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Abstract

The study of allosteric functional modulation in dynamic proteins is attracting increasing attention. 

In particular, the discovery of new allosteric sites may generate novel opportunities and strategies 

for drug development, overcoming the limits of classical active-site oriented drug design. In this 

paper, we report on the results of a novel, ab initio, fully computational approach for the discovery 

of allosteric inhibitors based on the physical characterization of signal propagation mechanisms in 

proteins and apply it to the important molecular chaperone Hsp90. We first characterize the 

allosteric “hot spots” involved in interdomain communication pathways from the nucleotide-

binding site in the N-domain to the distal C-domain. On this basis, we develop dynamic 

pharmacophore models to screen drug libraries in the search for small molecules with the 

functional and conformational properties necessary to bind these “hot spot” allosteric sites. 

Experimental tests show that the selected moelcules bind the Hsp90 C-domain, exhibit 

antiproliferative activity in different tumor cell lines, while not affecting proliferation of normal 

human cells, destabilize Hsp90 client proteins, and disrupt association with several cochaperones 

known to bind the N- and M-domains of Hsp90. These results prove that the hits alter Hsp90 

function by affecting its conformational dynamics and recognition properties through an allosteric 

mechanism. These findings provide us with new insights on the discovery and development of new 

allosteric inhibitors that are active on important cellular pathways through computational biology. 

Though based on the specific case of Hsp90, our approach is general and can readily be extended 

to other target proteins and pathways.

*Corresponding author. giorgio.colombo@icrm.cnr.it. Telephone: ++39-02-28500031.
Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy, Department of Cancer Biology, 
University of Massachusetts Medical School, Worcester, Massachusetts 01605, Urologic Oncology Branch, Center for Cancer 
Research, National Cancer Institute, Bethesda, Maryland 20892, and Department of Pharmaceutical Chemistry, School of Pharmacy 
and Center for Bioinformatics, University of Kansas, Lawrence, Kansas 66047

Supporting Information Available: Contains all the description of the materials and methods used for the calculations and 
experimental procedures and description of additional tables and figures. This material is available free of charge via the Internet at 
http://pubs.acs.org.

HHS Public Access
Author manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2020 October 20.

Published in final edited form as:
J Chem Theory Comput. 2010 September 14; 6(9): 2978–2989. doi:10.1021/ct100334n.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/


Introduction

The dynamic properties of proteins play key roles in all aspects of protein functions, ranging 

from molecular recognition and binding to enzymatic activity.1 A better knowledge of 

dynamics from experiments and theory makes it now feasible to model the conformational 

properties of several proteins at the atomic scale.2 Functional dynamics is determined by a 

complex interplay of covalent and noncovalent interactions that define the relative 

population of three-dimensional (3D) structures (determined by their free energies) and the 

possible interconversion kinetic pathways among them (determined by the heights of the 

free energy barriers between them).3,4 Binding of a ligand or substrate at an active site or of 

a protein partner at a certain region of the structure may select specific accessible 

conformations endowed with specific functional properties.5

Allosteric molecular perturbations may alter the covalent and noncovalent forces that 

determine the fine combination of dynamic modes at the basis of molecular recognition and 

function. This reverberates in a modification of the protein’s structural and/or dynamic 

properties, causing a response where a specific function can be switched on, fine-tuned, 

regulated, or blocked. Perturbation of the protein’s conformational ensemble may be 

achieved through several mechanisms, including ligand binding, covalent modifications, or 

mutations. A variation of the protein state at a certain site may thus impact on the binding 

affinity in a distal functional region, such as the active site or a protein contact surface.6 

Information transmission between distant functional sites in proteins represents a 

manifestation of nonlocal interactions between residues.

The molecular mechanisms of these site-to-site communication phenomena are of great 

interest, especially since understanding the dynamic connectivity that favors signaling 

through structures may reveal new allosteric binding sites and illuminate molecular 

mechanisms of functional regulation.7 Moreover, achieving these goals would offer 

tremendous opportunities in the design of new drugs, protein engineering, and chemical 

genomics. Rational targeting of alternative sites may reveal new chemotypes for potential 

inhibitors and offer new strategies to interfere with protein–protein interactions, which are 

generally recognized as challenging targets.8

In this paper, we present a novel rational strategy for the computational-based discovery of 

allosteric inhibitors of molecular chaperones. In particular, we aim to perturb the functions 

of the activated form of the chaperone heat shock protein-90 (Hsp90), by the rational 

selection of antagonists with the structural and functional characteristics necessary to target 

“hot-spot” allosteric residues located in the C-terminal domain (CTD), which are 

dynamically coupled to the N-terminal ATP binding-site and may potentially affect Hsp90 

chaperone function. To this end, we build on the results of a long-range coordination 

analysis that we developed to study Hsp90 communication pathways and dynamics at 

atomic resolution.9 Our approach showed that conformational changes and coordination 

between the N- and C-domains are responsive to specific nucleotide binding. This 

propagates molecular signals long-range, selectively to functionally important residues and 

secondary structure elements at the CTD, which define possible allosteric binding sites. The 

physicochemical properties of newly detected functional CTD sites are used here to build 
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receptor-based 3D pharmacophore models. This allows us to identify novel antagonists of 

Hsp90 chaperone function that target a site distant from the active site, inhibit several 

important protein–protein interactions, and show the ability to interrupt biological pathways 

important for cancer cell proliferation (Scheme 1). As expected the activities of the 

molecules, selected from a publicly available database, do not make them immediate 

candidates for drug development. However, it is important to underline that our main goal is 

to use information on the protein dynamics to identify potential hits. Drug design and 

medicinal chemistry efforts can then be started on this basis to improve the activities and 

pharmacokinetic properties of our hits.

