from a list of
driver genes including EGFR and KRAS.[29-31] Usage of
exome sequencing could identify mutational alterations in
a series of plasma samples of NSCLC before and after
treatment, which can be used for selecting a list of
mutations significantly related to a specific treatment.
However, the application of massively parallel sequencing
encounters many limitations including low sensitivity, high
cost, and need for optimization for patients. A technical
report published in 2013 combined an optimized library
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preparation method with sophisticated bioinformatic
approaches to design a personalized mutational selector

diagnosis for lung cancer and highlighted the significance
of technique improvement.
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to quantify genetic aberrations.[10,23] This method, which
is very sensitive and economical, is called cancer
personalized profiling by deep sequencing (CAPP-Seq). It
achieves a sensitivity of 100% in stage II-IV NSCLC
patients and 50% in stage I NSCLC patients. This method
could detect cancer with a significant leading time
compared to that required for traditional radiographic
approaches, and the ctDNA levels quantified asmutant allele
fractions (AFs) are highly correlated with tumor volume.

Applications of ctDNA in NSCLC
478
Screening and early diagnosis

In the early stage of NSCLC, the proven ctDNA presence in
the blood qualifies ctDNA genotyping as a method for
screening and early diagnosis of lung cancer. Compared to
radiographic approaches and blood protein biomarkers,
ctDNA is a direct measurement of the tumor based on
genomic alterations. Diagnosis of cancer at the early stage
of the disease allows earlier clinical intervention and
improves survival. Screening in seemingly healthy individ-
uals significantly increases false-positive rates and may
cause over-diagnosis. In a study conducted on several
cancer types, the sensitivity of ctDNA detection for stage
IV disease was 82%; however, the sensitivity fell to 47% in
stage I disease.[32] Another research recruited several
female NSCLC patients, and their plasma ctDNAs, blood
cell DNAs, pleural effusion supernatant DNAs, and
pleural effusion pellet DNAs were collected. In order to
compare different techniques including NGS techniques,
droplet dPCR (ddPCR), and an amplification refractory
mutation system (ARMS), the four types of samples were
analyzed. This study showed that both NGS analysis and
ddPCR were more sensitive and reliable over ARMS in
detecting EGFR L858R and T790M mutations of early-
stage NSCLC patients. This research highlighted the use of
non-invasive and highly sensitive techniques such as NGS
and/or ddPCR to screen cancers via ctDNA, which offers a
new diagnostic and therapeutic privilege for patients.[33]

Accurate testing of selected oncogenic driver mutations at
the time of initial NSCLC diagnosis is an important aspect
of therapeutic management. Thus far, it is proven that
ctDNA could aid in screening and early diagnosis of lung
cancer with different techniques. With a novel approach
called targeted error correction sequencing, somatic
mutations in genes related to lung cancer could be detected
in the setting of early-stage disease.[34] Nevertheless, this
approach had limitations when applied to healthy
individuals and asymptomatic individuals. CancerSEEK,
which combined assays for genetic alterations and protein
biomarkers, was tested in several early-stage cancer types
including lung cancer.[35] The sensitivity of CancerSEEK in
lung cancer was about 60% and the specificity was larger
than 99%. It was further suggested in a prospective study
that plasma ctDNA detection outperformed serum protein
markers in the early diagnosis of NSCLC, through a
targeted sequencing process with the Ion Personal Genome
Machine and AmpliSeq cancer panel.[36] All these studies
confirmed the adaptivity of ctDNA in screening and early
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Despite several methods having been applied to achieve
higher sensitivity in the setting of early diagnosis and
screening,mutationswith lowAFsmightnotbe foundowing
to background noise, which could be overcome by collecting
higher volumes of plasma. Additionally, it was previously
found that ctDNAwas slightly shorter than cfDNA, and this
phenomenon encourages the application of filtering DNA
fragment length by amethod of experimental or in silico size
selection.[7] Most importantly, broader genomic coverage
and patient-specialized gene panels together produce an
overall much higher sensitivity when detecting ctDNA in
patients’ plasma.[10,37,38] One study adopted a method of
ultra-deep sequencing in whole genome and made the most
sensitive detection method possible even when patients’
plasma volume was quite low.[39]

For reliable detection of NSCLC de novo, mutation
detection should be designed to reduce the false-positive
rate and achieve a higher positive predictive rate. It should
be noticed that some oncogenic mutations were found in
healthy individuals and might interfere with the result
interpretation of diagnostic tests.[38,40] Clinical outcomes
in healthy individuals with elevated cfDNA mutant AFs
should be prospectively traced to understand the biological
and clinical interpretation of this phenomenon. Surgical
tumor tissue biopsy is required for the diagnosis and
mutation profiling of cancers to guide targeted therapy.
However, this biopsy would be impossible in cases of
locally advanced and metastatic cancer. Non-invasive
ctDNA detection overcomes these shortages and can be
conducted without additional harm to the patients.

