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Abstract

Many environmental carcinogens cause DNA damage, which can result in mutations and other 

alterations in genomic DNA if not repaired promptly. Because of the bulkiness of the lesions, 

DNA-protein crosslinks (DPCs) are one of the types of toxic DNA damage with potentially 

deleterious consequences. Despite the importance of DPCs, how cells remove these complex DNA 

adducts has been incompletely understood. However, major progress in the DPC repair field over 

the past five years now supports the view that cells are equipped with multiple mechanisms to 

cope with DPCs. Here, we first provide an overview of environmental substances that induce 

DPCs, describing the sources of exposure and mechanisms of DPC formation. We then review 

current models of DPC repair and discuss their significance for environmental carcinogens.
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Introduction

According to International Agency for Research on Cancer (IARC), approximately 9.6 

million deaths were estimated to be caused by cancer in the world in 2018 (Ferlay et al. 

2019), making cancer the second leading cause of global deaths. Roughly 20% of these 

cancers are estimated to be attributable to environmental sources, including household air 

pollution, ambient air pollution and occupational exposures (Prüss-Üstün et al. 2016). 

Because carcinogenesis is strongly linked to DNA damage and mutagenesis, a better 

understanding of how carcinogens generate DNA damage and how cells deal with those 

DNA lesions is critical for assessing and mitigating health risk.
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DNA-protein crosslinks (DPC) are a common type of DNA damage. During fundamental 

cellular activities such as DNA replication, transcription and DNA repair, numerous proteins 

bind to DNA. These DNA-protein interactions are mostly noncovalent and precisely 

regulated to prevent unnecessary binding and conflicts among DNA-binding proteins. 

However, because of the proximity to DNA, these DNA-binding proteins can also be 

crosslinked and trapped on DNA when exposed to reactive substances from the environment 

(Fig. 1). Compared with other DNA adducts, DPCs are extremely bulky and, therefore, 

difficult to repair because access of repair proteins can be hampered by steric interactions. 

As a consequence, burdensome DPCs persist on DNA and cause conflicts with the 

replication and transcription machineries (Nakano et al. 2012; Duxin et al. 2014; Ji et al. 

2019; Larsen et al. 2019). Collisions of replication forks with DPCs cause fork stalling and 

eventually lead to double strand breaks (DSBs), which are one of the most toxic lesions for 

cells (Zeman and Cimprich 2014). Moreover, collisions of the transcription machinery can 

block transcription and cause transcriptional errors such as deletions and substitutions 

around DPC sites (Nakano et al. 2012). Thus, persistent DPCs impact cellular functions and 

challenge genomic integrity, possibly mediating carcinogenic effects of environmental 

carcinogens (Fig. 1).

In this review, we evaluate DPC formation induced by environmental substances, introduce 

current models of DPC repair pathways, and discuss potential contributions of DPCs to 

environmental risks.

I. DNA-protein-crosslinking agents in the environment

Potential carcinogenic effects of environmental agents are assessed by epidemiologic 

studies, bioassays using experimental animals or cells, and molecular studies. Based on 

these results, IARC and other organizations such as U.S. Environmental Protection Agency 

(EPA) categorize potential carcinogens. In the IARC categories, substances are classified 

from 1 to 3 (1: carcinogenic, 2A: probably carcinogenic, 2B: possibly carcinogenic, 3: not 

classifiable) regarding the weight of evidence for carcinogenicity in humans, i.e., how much 

the carcinogenicity is reliably supported by scientific data, but not the degree of toxicity 

(IARC 2019). In this list, there are well-known DPC-inducing substances such as 

formaldehyde, 1,3-butadiene and hexavalent chromium, all of which are assigned to 

category 1. Here, we describe these DPC-inducing substances and summarize how those 

were identified as carcinogens.

Formaldehyde—Formaldehyde, which is widely used in building materials such as 

composite wood products, glues and coatings, can be released into indoor air from these 

products. Formaldehyde is also produced and emitted into the air by tobacco smoking and 

incomplete combustion in automobile engines and stoves. In addition, workers at factories 

that produce formaldehyde-containing products, as well as professionals such as anatomists, 

pathologist and funeral industry workers who directly handle formaldehyde to preserve 

biological specimens, are at higher risk of occupational exposure to formaldehyde.

Carcinogenicity of formaldehyde was already suspected in 1970s because of its chemical 

reactivity to cause a crosslink between molecules. In addition, mutagenic effects of 
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formaldehyde had been demonstrated in bacteria, fungi, yeasts and flies (Auerbach et al. 

1977). Later, carcinogenicity of formaldehyde was shown in animal experiments in which 

rats exposed to high concentrations of formaldehyde by inhalation developed squamous cell 

carcinoma in nasal passages (Swenberg et al. 1980; Kerns et al. 1983). Increased cell 

proliferation following formaldehyde exposure was also reported in rat nasal epithelia in a 

concentration-dependent manner (Monticello et al. 1990; Monticello et al. 1996). Consistent 

with these animal studies, extensive epidemiologic studies revealed an increased incidence 

of nasopharyngeal carcinoma in formaldehyde-related workers (Hauptmann et al. 2004; 

Swenberg et al. 2013). In addition to cancers in nasopharyngeal region, 

lymphohematopoietic and brain cancers are also suspected to be caused by formaldehyde 

inhalation (Beane Freeman et al. 2009; Hauptmann et al. 2009).