We focus on Hsp90 as an example of a molecular system in which ligand-based activation 

and signal communication between physically distant domains underlies protein–protein 

interactions and biological function. Hsp90 is a homodimer in which each protomer is 

characterized by a modular architecture with three domains: an N-terminal regulatory 

domain (NTD), a middle domain (M-domain), and a carboxyterminal domain (CTD).10–12 

The biological activity of Hsp90 depends on ATP binding and hydrolysis, which is coupled 

to a conformational cycle that involves the opening and closing of a dimeric molecular 

clamp formed by the association of the NTDs of Hsp90.13 In solution, the protein exists as a 

dimer owing to the stable association of highly conserved motifs in its CTD. ATP binds to 

the NTDs of Hsp90, stabilizes their transient dimerization,13 and sends a conformational 

signal to the CTD, which is responsible for the acquisition of the ATP-ase competent 

conformation required for chaperone activity. Moreover, the Hsp90 chaperone function is 

finely regulated in the cell by physical association with a number of cochaperones that 

regulate the ATP-ase activity or direct Hsp90 to interact with different client proteins. 

Different cochaperones bind to different domains of Hps90 (for a complete review see).14

Hsp90 has a well-established role in the conformational maturation, stability, and function of 

a wide range of “client” proteins within the cell. In cancer cells, Hsp90 is overexpressed and 

intersects signaling pathways essential for tumor maintenance, and its inhibition through 

drugs targeting the N-terminal ATP-site showed promising therapeutic perspectives.15

The results presented here open the possibility to rationally expand the chemical space of 

Hsp90 antagonists to effective inhibitors of allosteric communications.

Experimental Section

In this section, we describe the computational and experimental procedures in detail. In the 

Computational Details Section, we first describe how molecular dynamics (MD) simulations 

and signal communication modeling were carried out. These experimental details have 

already been fully described in.9 Here we are reporting them for clarity. Next we describe 

the development of the pharmacophore modeling, virtual ligand screening (VLS), the 

docking of known and new compounds to the newly discovered pockets.

In the Experimental Procedures Section, we report on the experimental procedures used to 

test the small molecules.
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Computational Details.

MD Simulations.: The MD simulation trajectories used in this work were carried out as 

already described in ref 9. The details and the full description of the MD set up and runs can 

thus be found in the published paper dealing with the characterization of the ligand 

modulation of Hsp90 dynamics.9

Briefly, the crystal structure (pdb entry 2CG9)10 containing yeast Hsp90 dimer bound to 

ATP was employed as a starting point for the simulations. The system was solvated in a 

tetrahedral solvation box contains around 57 000 particles. All simulations and the analysis 

of the trajectories were performed using the GROMACS software package16 using the 

GROMOS96 force field17 and the SPC water model.18

The ATP-bound Hsp90 dimer system was first energy relaxed with 2000 steps of steepest-

descent energy minimization followed by another 2000 steps of conjugate gradient energy 

minimization. The energy minimization was used to remove possible bad contacts from the 

initial structures. The system was then equilibrated by a 50 ps of MD run with position 

restraints on the protein and ligand to allow relaxation of the solvent molecules. The first 

equilibration run was followed by a second 50 ps run without position restraints on the 

solute. The first 5 ns of the trajectory was not used in the subsequent analysis in order to 

minimize convergence artifacts. Equilibration of the trajectory was checked by monitoring 

the equilibration of quantities, such as the root-mean-square deviation (rmsd) with respect to 

the initial structure, the internal protein energy, and fluctuations were calculated on different 

time intervals. The electrostatic term was described by using the particle mesh Ewald 

algorithm. The LINCS19 algorithm was used to constrain all bond lengths. For the water 

molecules, the SETTLE algorithm20 was used. A dielectric permittivity, ε = 1, and a time 

step of 2 fs were used. All atoms were given an initial velocity obtained from a Maxwellian 

distribution at the desired initial temperature of 300 K. The density of the system was 

adjusted performing the first equilibration runs at NPT condition by weak coupling to a bath 

of constant pressure (P0 = 1 bar, coupling time τp = 0.5 ps).21 In all simulations, the 

temperature was maintained close to the intended values by weak coupling to an external 

temperature bath21 with a coupling constant of 0.1 ps. The proteins and the rest of the 

system were coupled separately to the temperature bath. The structural cluster analysis was 

carried out using the method described by Daura and co-workers with a cutoff of 0.25 nm.22

Signal Propagation Analysis.: This approach was also already described in ref 9. It is based 

on the adaptation of a recent approach proposed by Bahar and co-workers to the analysis of 

all-atom MD simulation trajectories. The analysis of signal propagation, which was 

developed based on elastic network models,23 defines signal transduction events in proteins 

as directly related to the fluctuation dynamics of atoms, defining the communication 

propensities (CP) of a pair of residues as a function of the fluctuations of interresidue 

distances. Residues whose Cα–Cα distance fluctuates with a relatively small intensity 

during the trajectory are supposed to communicate more efficiently than residues whose 

distance fluctuations are large. In the former case, a perturbation at the one site, affecting the 

Cα position, is likely to be visible (reflected) at the second site, while in the latter case, the 

communication is less efficient due to the intrinsic amplitude of the distance fluctuations. 
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The CP of any two residues is defined as the mean-square fluctuation of the interresidue 

distance defining dij = | r i − r j| as distance between the Cα atoms of residues i and j, 

respectively:

CP = 〈(dij − dij, ave)2〉

By projecting these quantities on the 3D structures of the protein bound to different ligands, 

it will be possible to identify possible differences in the interdomain and interprotomer long-

range redistributions of interactions.