Prognosis predicting, staging, and stratification of patients
In lung cancer patients, the total concentrations of cfDNA
and ctDNA are higher than those in healthy individuals,
and elevated concentrations of cfDNA and ctDNA are
shown in correlation with tumor progression. The possible
binary stratification of lung cancer patients into high- and
low-ctDNA concentrations guides the prediction of
prognosis. The status of EGFR mutation also serves as
a prognostic biomarker, which was implied in a study
evaluating the effect of ctDNA presence on prognosis
among advanced-stage lung adenocarcinoma patients
partially receiving epidermal growth factor receptor-
tyrosine kinase inhibitor (EGFR-TKI) treatment.[41] The
number of metastatic sites and the abundance of mutant
EGFR ctDNA were in a strong correlation. There was a
significantly shorter progression-free survival (PFS) and
duration of controlled disease by EGFR-TKIs in the
ctDNA-positive group than the negative group. Further-
more, there was a trend of shorter overall survival (OS)
time in patients with ctDNA EGFR mutations than in
patients without ctDNA EGFR mutations both in all
patients and in patients receiving EGFR-TKI treatment.[41]

This study supports ctDNA EGFR mutations as a
biomarker for predicting distant metastasis and poor
response to EGFR-TKIs. Several other studies also
suggested that the presence of ctDNA EGFR mutations
is associated with shorter PFS and OS.[42,43] Nevertheless,
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a series of studies supported the opposite correlation
between ctDNA EGFRmutations and prognosis.[44,45] An

mutation was identified in plasma ctDNA. The frequency
of T790M EGFR mutation was approximately 50% in
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open-labeled phase II study enrolling advanced NSCLC
patients treated with erlotinib and pertuzumab showed
that EGFR mutation detected in ctDNA suggested
prolonged PFS.[46] These inconsistent results may be due
to different patient inclusion criteria, different generations
of EGFR-TKIs applied, different techniques adopted in
ctDNA analysis, and relatively small sample sizes. These
studies suggested the potential of ctDNA mutation
profiling as a means for diagnosing and stratifying
patients, but also reinforced significance of patient
selection and therapeutic regimen choosing.

Except for recurrent mutations in NSCLC, structural
alterations and epigenetic markers in ctDNA could also
predict prognosis of early stage and advanced metastatic
NSCLC. CNAs were identified as a prognostic factor
in a series of studies on NSCLC.[47,48] A study, using a
150-gene panel and enabling CNAs detection from a very
low amount of ctDNA,[49] selected patients responsive to
crizotinib with MET amplification. Genome-wide hyper-
methylation is also frequently observed in lung cancer,[50]

and hypermethylation can be evaluated in ctDNA or
sputum non-invasively. Detection of cancer-specific meth-
ylation alterations opens an era for detecting epigenetic
biomarkers and correlates epigenetics with prognosis and
treatment response.

Non-invasive profiling of genomic characteristics
479
Mutation status

Mutation detection in ctDNA in NSCLC has been shown
to present both high sensitivity and high specificity.[10] To
effectively select qualified patients to provide correspond-
ing targeted therapies, many retrospective and prospective
studies have been conducted. The urge for double-blind,
prospective, randomized, controlled, clinical studies has
led to a plenty of studies that analyzed the EGFRmutation
status of NSCLC with plasma ctDNA samples. Clinical
trials focusing on ctDNA in lung cancer are summarized in
Table 1.[46,51-64] Ameta-analysis combining several studies
published between 2007 and 2015 with various ctDNA
analysis methods found the pooled sensitivity and
specificity of ctDNA mutation detection as 65.7% and
99.8%, respectively.[65] In a prospective study focusing on
the EGFR inhibitor gefitinib, mutation fraction differences
between tumor biopsy and plasma ctDNA were compared
in a cohort of over 600 patients.[66,67] The sensitivity and
specificity of the applied ARMS-based EGFR detection
methods in this prospective study were determined as
65.7% and 99.8%, respectively. Furthermore, this study
showed that ctDNA in the plasma revealed the mutation
profiles of both primary tumor sites and metastatic tumor
sites, therefore, eliminating the influence of heterogeneity.