The carcinogenic effects of formaldehyde are due to its chemical reactivity with 

biomolecules in cells. In general, an aldehyde group can react with nucleophiles such as 

amine and thiol groups, generating formaldehyde adducts on DNA and protein. In addition 

to these simple adducts, formation of a Schiff base intermediate after the first reaction with 

an amine allows the second reaction with another amine (or thiol), resulting in formation of 

various crosslinks, including DPCs, DNA inter-strand crosslinks (ICLs) and intra-strand 

crosslinks (Fig. 2A) (Tretyakova et al. 2015). In the case of DPC formation, in vitro 
experiments showed that crosslinks are generated most frequently between lysine residues in 

protein and guanosine in DNA (Lu et al. 2010).

Ultra-sensitive mass spectrometry has been used to quantitate DPCs induced by 

formaldehyde exposure in the tissues of rats and monkeys (Lai et al. 2016). A major 

advantage of this method is that, by using isotope-labeled formaldehyde for the exposure, 

DPCs generated by exogenous formaldehyde can be distinguished from those caused by 

endogenous formaldehyde, which can be produced as a metabolic byproduct. In this study, 

DPCs caused by exogenous formaldehyde were detectable in nasal epithelium but not in 

other distal tissues such as peripheral blood mononuclear cells, bone marrow and the liver. 

This is consistent with the results of animal studies, which showed nasopharyngeal 

carcinoma formation in exposed rats (Swenberg et al. 1980; Kerns et al. 1983).

Because formaldehyde also causes types of DNA damage other than DPCs, including ICLs 

and intra-strand crosslinks, it is difficult to estimate the contribution of DPCs to 

carcinogenicity of formaldehyde. However, one study showed that formaldehyde 

predominantly induced DPCs compared to ICLs using modified comet assays, which 

distinguished DPCs from ICLs by a proteinase K treatment (Merk and Speit 1999). This 

finding suggests that formaldehyde causes DPCs with high prevalence and, therefore, 

warrants further investigation into the role of DPCs in carcinogenic effects.

1,3-butadiene—1,3-butadiene can be produced and emitted from incomplete combustion 

of fuels. In addition, because 1,3-butadiene is used to manufacture synthetic rubbers, plastics 

and resins, workers in these industries are at higher risk of 1,3-butadiene exposure. 

Epidemiologic studies of U.S. workers exposed to 1,3-butadiene showed an increased 

incidence of lymphohematopoietic cancers, including leukemia and non-Hodgkin’s 

lymphoma (Acquavella and Leonard 2001). Bioassays using rats and mice with chronic 1,3-
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butadiene exposure demonstrated much stronger carcinogenicity than in humans. In these 

studies, cancers were induced in multiple sites such as blood, blood vessels, forestomach, 

ovary, mammary gland, liver and lung (NTP 1993). Differences in 1,3-butadiene sensitivity 

between humans and rodents may be explained by differences in metabolic activation of 1,3-

butadiene among species and other factors such as breathing rates.

Inhaled 1,3-butadiene is metabolized by cytochrome P450 (CYP450) isozymes to 1,2-

epoxy-3-butene and then to 1,2:3,4-diepoxybutane. The epoxy group reacts with 

nucleophilic residues such as thiols and amines. Accordingly, with two reactive moieties, 

1,2:3,4-diepoxybutane can generate crosslinks, including DPCs and ICLs, in addition to 

DNA adducts (Fig. 2B). Mass spectrometry-based proteomics detected many crosslinked 

proteins on DNA, including β-actin, GAPDH, PARP1 and AGT, in cells exposed to 1,2:3,4-

diepoxybutane (Michaelson-Richie et al. 2010; Gherezghiher et al. 2013). It was also shown 

that 1,2:3,4-diepoxybutane preferentially crosslinks the N-7 position of guanine and a 

cysteine or lysine side chain. Mutagenic analyses using tissue culture cells showed that 

diepoxide is more mutagenic than monoepoxide (Steen et al. 1997a; Steen et al. 1997b), 

raising the possibility that DPCs and/or DNA-DNA crosslinks underlie the higher 

mutagenicity of 1,2:3,4-diepoxybutane. While crosslinks induced by 1,2:3,4-diepoxybutane 

were shown to be predominantly ICL rather than DPCs by the modified comet assays (Wen 

et al. 2011), it remains unclear which lesion is responsible for the carcinogenicity of 1,2:3,4-

diepoxybutane.

Hexavalent chromium: Cr(VI)—Chromium, a common metal in nature, is widely used in 

industries for plating, painting and alloys. As a result of these uses, workers can be exposed 

to chromium through inhalation. Among oxidative states of chromium (0-VI), the metallic 

Cr(0), trivalent Cr(III) and hexavalent states Cr(VI) are common. Cr(VI) is especially known 

to be water soluble. Thus, chromium is also a common contaminant in drinking water.

Epidemiologic studies of workers in chromium-related industries revealed that chromium 

inhalation results in an increased lung cancer risk (Mancuso 1997a; Mancuso 1997b; Proctor 

et al. 2014; Yatera et al. 2018). Gastrointestinal cancer risk is also increased by chromium 

inhalation (Welling et al. 2015). In addition, gastrointestinal cancer may be associated with 

chromium exposure through ingestion of chromium, although only a few studies are 

available and the results varied among the studies (Sun et al. 2015). In animal studies, tissue 

injury, inflammation and increased markers for cell proliferation and survival (Ki67 and 

phosphorylation of Akt) were observed in lungs of mice after inhalation exposure to 

chromium, supporting the increased lung cancer incidence in epidemiologic studies (Beaver 

et al. 2009a; Beaver et al. 2009b). For oral exposure, carcinogenic effects were observed in 

oral cavity of rats and small intestine of mice after 2-year exposure to sodium dichromate 

dihydrate, although the exposure did not affect survival (Stout et al. 2009).