The CP was calculated for any pair of residues during the trajectory. It is worth noting that 

CP describes the distance fluctuation of the two residues, therefore, low CP values 

characterize residues that move in a highly coordinated fashion and hence may be involved 

in the efficient relay of conformational signals.9 The average CP value for consecutive 

amino acids along the sequence, calculated considering for each residue i the neighbors 

comprised between i − 4 and i + 4, is 0.025. The average CP value for residues distant more 

than 40 Å is 0.12. In the presence of ATP, around 1% of residue pairs have CP < 0.025 even 

if they are at distances larger than 40 Å.9 Therefore, in the presence of ligands, a number of 

very distant residues may have a low CP value and display high coordination despite their 

physical separation, and we set CP = 0.025 as a convenient threshold for discriminating high 

dynamic coordination at long distance. CP values at increasing distances were scanned 

through histogram analysis. Each bin of the histogram refers to a residue and gives the 

fraction of residues that have high coordination with it (CP < 0.025) at distances larger than 

an increasing cutoff of 40, 60, and 80 Å, respectively. Residues corresponding to histogram 

peaks define regions that are specifically involved in efficient long-range correlations. 

Results of the analysis are fully reported in ref 9.

Upon increase of the residue–residue distance in the CP scanning histograms, some peaks 

become progressively smaller or disappear, since the fraction of effectively coordinated 

residues decreases at longer physical distances. On the other hand, since the total number of 

possible pairs also decreases with increasing distance, for some residues the fraction of 

highly coordinated partners may grow at longer distances, and those residues we define to be 

strongly active in long-range signaling.

The residues in the C-terminal preserving the most efficient communication propensities 

with the ATP site were used to define the possible allosteric-binding pocket. They comprise 

the NTD residues 81–95 and 121–140 (Hsp90 residues numbering as in the pdb entry 2CG9) 

that have a long-range signaling propensity with segments 574–580 and with the two C-

terminal interface helices, made of residues 645–654 (helix 4) and 661–671 (helix 5), 

respectively.

MD-Based Pharmacophore Modeling.: Hsp90 dimer conformations were collected at 

every 0.5 ns of the final 20 ns MD trajectory using the GROMACS software package and 

superimposed at the putative C-terminal binding pocket, i.e., residues 475–477, 591–595, 

602–603, and 652–657 of one monomer and residues 502–504, 591–595, and 656–662 of 
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another. Superimposition was performed based on backbone atoms. GREATER v1.2.2, the 

graphical user interface for GRID v22a, was used to calculate molecular interaction fields 

(MIFs) with the probes DRY (hydrophobic), O (sp2 carbonyl oxygen) and N1 (neutral flat 

amide NH).24 The protein was considered rigid and a 31 × 27 × 18 Å grid box was centered 

at the binding pocket. Grid spacing was set to 0.25 Å. Local energy minima, defined as 

isocontours from probes DRY (−0.8), O (−7), and N1 (−7 kcal/mol), were represented with 

the VMD software v1.8.6.25 Binding pocket regions with consistently favorable interactions 

along the MD trajectory were used to define 3D pharmacophore features of a 

pharmacophore hypothesis for Hsp90 C-terminal binding.

Pocket analysis was also carried out with the PocketFinder module of the ICM suite.26 Probe 

atoms (carbon, oxygen, and nitrogen atoms) were placed at the center of higher density areas 

and converted into a pharmacophore hypothesis using the Catalyst ViewHypothesis 

workbench of the Catalyst v4.1.1 software. Local energy minima identified with the DRY, O, 

and N1 probes were converted into hydrophobic and hydrogen-bond acceptor and donor 

features, respectively. Flexibility was taken into account with 1.6 Å radium tolerances 

around each pharmacophore feature, i.e., spherical volumes where matching chemical 

groups should be located. Projection points from which the extended hydrogen-bond partner 

participates, i.e., Arg591 and/or Ser657 hydrogen bonding an acceptor group and Asp503 

and/or Ser602 hydrogen bonding a donor group, were created in order to mimic the location 

of their side chains during the MD simulation. Shape filtering was done by filling the 

common binding cavity along the last 10 ns MD trajectory with chemical probes (carbon 

atoms) and converting them into inclusion volumes using the convert molecule to shape tool 

of the Catalyst ViewHypothesis workbench. The minimum similarity tolerance was set to 

0.5.

The final pharmacophore hypothesis consisted of a 3D arrangement of six features (i.e., four 

hydrophobic regions and one each hydrogen-bond acceptor and donor) located at defined 

positions. These were surrounded by 1.6 Å radium tolerance spheres, assessing the area in 

space that should be matched by corresponding chemical functions of the virtual screening 

molecules. The hydrogen-bond acceptor and donor features additionally include a vector 

indicating the direction of the interaction. The desirable shape of the new virtual screening 

hits was delimited by a series of inclusion volumes. Table 1 reports on the distance 

constraints for the pharmacophore model generated.

Virtual Screening.: The NCI database was downloaded from the 2007 release of the ZINC 

library27 and converted into a multiconformer Catalyst database. A maximum of 100 

conformations, within a 20 kcal/mol energy range above the calculated global minimum, 

were generated for each molecule using the “FAST” conformational analysis model of 

catDB utility program. The pharmacophore hypothesis was screened using the “fast flexible 

database search” settings.