The mechanisms underlying EGFR-TKI treatment resis-
tance include T790M EGFR mutations, which indicates
the usage of third-generation EGFR-TKIs.[68,69] The
sensitivity of detecting T790M EGFR mutation in plasma
ctDNA was evaluated in multiple studies. In a study with a
sample size of 54 NSCLC patients, T790M EGFR
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patients with former response to gefitinib or erlotinib,
nearly 30% in patients with prior stable diseases, and 0%
in patients who were previously untreated with gefitinib or
erlotinib.[70] The discrepancy among these three groups
suggests that the possibility of resistance and recurrence
could be identified non-invasively through the evaluation
of T790M EGFR mutation status. Furthermore, the short
half-life time of ctDNA enables real-time monitoring of
resistance and treatment response during the entire course
of treatment.

Structural variants
CNAs can be detected in ctDNA using whole-genome
sequencing (WGS),[71,72] amplicon-based,[73] and hybrid-
capture approaches.[69] Evaluating CNAs and mutation
profiling in the same assay is very important because many
clinically targetable genomic alterations in cancer are
structural alterations.[47] Accurate CNA assessment in
ctDNA requires a higher concentration of ctDNA in
plasma, and a study emphasized that an average variant
AF should be over 5% for CNA analysis. Moreover,
chromosomal rearrangement in ctDNA can be identified
with WGS[71,72] and hybrid-capture approaches.[28]

Application of WGS of cfDNA facilitates a non-targeted
method to detect somatic CNAs, requiring low genome
coverage. A study was performed in a small cohort of lung
cancer patients with a relatively low sequencing depth.[74]

This study suggested a significant correlation between copy
number ratios in cfDNA and formalin-fixed paraffin-
embedded (FFPE) tissue in advanced lung cancer patients.
However, due to the relatively low sequencing depth, this
method required a fraction of tumor origin in cfDNA of at
least 10%. This research supported the usage of cfDNA in
somatic CNAs detection and compared the efficacy of
detection between the cfDNA and the FFPE tissue.
Simultaneously, this research put forward the significance
of cfDNA fraction in the plasma and sequencing depth.

Another study aimed to associate CNAs with clinical
outcomes using a method called low-pass WGS.[75] This
new method showed the efficacy of identifying focal and
broad CNAs in lung cancer patients, and 0.5� coverage
provided enough ability to detect CNAs. Similarly, this
method required a relatively higher tumor burden and a
higher fraction of ctDNA in cfDNA, and a size-based
selection was suggested. Moreover, the research exhibited
similarity between CNAs landscape of cfDNA and surgical
tumor specimen in squamous NSCLC patients with above
25% tumor fraction in cfDNA. The discordance between
cfDNA and surgical tumor specimens might be attributed
to tumor heterogeneity in both space and time.

MRD and Relapse
After surgery or curative treatment, patients with possible
MRD should be monitored during the entire course of
treatment, generally with radiological imaging. On the one
hand, radiological imaging has the advantage of a
relatively low rate of damage associated with treatment.
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On the other hand, it has the disadvantage of limited
sensitivity for the detection of micrometastases compared

enlarges the perception of progression, metastasis, and
therapeutic responses. Evolutionary theory in cancer
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with overt metastases. The introduction of MRD moni-
toring into general clinical practice solves the listing
disadvantages and facilitates the development of person-
alized precision medicine, considering the dimension of
time. A study of lung cancer showed that post-treatment
ctDNA preceded radiological imaging with a median of
5.2 months of lead time.[76] In 94% of patients undergoing
recurrence, ctDNA was detected in the first post-treatment
blood samples, indicating the role of reliable detection of
MRD using ctDNA CAPP-Seq. Another study conducted
in NSCLC patients evaluated ctDNA dynamics and the
optimal timing of MRD testing.[17] The presence of MRD
on day 1 after surgery could not predict clinical outcomes
such as relapse-free survival (RFS) and OS. In contrast, the
presence ofMRD on day 3 and day 30 was predictive of an
unfavorable RFS and OS. This research highlighted the
proper timing for performing ctDNA detection after
surgery. Post-operative ctDNA profiling is highly specific
for detecting MRD and predicting relapse possibility,
leading to targeted therapies on EGFR or ALK mutations
as complements of surgery and chemotherapy.