Toxicity of chromium depends on its valence state, with Cr(VI) having the strongest toxic 

effect. Cr(VI), such as chromate (CrO4
2−), can be actively transported into cells by anion 

transporters and then reduced intracellularly to reactive Cr(III). On the other hand, 

extracellular Cr(III) is less toxic to cells compared to Cr(VI). This is because Cr(III) can 

enter cells only by passive diffusion, which is less efficient than active Cr(VI) transportation 
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by anion transporters (Yatera et al. 2018). Therefore, extracellular reduction of Cr(VI) to 

Cr(III) by biologic fluids and other mechanisms is an important detoxification mechanism 

for Cr(VI). However, inhaled chromium-containing particles accumulate in bifurcations of 

the lung (Ishikawa et al. 1994), where high chromium concentrations might overwhelm local 

reduction capacity to reduce Cr(VI).

Cr(III) inside cells reacts with DNA and proteins to induce various types of DNA damage, 

including Cr(III)-DNA adducts, DPCs and ICLs (Fig. 2C) (Mattagajasingh and Misra 1996; 

Proctor et al. 2014; Tretyakova et al. 2015). Particularly germane to this review, Cr(III) 

reacts with DNA during or immediately after the reduction of Cr(VI) to Cr(III) and 

subsequently captures a protein to form a DPC (Macfie et al. 2010). In epidemiologic 

studies, detection of elevated DPC levels in lymphocytes was proposed as an indicator of 

chromium exposure (Zhitkovich et al. 1998). In rats, analysis of chromium-induced lesions 

in various organs at different times after intraperitoneal chromium injection revealed that 

chromium-induced DPCs persist longer than ICLs, suggesting the burdensome nature of 

chromium induced-DPC in vivo (Tsapakos et al. 1983).

In addition to DNA damage, epigenetic and transcriptional changes triggered by chromium-

induced DPCs have also been proposed as mechanisms of carcinogenic effects 

(Schnekenburger et al. 2007). In particular, chromium-induced crosslinking of the HDAC1-

DNMT1 complex to the promoter region of Cyp1a1 has been shown to inhibit activation of 

the gene. Because Cyp1a1is important for chemical detoxification in the response to 

benzo[a]pyrene exposure, its failed activation results in increased benzo[a]pyrene-DNA 

adducts in cells.

Taken together, these findings support the carcinogenicity of chromium exposure and the 

role of DPC formation in the process.

II. Potential DPC induction through indirect mechanisms

Environmental factors cause DPCs not only through direct crosslinking of proteins to DNA 

(Section I), but also through indirect mechanisms (Fig. 1). In this section, we will describe 

mechanisms in which DPCs can be induced indirectly by environmental carcinogens, such 

as generation of DNA and protein radicals and induction of abortive enzymatic reactions.

DPC formation through generation of radicals on DNA and protein—Some 

environmental substances can induce DPC formation indirectly via generation of radicals on 

DNA and/or protein. DNA and protein radicals can be produced by reactive oxygen species 

(ROS) and reactive nitrogen species (RNS). While these species are endogenously generated 

in cells through biological processes in mitochondria, peroxisomes, and the endoplasmic 

reticulum and other sites, many environmental factors are also known to induce these 

reactive species exogenously. For example, metals such as Cr, Ni, Cd, As, Pb and Be (Klein 

et al. 1991), quinones, (Bolton and Dunlap 2017), polycyclic aromatic hydrocarbons (PAHs) 

(Wilk et al. 2013), nitrogen oxides (NOx), sulfur oxides (SOx) and asbestos (Poljsak and 

Fink 2014) all produce ROS in cells. In highly polluted air, these environmental pollutants 

derived from motor and industrial exhaust, tobacco smoke and other sources are found in 

fine particulate matter (PM) (Adams et al. 2015; Lakey et al. 2016), inhalation of which 

Kojima and Machida Page 5

Environ Mol Mutagen. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



might cause ROS/RNS generation and free radical formation on DNA and protein. Other 

sources of radical formation include ionizing and ultraviolet irradiation. These types of 

radiation generate radicals on DNA and protein by transferring its energy to a water 

molecule, generating hydroxyl radical (OH˙) (indirect mechanism), or directly to nucleotides 

(direct mechanism) (Nakano et al. 2017).

Free radicals, which have one or more unpaired electrons in a molecule, are unstable and 

highly reactive. When reactive radicals are generated on DNA or side chains of amino acids, 

those moieties react with protein and DNA, respectively, to produce DPCs (Fig. 3A) 

(Dizdaroglu and Gajewski 1989; Tretyakova et al. 2015) containing Thy-Lys, Thy-Tyr, Cyt-

Tyr and Gua-Lys crosslinks (Cadet and Wagner 2013; Tretyakova et al. 2015; Nakano et al. 

2017). Of note, oxidative DNA damages caused by ROS/RNS can further induce DPCs by 

distinct mechanisms involving abortive enzymatic reactions (see below). Several studies 

demonstrated DPC formation in cultured cells and animals after exposure to ROS/RNS-

generating environmental substances, such as NiCl2 (Zhuang et al. 1994), arsenite (Ramirez 

et al. 2000; Bau et al. 2002), benzo[a]pyrene (a PAH) (Park et al. 2002), and SO2 (Sang et al. 