Docking of Known and Newly Discovered Compounds.: Initial models for novobiocin, its 

derivatives, and the selected small molecules described in the paper were generated using the 

standard building blocks of MAESTRO v8.5 and minimized with MACROMODEL 

v8.1,28,29 using the Merck molecular force field (MMFF),30 the Polak–Ribiere conjugate 
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gradient (PRCG) minimization method with an energy convergence criterion of 0.05 kJ/mol 

and the generalized Born equation/surface area (GB/SA)31 continuum solvation model with 

parameters for water (dielectric constant ε = 78). Five thousand steps of the systematic 

unbounded multiple minimum (SUMM) method implemented in MACROMODEL were 

used in order to allow a full exploration of the conformational space. Autodock Tools v1.5 

was used to prepare ligands and receptors for docking, namely, to remove water molecules, 

add hydrogens, compute Gasteiger charges,32 and merge nonpolar hydrogens. Side chain 

charges were assigned according to their pKa. Blind docking experiments on the whole 

Hsp90 C-terminus domain were performed with the novobiocin derivatives using AutoDock 

v4.0.33 Grid maps were generated with AutoGrid v4.0 using a 0.375 Å grid spacing. The 

Lamarckian genetic algorithm was employed for all docking runs. An initial population of 

150 individuals randomly placed on the Hsp90 C-terminus domain was created. Random 

orientations and torsions were used. The number of generations was set to 25 million, and 

the maximum number of energy calculations was set to 27 thousands. A mutation rate of 

0.02 and a crossover rate of 0.8 were used, and the local search frequency was set up at 0.06. 

Two hundred independent runs were performed for each compound with the parameters 

described above. Results differing by less than 2 Å in positional rmds were clustered 

together and represented by the result with the most favorable free energy of binding.

Initial geometries for the virtual screening hit compounds were collected from the ZINC 

database.27 Docking runs were limited to the allosteric binding pocket at the dimer interface.

Experimental Procedures.

Cell Viability, Elisa Tests, and Akt Folding. Cells and Cell Cultures.—Human 

prostate adenocarcinoma PC3 and lung adenocarcinoma H460 cells were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA) and maintained in cultures as 

recommended by the supplier. Human umbilical vein endothelial cells (HUVEC) were 

obtained from Clonetics. Rat A10 smooth muscle cells were the generous gift of Dr. Michael 

Conte, University of California, San Francisco.

Antibodies.—Antibodies to b-actin (Sigma-Aldrich) and Akt (CST, Inc., Danvers, MA) 

were used.

Binding Assays.—Plastic microtiter wells were coated with increasing concentrations (0–

150 μM) of the various compounds, blocked in 3% gelatin, and further mixed with 

recombinant full length Hsp90 or Hsp90 C-domain (residues 629–732, 1 mg/mL) produced 

in BL-21 E.Coli as a GST fusion protein, and further isolated from the GST frame by 

thrombin cleavage. After a 2 h incubation at 22 °C, compound binding under the various 

conditions tested was detected with an antibody to Hsp90, followed by a peroxidase-

conjugated secondary reagent and quantification of absorbance at 405 nm.

Cell Viability Analysis.—The various normal or tumor cell types (2 × 105/ml, 50 mL) 

were seeded in triplicates in 96-well plates and incubated with increasing concentrations of 

the various Hsp90-C terminus compounds (0–150 mM) for 16 h at 22 °C. At the end of the 

incubation, cultures were analyzed for cell viability by an 3(4,5-dimethyl-thyazoyl-2-yl)2,5 
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diphenyl-tetrazolium bromide (MTT) colorimetric assay with absorbance at 405 nm. In 

other experiments, tumor cell types were incubated with various concentrations of Hsp90 C-

terminus compounds, and whole cell extracts were analyzed by Western blotting.

Statistical Analysis.—Data were analyzed using the two-sided unpaired t test on a 

GraphPad software package for Windows (Prism). A p value of 0.05 was considered as 

statistically significant.

Cochaperone and Client Protein Interactions with Coimmunoprecipitation 
Assays. Cell Culture, Transfection, and Immunoprecipitation.—COS7 cells 

(American Type Culture Collection) were cultured in a temperature-controlled incubator (37 

°C and 5% CO2) in Dulbecco’s modified Eagle’s medium (DMEM) medium supplemented 

with 10% (v/v) fetal bovine serum (FBS), 10 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES, pH 7.0), 2 mM glutamine, 1 mM of sodium 

pyruvate, and nonessential amino acids (Biosource/Invitrogen). Cells were transiently 

transfected with pcDNA3 empty vector or pcDNA3 containing flag-tagged wild-type human 

Hsp90alpha by using FuGene6 (Roche Applied Science), following the manufacturer’s 

instructions. Twenty-four hours after transfection, cells were treated with 100 μM of 

indicated compounds for 1 h. Then, cells were lysed (20 mM HEPES, 100 mM NaCl, 1 mM 

MgCl2, 0.1% NP-40, 20 mM Na2MoO4, phosphatase inhibitor (Roche), and protease 

inhibitors(Roche)), and incubated with anti-flag antibody-conjugated beads (Sigma) for 2 h 

at 4 °C. Coimmunoprecipitated proteins were identified by immunoblotting with indicated 

antibodies recognizing Flag (Affinity Bioreagents), ERBB2 (Santa Cruz), CDK4 (Santa 

Cruz), p60Hop (Cell Signaling), p50Cdc37 (Neomarkers), p23 (Affinity Bioreagents), or 

AHA1 (Rockland). See also ref 34.

Results

Background: Hot Spots in Signal Transduction from the ATP-Site to the CTD.