Blood Tumor Mutational Burden (TMB) and Immunotherapy

High TMB represents genomic instability and serves as a
marker of immune checkpoint blockade therapy response,
together with other biomarkers such as programmed cell
death ligand-1 (PD-L1) expression.[77] Patients with
NSCLC have significantly benefited from immunotherapy,
particularly from immune checkpoint blockade therapies
such as anti-cytotoxic T-lymphocyte-associated protein 4
inhibitors, programmed cell death-1 (PD-1) inhibitors, and
PD-L1 inhibitors in the last decade. Nevertheless, despite
the observed prolonged survival in patients with advanced
metastatic NSCLC, the objective response rate remains
relatively under expectation because of primary resistance.
TMB, either in tissue (tTMB) or in plasma ctDNA (blood
TMB [bTMB]), is defined as the count of total non-
synonymous genomic mutations, and it has recently
emerged as a powerful biomarker to select patients
sensitive to immunotherapy.[78,79] bTMB could represen-
tatively reflect TMB, but larger ctDNA panels were
necessary to establish a better correlation between tTMB
and bTMB.[80] A recently published original investigation
suggested that a well-established panel covering the whole
exon of 150 selected cancer-related genes could serve as a
method to identify bTMB in NSCLC patients and guide
patient selection for PD-1 and PD-L1 inhibitor.[81] In the
multivariable logistic analysis, patients with higher bTMB
demonstrated superiorer PFS and were more likely to
undergo tumor shrinkage. Meanwhile, patients respond-
ing to immune blockade therapy had significantly higher
bTMB levels than those not responding. The application of
bTMB detected in ctDNA served as a predictor of patients
who benefited from immune blockade therapy, including
atezolizumab, durvalumab, and tremelimumab.[82,83]

Evolution, Clonal Selection, Intra-tumoral, and Inter-tumoral
Heterogeneity

The concept of tumor evolution not only suggests a
hypothesis about the mechanism of resistance but also

2

research broadly covers the following aspects of tumor
biological behavior: types of genomic aberrations evolu-
tion during the entire disease course, frequencies of
mutations, clonal selection in tumor evolution, and high
level of intra-tumoral and inter-tumoral heterogeneity.[11]

Several studies adopted a bespoken patient specific
multiplex-PCR NGS approach to profile the NSCLC
ctDNA genome and analyzed tumor evolution, together
with multi-region tumor whole-exome sequencing.[11-13]

The clonal nature of driver alterations and subclone
heterogeneity could be determined in these serial studies,
which recruited 100 early-stage NSCLC patients prospec-
tively and analyzed 327 tumor multi-region specimens.
The Lung TRACERx (TRAcking CancER evolution
through therapy) study generated phylogenetic trees
tracking representative mutations from the trunk clonal
population and many subclonal populations. The study
addressed the clinico-pathological determinants of ctDNA,
the clonal/subclonal fidelity of ctDNA, and the potential
for ctDNA detection and characterization to predict
relapse and targetable features of recurrent diseases. These
studies showed that ctDNA presence correlated with
primary tumor proliferation index (Ki-67), lymphovascu-
lar invasion, and tumor necrosis. Through longitudinal
detection of ctDNA, ctDNA was detected in most relapsed
cases on average 70 days before clinical confirmation by
computed tomgraphy imaging. Releasing of ctDNA from
different tumor regions into circulation was correlated to
the volume of the tumor subclones. Data acquired were
used to identify patient-specific single-nucleotide variants
(SNVs) and CNAs, depicting evolutionary histories and
clonal architecture. The causes of intra-tumor heterogene-
ity were listed as mutational processes, chromosomal
instability, and genome duplication. There is a common
pattern of tumor evolution with an early event of genome
doubling and later events of extensive subclonal diversifi-
cation. The complementation of ctDNA sequencing into
routine surgical biopsies resolves difficulties in obtaining
sequential tumor samples and makes dynamic observation
of evolution in the process of treatment possible. These
findings could assist in residual disease identification,
treatment response evaluation, and targetable emerging
subclones affirmation.