2009). Taken together, DPCs can be induced by environmental pollutants through DNA and 

protein radical formation.

DPC formation through abortive enzymatic reactions of topoisomerases—
DNA damage caused by environmental factors can indirectly cause DPC formation by 

covalent trapping of DNA processing enzymes such as topoisomerase I (TOP1) and 

topoisomerase II (TOP2) on DNA. TOP1 creates a nick and releases torsional stress of DNA 

while a TOP2 homodimer generates a double strand break and resolves DNA catenanes 

(Pommier et al. 2016). To cleave a DNA phosphodiester bond, DNA topoisomerases 

catalyze a transesterification reaction through their active site tyrosine, which results in 

formation of a covalent bond with DNA (TOP1: at the 3’-end; TOP2: at the 5’-end, Fig. 3B). 

These covalent bonds normally occur transiently and are reversed when the enzymes re-

ligate DNA. However, failures in the re-ligation step result in covalent trapping of these 

enzymes on DNA in a reaction intermediate state called a TOP1 or TOP2 cleavage complex 

(TOP1cc or TOP2cc, respectively). Importantly, DNA damage flanking the DNA incision 

inhibits re-ligation, resulting in formation of stable TOP1ccs and TOP2ccs. For example, in 

the case of TOP1, re-ligation can be blocked by base oxidation, base alkylation, an apurinic/

aprymidinic (AP) site, or a DNA adduct caused by PAHs, mostly when they are at −1 to +2 

position from the DNA incision. (Pourquier and Pommier 2001; Pommier et al. 2002; 

Pommier et al. 2016) (Fig. 3C). In addition, TOP1ccs are stabilized by nearby single strand 

breaks (SSBs), which are a common DNA lesion formed during base excision repair (BER, 

see below) of damages generated by environmental substances, or by ROS reacting with 

DNA backbone sugars. These SSBs generate DNA gaps or DSBs and prevent re-ligation 

(Fig. 3C) (Pourquier and Pommier 2001; Pommier et al. 2016). Therefore, environmental 

substances that induce these types of DNA damage could indirectly cause DPCs as a 

consequence of abortive enzymatic reactions of topoisomerases.

DPC formation through generation of AP sites—When environmental carcinogens 

induce DNA base damage such as oxidation and alkylation, AP sites can be generated 
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through the action of DNA glycosylases, which remove damaged bases during the process of 

BER (Jacobs and Schar 2012). In BER, the AP endonuclease APE1 creates a DNA nick at 

the 5’-end of an AP site, resulting in formation of 5’-deoxyribose phosphate (5’-dRp). In the 

case of short-patch BER pathway, Polβ performs 1-bp displacing DNA synthesis from the 

nick and removes the excluded 5’-dRp through its 5’-dRp lyase activity, which involves β-

elimination. However, spontaneous oxidization of an AP site inhibits the β-elimination 

reaction by Polβ, resulting in covalent trapping of Polβ (Fig. 3D) (DeMott et al. 2002; 

Quinones et al. 2015; Quinones and Demple 2016). Another enzyme, poly(ADP-ribose) 

polymerase 1 (PARP1), displays AP lyase activity at AP sites and can be trapped at 3’-end 

of AP site (Prasad et al. 2014). In addition, a recent study demonstrated that a protein called 

HMCES (5-Hydroxymethylcytosine Binding, ES Cell Specific) forms a DPC at exposed AP 

sites in single-stranded DNA to shield the sites from error-prone polymerases and 

endonucleases (Mohni et al. 2019). In this reaction, HMCES forms a covalent bond with an 

AP site through the α-amino group of the N-terminal cysteine, leading to formation of a 

stable thiazolidine DPC (Fig. 3D) (Halabelian et al. 2019; Thompson et al. 2019). In 

summary, environmental factors that cause base damage could indirectly induce DPCs 

through conversion of damaged nucleotides to AP sites and subsequent formation of DNA-

protein crosslinks.

III. Mechanisms of DPC Repair

Because of the diversity of DPCs in structure, size and context, cells employ a variety of 

repair mechanisms to resolve different DPCs. DPCs can be classified based on the structures 

of their DNA components. The most common type of DPC is a protein crosslinked to an 

intact DNA backbone. DPCs caused by crosslinking chemicals and radicals belong to this 

type. DPCs at a DNA nick can be divided into two types based on the position of the 

attached protein. Polβ DPCs and TOP2ccs (if one TOP2 subunit is trapped) are formed at 

the 5’-end of a DNA nick while TOP1ccs and PARP1 DPCs are attached at the 3’-end of a 

DNA nick. TOP2ccs can be stabilized at the 5’-end of DSBs if both of TOP2 subunits are 

trapped. In addition to these structural differences, other conditions such as cell-cycle phases 

and other processes such as DNA replication significantly affect the choice of DPC repair 

pathways. Here, we describe current knowledge of the mechanisms by which DPCs are 

processed and repaired depending on the situation (Fig. 4).

Degradation of DPC proteins by proteases—DPCs, which are generally bulky, limit 

the access of repair proteins due to steric hindrance. To solve this problem, cells employ 

various proteases to reduce the size of the protein component of DPCs, facilitate the 

downstream repair processes, and allow other cellular processes such as DNA replication to 

proceed.