Different dynamic states of Hsp90 can be switched on/off in response to the presence of a 

specific ligand at the ATP-binding site. In this context, we generated a computational model 

aimed to identify the substructures (subdomains, secondary structure elements, single 

residues) that play a relevant role in the dynamic communication between a certain binding 

site and distal regions of the protein implied in function. The results showed, at atomic 

resolution, that the identity of mediators of the cross-talk between N- and C-domains was 

dependent on the specific nucleotide activating differential functional motions. Briefly, in 

our approach, which builds on the work of Chennubotla and Bahar,23 the CP between any 

two residues, as a function of fluctuation of their distance components, is evaluated. CP 

describes a communication time; therefore, low CP values are related to efficiently 

communicating residues. The threshold for high communication efficiency is the CP value 

calculated for four consecutive residues along the sequence. Hot spots for signal 

transduction are identified by calculating for each residue the fraction of all other protein 

residues that have high communication efficiency with it (CP lower than the threshold) at 

distances larger than an increasing cutoff of 40, 60, and 80 Å. Distant, physically separated 
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residues that have a more efficient communication than that defined by the “local” threshold 

define the regions specifically involved in efficient long-range signal transduction.9

This analysis illuminated different pathways of signal transduction that selectively depend 

on the ligand identity. In particular, specific clusters of residues participate in the signal 

transduction from the N-terminal nucleotide-binding site to the CTD. In the ATP-bound, 

active form of the chaperone, long-range communication from the binding site is mainly 

directed to residues at the CTD interface. In particular, NTD residues 81–95 and 121–140 

involved in ATP recognition (residue numbering from 2CG9.pdb) show a consistently high 

long-range coordination with segments 574–580 and with the C-terminal interface helices, 

made of residues 645–654 (helix 4) and 661–671 (helix 5), respectively (see Supporting 

Information, Figure S1).

Identification of Allosteric Pockets.

The C-terminal interface region with higher communication propensity with the distal ATP-

binding site was then subjected to structural investigation to detect potential binding sites 

centered on the communication hot spots. Cluster analysis of the trajectories was used to 

identify the most representative conformations of the CTD. Individual frames were grouped 

into 21 clusters, with the most populated five accounting for 84% of the structural diversity.

These representative structures and the original crystal structure (2CG9.pdb) were subjected 

to analysis with the pocketFinder module of the ICM software,26 complemented by visual 

inspection. Nine potential binding pockets with volume and area suitable for interaction with 

drug-like compounds were identified in the X-ray crystal structure (Scheme 1, Table 2, and 

Figure S1b,c of the Supporting Information). Interestingly, only pocket A is consistently 

detected in all representative MD conformations, increasing in volume and area and defining 

a binding tunnel at the dimer interface suitable to accommodate small compounds able to 

interact directly with the hot spot residues involved in efficient long-range coordination 

(Figure 1a, Table 2, and Figure S1c of the Supporting Information).

Allosteric Inhibitor Discovery: Pharmacophore Modeling Based on Signal Transduction 
Information.

Next, we used the information on signal transduction, conformational states spanned by hot 

spot residues, and conformational properties of pocket A together with the analysis of their 

chemical properties to develop pharmacophore models for virtual screening of small 

molecule databases. The pharmacophores are designed to recapitulate the complementary 

interactions necessary to guarantee productive binding with the putative allosteric site.

Structures from the final 20 ns of the MD simulations were used. Local molecular 

interaction fields (MIF) minima were calculated at the allosteric site with the GRID force 

field and probes accounting for hydrophobic (DRY) and hydrogen-bond acceptor (O) and 

donor (N1) interactions.35 Isosurfaces at −0.8 kcal/mol derived from the DRY probe 

highlight four hydrophobic regions related to favorable interactions with apolar residues, 

such as Met 603, Leu 652, Phe 656, Leu 658, and Pro 661 (Figure 1b). Surfaces defined at 

an energy level of −7 kcal/mol with the probes O and N1 identified two regions prone to 

hydrogen bonding, one of these acting mainly as acceptor from Arg 591 and Ser 657 (Figure 
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1b) and the other as donor to Asp 503 and Ser 602 (Figure 1b). The fluctuations in the 

positions, distances, and dihedral angles among the side chain functionalities of these critical 

residues were used to define the average and upper and lower boundaries in the positioning 

of the hydrogen-bond donor functions of the pharmacophore.

Taken together, these interactions defined a six-feature pharmacophore model for the virtual 

screening of new C-terminus targeted inhibitors of Hsp90 (Figure 2). The size and shape 

features of the new compounds were filtered with a set of inclusion volumes defined based 

on the radius and shape of pocket A at 65.2 ns of the MD simulation.

Allosteric Inhibitors: New Hits through Pharmacophore Guided Virtual Screening.

The new allosteric pharmacophore model was used to perform a screening search of the NCI 

repository. The database contains a library of more than 290 000 compounds. Filtering of the 

database with the pharmacophore returned 36 hits (Figure 2), corresponding to 0.01% of the 

database.

Experimental Tests on Newly Discovered Hsp90 Inhibitors Targeting the C-terminal.

Fourteen of the selected compounds resulting from the virtual screening could be obtained 

from the NCI and tested for affinity for the Hsp90 full-length protein, the CTD, for their 

effects on cancer and normal cell viability, for the induction of degradation of specific 

Hsp90 client proteins, and for their activity in disrupting Hsp90 association with 

cochaperones.

Molecular Interactions between Selected Molecules and Hsp90.—By ELISA 

tests several of the discovered lead compounds (namely 6, 8, 9, 11, 12) bound the 

recombinant isolated Hsp90 C-domain in a specific and saturable manner (Figure 3a). 