Applications of ctDNA in SCLC
Previous studies of large-scale sequencing revealed the
genomic differences between NSCLC and SCLC.[84] SCLC
patients are commonly sensitive to standard platinum and
etoposide chemotherapy. However, they may have pro-
gressed into relapse and acquire resistance to standard
treatment within 1 year of initial treatment, leading to a
dismal 2-year survival.[85,86] Intensive studies have focused
on the relationship between ctDNA and NSCLC. Never-
theless, research on applications of ctDNA in SCLC
patients is relatively lacking. SCLC has a genomic
landscape of high somatic tumor mutation burden because
of the close relationship with carcinogens in tobacco; thus,
baseline SCLC usually has high frequencies of CNAs and
mutations. The most common genetic alterations are
inactivation of tumor-suppressor genes, including TP53
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and RB1, and point mutations in genes associated with
chromatin remodeling, receptor tyrosine kinases, and the

and tumor burden is still questioned and limits the clinical
application. Generally, the number of patients enrolled in
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NOTCH family genes.[87] The main obstacle in applying
liquid biopsy in SCLC is how to detect ctDNA in a chaotic
background.[88-90] A study used NGS to detect SNVs,
CNAs, insertions, and deletions with a panel of 14 genes
that had frequent mutations in SCLC.[88] Eventually, the
study involved testing of 140 plasma samples collected
from 27 SCLC patients, and mutations associated with
SCLC were found in over 80% of patients. Generally,
mutant AFs of SCLC-associated gene mutations were in
the range of 0.1% to 87%, and the most common
mutations were in the TP53 and RB1 genes, following
further observation.[87] Similar to findings in NSCLC,
mutant AFs and CNAs were also in close relationship with
treatment responses when considering SCLC. Additional-
ly, ctDNA detection in SCLC patients post-operation could
also provide reliable evidence of disease relapse before
detectable relapse through radiographic imaging. It is
advocated that more attention should be paid toward
improving sequencing techniques and conducting clinical
researches on SCLC.

Conclusion and Perspectives
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J
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Many studies have proven the utility of ctDNA in cancer
screening and early diagnosis, genomic profiling, prognosis
prediction, treatment response and resistance monitoring,
MRD detection, and tumor evolution tracking. With the
comprehensive characterization of the molecular land-
scape of NSCLC and SCLC, ctDNA provides solutions to
almost all aspects of clinical considerations in a non-
invasive and real-time manner. Screening and early
detection will help identify early-stage lung cancer patients
and indicate the need for clinical interventions. Predicting
prognosis using ctDNA enables dynamic stratification of
patients, thereby inferring the relative risks of relapse.
Assessing treatment response and resistance makes
personalized treatment possible and facilitates interven-
tions based on resistant mechanisms. MRD detection is a
sensitive approach to forecast local advances and
metastases. The theory of tumor evolution will greatly
shape precision medicine, considering the generality of
intra-tumoral and inter-tumoral heterogeneity. Identifying
driver mutations in clones and passenger mutations in
subclones will lead to an era of stepwise treatment
decisions.

Clinical application of ctDNA for early detection faces
several obstacles. The biggest obstacle is the required
improvement of both sensitivity and specificity. Methods
have been consistently improved to meet the clinical
requirements of lower cost and higher efficacy. The rates of
mutation detection in ctDNA could be improved by
advanced genomic approaches such as NGS that have
higher sensitivity to identify rare mutations in matched
ctDNA and tumor tissue samples. Several studies have
been inclined to discover the biology of early-stage lung
cancer after the invention of sensitive ctDNA detecting
techniques, which improve NGS library preparation and
downstream bioinformatic analysis. Besides, due to high
dynamic range of ctDNA concentration with current
techniques, the correlation between ctDNA concentration

2

ctDNA research is much smaller than the respective
number for other clinical studies, and the clinical
interpretation of results is hampered. Composite gene
panel needs to be tested in clinical studies with well-
established endpoints to demonstrate the clinical utility.
Moreover, selection of appropriate time points for ctDNA
screening would be crucial to detect ctDNA derived from
the resistant tumor cell clones. Also, in order to control
errors in the process of ctDNA extraction, quantification,
analytical pipeline and reporting, great efforts have been
made to standardize ctDNA analysis before integrating it
into clinical practice by a variety of international consortia.

This review provides adequate information on the
implications of ctNDA in lung cancer and sheds light on
future research directions. With a focus on NSCLC, this
review also highlights the most recent clinical advances
in SCLC. ctDNA, as an important component of liquid
biopsies, is bound to demonstrate its potential utility in
clinical settings.
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