(1) Replication-coupled proteolysis by SPRTN: A recent breakthrough in the DPC 

repair field is the discovery of the DNA-dependent metalloproteases Wss1 in yeasts and its 

counterpart SPRTN in higher eukaryotes (Stingele et al. 2014; Lopez-Mosqueda et al. 2016; 

Stingele et al. 2016; Vaz et al. 2016; Maskey et al. 2017; Morocz et al. 2017). SPRTN 

contains a metalloprotease domain SprT at its N-terminus and degrades DPC proteins in a 

replication-coupled manner to mitigate the effect of DPCs on DNA replication forks. 
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SPRTN depletion impairs removal of formaldehyde-induced DPCs and etoposide-induced 

TOP2ccs (Lopez-Mosqueda et al. 2016; Stingele et al. 2016; Morocz et al. 2017; Hu et al. 

2020). In addition, SPRTN depletion in human and mouse cells causes elevation of total 

levels of DPCs and accumulation of spontaneously stabilized TOP1ccs (Vaz et al. 2016; 

Maskey et al. 2017). Accordingly, cells lacking SPRTN are more sensitive to DPC-inducing 

chemicals such as formaldehyde as well as to camptothecin and etoposide, which stabilize 

TOP1ccs and TOP2ccs, respectively (Davis et al. 2012; Stingele et al. 2016; Vaz et al. 2016; 

Maskey et al. 2017; Morocz et al. 2017). These findings suggest that SPRTN plays a major 

role in the repair of DPCs produced endogenously and exogenously.

SPRTN appears to be particularly important for removing DPCs during replication. SPRTN 

levels are high in S and G2 phases (Mosbech et al. 2012). Moreover, SPRTN-mediated DPC 

repair requires S phase entry (Vaz et al. 2016). In agreement with these findings, cell-free 

DNA replication experiments using Xenopus egg extracts demonstrated that SPRTN 

promotes degradation of DPCs at DNA replication forks (Larsen et al. 2019).

SPRTN is regulated at several levels. The first known regulatory step is its chromatin 

recruitment, which is mediated by SPRTN mono-ubiquitination and is dependent on the 

ubiquitin-binding UBZ4 domain. Roughly a half of SPRTN is present in cells as a 

monoubiquitinated form, but chromatin-loaded SPRTN is enriched in the non-ubiquitinated 

form (Stingele et al. 2016). Thus, it appears that mono-ubiquitination blocks chromatin 

association of SPRTN. Formaldehyde treatment, but not other types of replication stress, 

leads to a reduction in monoubiquitinated SPRTN levels concomitant with an increase in 

SPRTN loading on chromatin. Thus, DPCs might signal for SPRTN deubiquitination, 

possibly through replication fork collisions, to increase SPRTN chromatin loading. However, 

it is currently unclear whether the chromatin loading of SPRTN represents its recruitment to 

replication forks stalled at DPCs. Indeed, how SPRTN is recruited to replication forks stalled 

at DPCs is not fully understood. The C-terminal region of SPRTN contains a PCNA 

interacting peptide (PIP) box and a UBZ4 domain; however, their requirement for SPRTN 

recruitment to replication forks is not clear (Maskey et al. 2017; Morocz et al. 2017; Larsen 

et al. 2019).

Another level of SPRTN regulation is at the level of enzyme activity. SPRTN is a DNA-

dependent metalloprotease that contains multiple DNA binding domains (Stingele et al. 

2016; Vaz et al. 2016; Morocz et al. 2017; Toth et al. 2017; Li et al. 2019). In biochemical 

experiments, double-strand DNA (dsDNA) partially activates SPRTN, causing degradation 

of only SPRTN itself, while single-strand DNA (ssDNA) can fully activate SPRTN and 

stimulate degradation of other proteins on DNA (Lopez-Mosqueda et al. 2016; Stingele et al. 

2016; Vaz et al. 2016; Morocz et al. 2017). In vitro studies using a cell-free replication 

system suggest that ssDNA is generated when a replicative helicase bypasses a DPC and this 

ssDNA exposure is required for SPRTN-mediated DPC degradation (Larsen et al. 2019; 

Sparks et al. 2019). This ssDNA exposure is assisted by an accessory DNA helicase, RTEL1, 

which unwinds dsDNA beyond the DPC. Thus, ssDNA exposure at DPCs might be a key 

signal for enzymatic activation of SPRTN.
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SPRTN has been shown to cleave only unstructured protein region in vitro (Vaz et al. 2016). 

Recent structural study of the SPRTN SprT protease domain further supported this notion by 

revealing its narrow substrate-binding groove (Li et al. 2019), suggesting that unfolding of 

substrates might be required for efficient degradation. Indeed, it was demonstrated that the 

p97 ATPase, an interactor of SPRTN that possesses protein unfolding activity, is important 

for SPRTN to process TOP1cc. In the case of TOP1cc degradation, p97 recruitment to 

TOP1ccs is assisted by a p97 co-factor, TEX264, which bridges SUMO-1-modified 

TOP1ccs and p97 (Fielden et al. 2020).

From these findings, an emerging model for SPRTN-mediated DPC repair is as follows: (i) 

the replication machinery encounters a DPC and ssDNA is exposed around DPCs, (ii) a 

possible deubiquitination step stimulates SPRTN-loading on chromatin, (iii) exposed ssDNA 

around DPCs fully activates the protease domain of SPRTN to degrade DPC proteins with 

possible involvement of cofactors, and (iv) SPRTN autocleavage potentially terminates its 

function.