Functionally, treatment of lung adenocarcinoma H460 or prostate adenocarcinoma PC3 cells 

with the selected compounds resulted in a concentration-dependent loss of cell viability 

(Figure 3b). This response was specific for inhibition of cancer-related signaling, as the 

implicated compounds did not reduce the viability of normal A10 smooth muscle cells or 

human umbilical vein endothelial cells (Figure 3b).

Selected Hits Inhibit Hsp90 Chaperone Function and Impact on Hsp90 
Association with Cochaperones.—We next asked whether the cytotoxic effect exerted 

by compounds 6, 8, 9, 11, and 12 was due to loss of Hsp90 client proteins resulting from 

inhibition of chaperone function. Consistent with this model, a preliminary analysis of 

compounds 6, 8, and 9 induced a concentration-dependent loss of the Hsp90 client protein, 

the kinase Akt, in tumor cells. Selected compounds were active in a concentration range 

between 25 and 100 μM, with activities comparable to those of known C-terminal inhibitors. 

As control, compound 5, which showed no effect on tumor cell viability, did not reduce Akt 

levels in tumor cells (Supporting Information, Figure S2).

Selected compounds were also tested in a different experimental setting (see Materials and 

Methods in Supporting Information) using coimmunoprecipitation assays to probe the 

interaction of Hsp90 with client and cochaperone proteins. In this test, compound 6 clearly 
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disrupted interactions with two kinase client proteins ERBB2 and CDK4. Moreover, 

compound 6 was shown to impair the binding of cochaperones p23, p50, and Aha1. While 

Aha1 interacts with the middle segment of Hsp90, p23 and p50 bind Hsp90 at the NTD. 

Since compound 6 is selected to interact with the CTD, these data suggest that it likely alters 

Hsp90 conformational equilibrium affecting client and cochaperone binding via an allosteric 

mechanism. Interestingly, compound 6 emerged as the only one able to slightly reduce 

Hsp90 association with p60, a cochaperone known to bind to the CTD. Binding of the 

inhibitor at the CTD may directly interfere with the physical binding of p60 at the same 

region of the protein (Figure 4).

The coimmunoprecipitation experiments also showed that compound 8 could dramatically 

disrupt ERBB2/Hsp90 association at 75 and 100 μM doses, supporting the validity of the 

computational design approach (Figure 4).

Overall, these results confirm the validity of the computational approach taking the full 

dynamics of the protein into account to discover new allosteric sites.

Binding Poses of the Hits in Hsp90 CTD.

The molecular interactions of the compounds identified through the allosteric dynamic 

pharmacophore with the Hsp90 CTD were characterized via computational docking and 

analysis. The allosteric binding pocket is a small tunnel located at the dimer interface, 

delimited by residues 474–487, 502–503, 591–599, 602–603, and 652–657 from one 

monomer and residues 502–504, 591–595, and 656–662 from another (pocket A, Figure 1, 

and Figure S1, Supporting Information). Although already present in the Hsp90 crystal 

structure, the shape of the newly found putative site increases its binding complementarity to 

C-terminus inhibitors during the MD simulation, in the absence of the inhibitors. Multiple 

structures from the MD simulation of the ATP-complex were used as targets. This is 

equivalent to describing relevant representatives of the ensemble of conformational states, 

taking flexibility of the whole protein into account.

Binding poses and theoretical affinities were calculated and the results are reported in Table 

S1 of the Supporting Information. The whole CTD surface was scanned, and the active 

compounds were observed to dock selectively and favorably in the proposed allosteric 

pocket, consistent with MD simulations and pharmacophore analysis (Figure 5). These 

molecules show a good shape complementarity to pocket A at the dimer interface, 

establishing hydrogen bonds and hydrophobic contacts with the proposed allosteric hot spot 

residues.

Finally, we docked Hsp90 inhibitors targeting the CTD derived from the literature to the 

newly discovered allosteric pocket to further validate our approach through structure–

activity relationships. No experimental structural information is available on complexes 

between CTD and these inhibitors. Novobiocin (IC50 700 μM) and the more potent related 

derivatives ND-1 (active at 100 μM) and ND-2 (active at 40 μM)36,37 (Supporting 

Information, Figure S3) were thus docked to the full CTD. The calculated affinities are 

reported in Table S2 of the Supporting Information, along with the contacts established by 

the docked drugs with signal transduction hot spots. Interestingly, estimated binding 
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energies with novobiocin and related derivatives resulted in good agreement with their 

relative inhibition potencies. The strongest protein–small molecule interactions with 

novobiocin (−6.02 kcal/mol) and compounds ND-1 and ND-2 (−6.62 and −8.14 kcal/mol, 

respectively) were found with the representative structure of cluster 2 (65.2 ns frame of the 

MD simulation). The three compounds make contact with residues belonging to the 

communication hot spot structures. Of critical importance is the disruption of a salt bridge 

between Glu 477 and Arg 591 after approximately 60 ns that increases the size and the 

volume of the binding site and improves the calculated binding affinity for compounds ND-1 

and ND-2.

The qualitative good correlation between the calculated affinities and the experimental 

activities of the small molecules constitutes an encouraging validation of the target and of 

the use of information from signal transduction analysis in the detection of putative 

allosteric binding sites.

Discussion

The discovery of new allosteric sites may offer novel opportunities in the identification of 

new drugs and in the understanding of fundamental biological processes. While consensus is 

increasing on the importance of allosteric motions in the context of protein functional 

control and regulation, the relevance of using these concepts in drug design has not been 

fully exploited.8,38,39 Discovering and targeting allosteric sites can in fact lead to the 

expansion of the chemical space of leads and to new classes of drugs. Most importantly, the 

discovery of new molecules targeted to allosteric sites may represent a viable strategy in the 

search for new protein–protein interactions inhibitors.40

Protein conformational plasticity and dynamics appear to be critical for allosteric events. In 

the current view of allostery, a protein populates a certain ensemble of dynamic 

conformational states at equilibrium, and perturbations induce a shift in the relative 

populations of states. Signals coded by covalent or noncovalent modifications can be 

transmitted long-range through pre-existing pathways4,6 that depend on the inherent 

topological architecture of the protein. At a more refined level, the selection of specific 

communication pathways between physically separate sites depends on the fine chemical 

properties of the modification or the binding partner. Results from several research groups 

have revealed the existence of alternative interaction networks with a link to dynamic 

motions,41–44 showing that preferred relatively small, local fluctuations in proteins lead to 

functionally active states.

In this paper, we have built on our previous results on the atomic level characterization of the 

correlations between dynamics, long-range coordination, and allosteric communication 

between the physically distant N- and C-domains in full-length Hsp90 to develop a new 

strategy for computational discovery of allosteric inhibitors. Hsp90 dynamic and functional 

properties appeared to be highly responsive to the presence of a specific nucleotide in the 

ATP-site at the N-domain. Once the principal signal transduction pathways and the 

correlated hot spot residues that act as communication mediators between the ATP-site and 

the C-terminal interface have been revealed,9 the translation of this structural dynamical 

Morra et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information into 3D receptor-based pharmacophore models allowed us to rationally discover 

new C-terminal ligands able to interfere with the chaperone function.

In this framework, we have focused on the activated form of Hsp90, which represents an 

important target for cancer drug discovery. Our signal transduction model revealed that the 

most efficient long-range communication (over >60 Å) from the binding site is mainly 

directed to a specific subset of residues at the CTD interface. Conformational analysis of the 

whole simulation trajectory showed that this site could populate a set of conformations apt to 

optimally accommodate known CTD targeted inhibitors. Docking of novobiocin and related 

derivatives to different representative protein conformations actually provided 

semiquantitative correlations between the activities of the compounds and their calculated 

binding energies.

We set out to search for new molecules targeting the newly discovered putative C-terminal 

allosteric site. The aim was to cause a disruptive interference in the network of interactions 

coding for the collective motions related to the chaperone functional activity. Our rationale 

was that the new hits should perturb the dynamics of the CTD substructures important for 

signal transduction with the NTD and interfere with the chaperone molecular recognition 

properties, thus disrupting association with cochaperones necessary for function and 

ultimately blocking client folding. To this end, we developed a pharmacophore model with 

complementary functionalities for the C-terminal allosteric site, using multiple protein target 

structures to take the flexibility of the whole protein into account. The dynamic 

pharmacophore was then used to screen the NCI small molecule database. Strikingly, 

experimental tests proved that selected molecules bind the CTD of Hsp90. Moreover, they 

had important effects on the viability of two independent cancer cell lines (H460, lung e 

PC3, prostate), while affecting to a significantly lower degree the two normal cell types 

(endothelial cells and vascular smooth muscle). Compounds 6, 8, and 9 were demonstrated 

to inhibit Hsp90 chaperone function, as shown by the effects on the levels of Akt, an 

established Hsp90 client protein that requires a fully functional chaperone activity for 

folding and stability. Using a different experimental approach, compound 6 and 8 were 

confirmed to disrupt association with two more client proteins. Most importantly compound 

6 was shown to affect binding to a specific subset of cochaperones, reducing the association 

of Hsp90 with p23, p50, Aha1, and p60.

Interestingly, p23 and p50 bind to Hsp90 NTD, while the activity of Aha1 and Akt depends 

on interactions with the M-domain.45 Since the selected molecules interact directly with the 

C-domain, they likely alter Hsp90 molecular recognition properties by influencing its 

dynamics through an allosteric mechanism.

Consequently, these hits represent new leads for the development of allosteric drugs that act 

by tweaking the functional dynamics of the protein toward an inactive state.

The fact that molecule 6 and 8 resulted the only active hits in this second series of 

experiments does not exclude that the other derivatives may show similar effects under 

different experimental conditions. The coimmunoprecipitation assays are in fact based on 

Hsp90 overexpression with a drug incubation time of 1 h. Different compounds may have 
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different binding kinetics and affinities for the chaperone, determined by specific on/off rates 

or different diffusion properties within the cell. The incubation time allowed for these first 

control experiments thus may not be sufficient to break client/cochaperone interactions.

It is worth noting at this point that compound 6 reduces the interaction between Hsp90 and 

the cochaperone p60, which is known to bind the CTD. Consequently, this lead also appears 

to perturb the molecular recognition properties of the CTD.

Importantly, the selected hits induce the disruption of Hsp90 complexes with important 

kinase client proteins and with cochaperones that are fundamental for Hsp90 functional 

activity through both the allosteric mechanisms and the abrogation of direct interactions with 

the CTD. This indicates that our hits act simultaneously on different biological pathways 

important for cancer development. It is important to underline here that the activities of our 

hits are still far from the ones required for efficient pharmacological applications. However, 

the scope of our endeavor was to identify active hits using information on an allosteric 

pocket obtained directly from the study of the dynamics of a complex molecular machine. 

Optimization of the structures through medicinal chemistry design and synthesis are 

currently underway.

From the applicative point of view, the possibility to rationally discover molecules that are 

active via allosteric and/or direct effects may facilitate the design of experiments aimed to 

disrupt specific interactions and to report on the behavior of the system/pathway in which 

the interaction is involved. All of these aspects may be important in the development of new 

cancer chemotherapeutics and in increasing our understanding of fundamental biochemical 

processes.