(2) DPC proteolysis by the ubiquitin-proteasome pathway: The ubiquitin-proteasome 

system, which plays a central role in destruction of unfolded proteins and proteins with short 

half-lives, is also involved in degradation of DPC proteins. Many known DPCs such as 

TOP1ccs, TOP2ccs as well as DPCs containing Polβ, PARP1 or HMCES have been reported 

to be degraded by the proteasome (Desai et al. 1997; Mao et al. 2001; Quinones et al. 2015; 

Mohni et al. 2019; Prasad et al. 2019). DPCs induced by environmental carcinogens such as 

formaldehyde and Cr(VI) have also been shown to be degraded by a proteasome-dependent 

mechanism (Quievryn and Zhitkovich 2000; Zecevic et al. 2010). A recent in vitro study 

using Xenopus egg extracts revealed a detailed mechanism of poly-ubiquitination and 

proteasome-dependent degradation of DPC proteins (Larsen et al. 2019). Collision of a 

replisome with a DPC triggers stepwise poly-ubiquitination of the DPC protein, first by the 

ubiquitin E3 ligase TRAIP, which promotes helicase bypass of the DPC and subsequent 

ssDNA exposure, and then by a second currently unknown E3 ligase, which is thought to 

facilitate proteasomal degradation of DPC proteins. Through these mechanisms, the 

ubiquitin-proteasome pathway degrades DPC proteins independently of SPRTN but in a 

replication-coupled manner.

SUMOylation of DPCs is another mechanism of tagging DPCs for proteasomal degradation. 

In a Xenopus cell free system, replication-independent SUMOylation of DPC proteins has 

been reported (Larsen et al. 2019). In human cells, formaldehyde exposure induces global 

SUMOylation of chromatin proteins (Borgermann et al. 2019). In a seemingly analogous 

manner, treatment with 5-aza-dC, which induces DPCs containing the DNA 

methyltransferase DNMT1, results in SUMOylation of DNMT1 in a replication-independent 

manner, and this SUMOylation is required for subsequent ubiquitination and proteasomal 

degradation of DNMT1 DPCs. A similar role of DPC SUMOylation in inducing 

proteasomal degradation has also been reported with TOP1ccs and TOP2ccs (Sun et al. 

2019). In particular, SUMOylation of topoisomerase DPCs by the SUMO ligase PIAS4 and 

subsequent poly-ubiquitination by the SUMO-targeted ubiquitin ligase RNF4 induces 

proteasomal degradation of TOP1ccs and TOP2ccs. Although it remains to be seen whether 
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the SUMO-ubiquitin cascade applies to other DPCs, DPC SUMOylation is emerging as a 

mechanism for initiating replication-independent degradation of DPCs by the proteasome.

(3) Other potential proteases for DPC repair: GCNA (also known as ACRC) is a 

germline- and stem cell-specific putative metalloprotease in the SprT family, the same 

protein family that contains SPRTN. GCNA has recently been implicated in resolving DPCs 

in germ cells and early embryos (Bhargava et al. 2019; Borgermann et al. 2019; Dokshin et 

al. 2019). These studies suggest that GCNA works in G2/M phases and mainly targets 

TOP2ccs. GCNA is targeted to SUMOylated DPC proteins through its SUMO-interacting 

motifs (SIMs) (Borgermann et al. 2019), reinforcing the importance of SUMOylation in 

DPC repair.

Non-SprT proteases are also reported to be involved in DPC repair. FAM111A, a 

chymotrypsin-like serine protease that localizes at replication forks through PCNA, protects 

replication forks from DPCs via its protease activity (Kojima et al. 2020). Knockout of 

FAM111A sensitizes cells to various DPC-inducing agents including formaldehyde, TOP1 

and TOP2 inhibitors. Spontaneous accumulation of TOP1cc was also observed in FAM111A 
knockout cells, suggesting non-redundant roles of FAM111A and SPRTN in DPC repair. 

FAM111A contains a ssDNA-binding domain, and a point mutation that disrupts ssDNA 

binding diminishes FAM111A autocleavage activity in vivo. These findings suggest that 

FAM111A might undergo DNA-dependent protease activation, an aspect that might be 

shared with SPRTN regulation.

A putative aspartic protease, Ddi1, was also recently implicated in DPC repair in yeasts 

(Serbyn et al. 2019). This study showed that a deletion of ddi1 sensitized cells to DPC-

inducing agents, including formaldehyde in the absence of wss1. Replication-coupled Ddi1 

recruitment to TOP1ccs was also shown in the absence of Wss1 and Tdp1 (see below). 

These findings suggest redundant roles of Wss1 and Ddi1 in DPC repair in yeasts. Given 

that the ddi1 gene is conserved in humans (DDI1 and DDI2), it is possible that the human 

homologs, DDI1 and DDI2, play a similar role. The presence of multiple DPC proteases 

underscores the importance of DPC repair as well as the diverse cellular contexts in which 

cells need to deal with these toxic DNA lesions.

Hydrolysis of phosphotyrosyl bonds by TDP1 and TDP2—Topoisomerases are 

trapped on DNA through covalent bonds between the active site tyrosines of the enzymes 

and phosphate groups of the cleaved DNA backbone. Tyrosyl-DNA phosphodiesterases are 

enzymes that directly hydrolyze these phosphotyrosyl bonds (TDP1 for TOP1ccs and TDP2 

for TOP2ccs) (Yang et al. 1996; Pouliot et al. 1999; Cortes Ledesma et al. 2009). Because 

intact DPCs potentially hinder the access of TDP enzymes, crosslinked TOP1 and TOP2 

proteins might be proteolyzed to peptides, presumably by the proteasome or SPRTN, before 

being processed by TDP enzymes (Debethune et al. 2002; Interthal and Champoux 2011; 

Gao et al. 2014). In the case of TOP1ccs, cleavage of the phosphotyrosyl bond by TDP1 

leaves a DNA nick with 3’-phosphate and 5’-OH, which is converted to a ligatable nick with 

3’-OH and 5’-phosphate by bifunctional polynucleotide kinase 3’-phosphatase (PNKP) 

before ligation (El-Khamisy 2011). Similarly, a TOP2cc-containing DNA end becomes, after 

hydrolysis by TDP2, a ligatable single strand break (if one TOP2 subunit is trapped) or a 
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ligatable DSB, which is preferentially repaired by non-homologous end joining (NHEJ) in 

an error-free manner (Gomez-Herreros et al. 2013). Interestingly, a recent study 

demonstrated that the SUMO ligase ZATT promotes proteasome-independent resolution of 

TOP2ccs by enhancing TDP2 recruitment through SUMOylation of TOP2ccs and by 

inducing a conformational change of TOP2ccs through a direct interaction (Schellenberg et 

al. 2017). Because TOP1 and TOP2 are abundant enzymes, these specialized repair 

mechanisms are important to protect the genome form TOP1ccs and TOP2ccs.

Translesion synthesis (TLS) over DNA-peptide crosslinks (DpCs)—Even if DPC 

proteins are degraded to small peptides by proteolysis, replicative polymerases are not able 

to replicate over DNA-peptide crosslink (DpC) lesions because the high fidelity DNA 

polymerases cannot insert nucleotides across the peptide adducts. Under these 

circumstances, cells employ TLS polymerases, which have larger active sites that can 

accommodate lesions, to bypass these adducts (Sale et al. 2012; Vaisman and Woodgate 

2017). Y-family polymerases (Polη, Polι, Polκ and Rev1) insert a nucleotide across the 

lesion, and the B-family polymerase Polζ performs the extension from the unpaired DNA 

terminus. Switching to Y-family polymerases is promoted by RAD6/RAD18-mediated 

mono-ubiquitination of PCNA at K164, which facilitates recruitment of Y-family 

polymerases through interactions with their ubiquitin-binding domains. After lesion bypass 

is complete, a replicative polymerase continues DNA synthesis. DPC protein degradation 

followed by TLS over DpC has been demonstrated in an in vitro study using Xenopus egg 

extracts (Duxin et al. 2014). The remaining DpCs can be repaired by the nucleotide excision 

repair (NER) mechanism (see below).

While TLS promotes uninterrupted DNA replication at a DpC, it is an error prone process 

because TLS polymerases do not always insert the correct nucleotide across peptide adducts. 

Indeed, TLS over DpCs was reported to be mutagenic (Minko et al. 2008; Pande et al. 2017) 

although the mutagenic potential seems to vary depending on the site of the DpC. 

Interestingly, SPRTN was shown to have a function in the regulation of TLS in part through 

recruitment of the p97 segregase to evict TLS polymerases (Centore et al. 2012; Ghosal et 

al. 2012; Juhasz et al. 2012; Machida et al. 2012; Mosbech et al. 2012; Kim et al. 2013). 

This may imply that SPRTN coordinates proteolysis of DPC proteins and subsequent TLS 

over DpC lesions to minimize mutations.

Nucleotide excision repair (NER)—Nucleotide excision repair (NER) removes 

damaged nucleotides by “cut-and-patch” mechanism (Marteijn et al. 2014). This pathway 

starts with recognition of DNA helix distortions by the XPC-RAD23B-CETN2 complex 

followed by recruitment of the transcription initiation factor IIH (TFIIH) complex. 

Subsequently, helicase activity of TFIIH unwinds the damaged region, and the strand is 

excised by the XPF-ERCC1 complex and XPG at 5’- and 3’-ends, respectively. As a 

consequence, a 22–30 bp gap is generated, which will be filled by DNA polymerases. In 

general, intact DPCs are too bulky to be repaired by NER (Reardon and Sancar 2006). 

Indeed, NER-deficient cells displayed accumulation of DpCs with a peptide less than 7.4 

kDa following exposure to formaldehyde, suggesting that NER is responsible for removal of 

DpCs containing a short peptide (Nakano et al. 2007; Nakano et al. 2009). Furthermore, in 
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vitro incision assays using cell extracts also showed consistent results, in which DNA with a 

DPC was incised by the NER pathway only when the crosslinked polypeptides were less 

than 6.8 kDa. These findings indicate that preprocessing of DPC proteins by proteolysis 

(presumably by SPRTN and the proteasome) might be necessary before NER.

Excision of terminal DPCs by MRE11-RAD50-NBS1 (MRN)—The MRE11-RAD50-

NBS1 (MRN) complex is a multifunctional nuclease complex involved in multiple aspects 

of the DNA damage response (Syed and Tainer 2018). When DPCs are present at the 5’-end 

of DSBs as is the case for TOP2ccs, those DPCs can be removed together with a flanking 

DNA fragment by nuclease activity of the MRN complex (Aparicio et al. 2016; Deshpande 

et al. 2016; Hoa et al. 2016). In the presence of DPCs at the 5’-end of DSB, MRN creates a 

nick at 15–20 bp away from the DPC by its endonuclease activity and then utilizes its 3’−5’ 

exonuclease activity to digest a DNA strand from the nick, which generates an exposed 

ssDNA region. The last step is another endonucleolytic cleavage of DNA opposite the initial 

nick so that the attached protein can be released together with the franking DNA fragment. 