Moreover, we think that strategies similar to the one presented here, in which the dynamics 

of the target is explicitly taken into account, may be applied to the discovery of inhibitors of 

protein–protein interactions or of possible drug-binding sites for targets that are not easily 

druggable. In the former case, by carrying out an atomic resolution analysis of the protein’s 

internal dynamics and coordination, it may be possible to isolate the interaction surfaces that 

are endowed with specific flexibility properties and that need specific remodeling for the 

molecular recognition and binding of a second protein partner. In the latter case, the 

knowledge of internal coordination may be exploited to identify sites where binding of a 

small molecule can induce the perturbation of important functional motions, resulting in the 

inhibition of the function of the protein or enzyme under exam.

Our findings point to several features that make approaches, such as the one presented here, 

attractive for the discovery and development of allosteric inhibitors of protein functions and 

interactions. The concept of using a combination of structural, dynamic, and long-range 

correlation information led us to rationally discover a new and diverse set of chemical 

structures with drug-like properties able to target allosteric sites very distant from the active 

site. In this context, we could expand the molecular diversity space of Hsp90 antagonists, 

selecting molecules with promising anticancer activities.

Incorporating information on functional dynamics, internal residue–residue coordination, 

and protein flexibility can help unveil possible binding states of the receptor that are 
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available on the protein’s energy landscape but may not be immediately evident in a single-

structure representation. The discovery of alternative states can thus unveil possible 

allosteric binding sites, allow structurally different ligands to occupy the same site, or guide 

design efforts aimed at the functional and structural modification of existing leads to target-

specific receptor geometries.

Overall, the use of biophysical and computational models taking dynamic and 

communication into account combined with pharmacophore development and screening 

may be useful to find new chemotypes for specific functions, to increase the yields of drug 

screening, and to help design new allosteric leads with important therapeutic opportunities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pharmacophore model and resulting small molecules. (a) 3D representations of potential 

ligand binding pockets identified with the ICM pocketFinder module on the CTD of the 

Hsp90 dimer from X-ray crystal structure and from the representative structure 

corresponding to 65.2 ns of the MD simulation (cluster 2). Pocket A located at the dimer 

interface increases in area, volume, and number of contacts with the communication hot spot 

residues represented with a red ribbon. (b) Isosurfaces for the DRY, O, and N1 probes from 

the GRID force field in the putative allosteric pocket. DRY probe highlights four 

hydrophobic regions related to favorable interactions with apolar residues, such as Met 603, 

Leu 652, Phe 656, Leu 658, and Pro 661. O and N1 probes identify two regions prone to 

hydrogen bonding, one of these acting mainly as acceptor from Arg 591 and Ser 657 and the 

other as donor to Asp 503 and Ser 602, respectively.
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Figure 2. 
The pharmacophore and selected hits. The resulting six-feature pharmacophore and the 

molecular structures of the compounds selected from virtual screening with the 

pharmacophore model of the NCI database.

Morra et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2020 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Small molecules bind to Hsp90 CTD and affect cancer cell viability. (a) ELISA. Microtiter 

wells were coated with the indicated increasing concentrations of small molecules and 

incubated with recombinant full-length or C-domain of Hsp90. Binding was determined 

using domain-specific antibodies to Hsp90 and quantified by absorbance at OD405. Data are 

the mean ±SEM of three independent experiments. (b) Inhibition of cell viability in H460 

and PC3 cancer cell lines, and normal smooth muscle cells A10 and HUVEC cells, as 

evaluated by cell counting after a 24 h exposure to the selected small molecules. Values 

represent the mean (±SD) of three independent experiments.
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Figure 4. 
Inhibition of Hsp90 chaperone function. Client and cochaperone binding to Hsp90 is 

inhibited by small molecules 6 and 8. COS7 cells were transfected with wild-type Flag–

Hsp90. After incubation, cells were treated with 100 μM of the indicated Hsp90 inhibitor for 

1 h. Then, cells were lysed, and proteins were immunoprecipitated (IP) by a Flag antibody-

conjugated agarose. Indicated coprecipitating proteins were detected by immunoblotting.
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Figure 5. 
Binding of new hits (compounds 6 and 8) into the Hsp90 dimer. Lowest binding energies 

were obtained with a MD representative conformation (cluster 2, time = 65 200 ps). The 

protein complex is shown in a ribbon representation colored by a chain with the putative 

communication hot spot residues colored in red. The Hsp90 C-terminal binding pocket 

(pocket A) is shown as an orange line mesh and protein–ligand hydrogen bonds are 

represented with spheres.
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Scheme 1. Computational Biology Strategy for the Selection of Allosteric Inhibitors Exploiting 
Protein Dynamicsa

a From the analysis of the dynamics of the activated state of the protein (Hsp90 bound to 

ATP), the hot spot residues active in mediating signal transduction are identified. Analysis of 

possible binding pockets centered on these residues identifies putative allosteric binding 

sites. A consensus model of functional interactions with the hot spots together with 

structural shape constraints is used for pharmacophore modeling. The ensemble-based 

approach ensures the incorporation of receptor flexibility into the pharmacophore model. 

Small molecule databases are then screened for leads fitting with the pharmacophoric 

hypothesis, and selected hits are tested experimentally.
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Table 1.

Pharmacophore Conformational Properties
a

HYD1 HYD2 HYD3 HYD4 HBA

HYD2 2.6

HYD3 9.9 7.9

HYD4 13.4 11.7 4.5

HBA 9.8 8.1 5.3 5.6

HBD 15.8 14.1 7.0 2.6 7.1

a
Distance constraints in Å.
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