In addition to TOP2ccs, a meiotic recombination protein SPO11 (subunit A of 

topoisomerase VI), which has similar enzymatic activity to TOP2, is also repaired by this 

mechanism (Neale et al. 2005; Milman et al. 2009). After removal of DPCs, the DSB ends 

enable subsequent repair by NHEJ or homologous recombination (HR) (Fig. 4).

IV. Crosstalk among DNA repair pathways

An emerging theme is that multiple repair pathways are involved in DPC repair and often 

process DPCs step by step. For example, when a replication fork encounters a DPC, 

replication-coupled proteolysis pathways involving SPRTN or the proteasome degrade the 

DPC protein. Subsequently, the DpC is bypassed by TLS to allow DNA replication to 

proceed, and the bypassed DpCs are eventually repaired by NER.

In addition to DPC repair pathways, HR, a DSB repair mechanism, is also important for cell 

survival after exposure to DPC-inducing agents such as formaldehyde (Nakano et al. 2007; 

Ridpath et al. 2007; de Graaf et al. 2009; Nakano et al. 2009), chromium (Bryant et al. 

2006), and TOP1/2 poisons (Maede et al. 2014). It is possible that HR is crucial after these 

exposures because collisions of the DNA replication machinery with DPCs and other DNA 

crosslinks generate DSBs. In addition, DPC repair processes produce DSBs as an 

intermediate, which requires HR to complete the repair. Another DSB repair mechanism, 

NHEJ, might also be employed in the case of TOP2cc repair to deal with DSBs generated 

after hydrolysis of phosphotyrosyl bonds by TDP2 or after DNA end resection by MRN (see 

above) (Gomez-Herreros et al. 2013; Hoa et al. 2016). Consistent with these notions, genetic 

studies showed that knockout of NHEJ components such as KU70 sensitized cells to TOP2 

inhibitors, but not to TOP1 inhibitors (Maede et al. 2014).

Another mechanism that might be important for the cellular response to DPC lesions is the 

replication stress response pathway, which stabilizes and resolves stalled replication forks. 

This pathway is important because DPCs cause conflicts with replication forks, and 

persistent fork stalling and fork collapse are detrimental to cells. Many HR components such 

as BRCA1/2, RAD51 and RAD51 paralogs (RAD51C, XRCC2 and XRCC3), are also 
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involved in this pathway (Liao et al. 2018). In addition, genetic screening identified 

components of the Fanconi anemia pathway to be important for protecting cells from 

formaldehyde and TOP1/2 poisons (Ridpath et al. 2007; Maede et al. 2014). Given that 

FANCD2 protects stalled forks from nuclease-mediated degradation (Schlacher et al. 2012), 

this pathway may contribute to fork protection when replication forks collide with DPCs. 

Consistent with this possibility, an in vitro study using Xenopus egg extracts showed that 

FANCI-FANCD2, a key component in Fanconi anemia pathway, did not directly participate 

in DPC repair (Duxin et al. 2014). Taken together, in addition to the mechanisms that 

directly process DPC lesions, HR, NHEJ and replication stress response pathways also 

influence the response to DPC lesions and all of these pathways contribute to cell survival 

(Fig. 4).

V. Conclusions and perspectives

Recent studies have revealed that cells are equipped with various mechanisms to deal with 

endogenously produced DPCs, and that defects in DPC repair have severe consequences. 

Individuals with the Ruijs-Aalfs syndrome, a human genetic disease caused by mutations in 

SPRTN gene, exhibit genomic instability, premature aging and early onset of hepatocellular 

carcinomas (Ruijs et al. 2003; Lessel et al. 2014). Similar phenotypes were also seen in a 

mouse model carrying Sprtn hypomorphic alleles, accompanied by TOP1cc accumulation 

and tumor formation in the liver (Maskey et al. 2014; Maskey et al. 2017). These facts 

highlight the negative effects of DPCs and their association with carcinogenesis. However, 

cells deal with high loads of endogenous DPCs by deploying amazing repair capacities as 

demonstrated by extensive DPC accumulation in SPRTN deficient cells and mice (Vaz et al. 

2016; Maskey et al. 2017). This high DPC repair capacity, however, might obscure 

biological assessment of DPC-inducing agents, potentially leading to underestimation of 

abilities of environmental substances to induce DPC adducts. Moreover, the capacity of 

repair pathways for certain types of DPCs might vary among cell types. For example, 

formaldehyde-induced DPCs are repaired much more slowly in human peripheral blood 

lymphocytes than other cell types (Quievryn and Zhitkovich 2000). Therefore, it will be 

important to use relevant cell types and models in assessing DPC induction by 

environmental factors and also in studying repair mechanisms. Currently, DPC repair 

mechanisms are often studied using model substrates and treatments with high doses of 

DPC-inducing drugs. However, environmentally induced DPCs might be different from 

endogenously generated DPCs in their types of crosslinks and in their difficulty of repair. 

Thus, it will be important to investigate whether and how cells can resolve environmentally 

induced DPCs through the repair mechanisms that are designed for repairing endogenous 

DPCs.
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Figure 1. Possible pathways for DPC induction by environmental substances.
Some environmental carcinogens (e.g., formaldehyde, 1,3-butadiene, and hexavalent 

chromium) can generate DPCs through direct crosslinking (red arrows). Others can cause 

DPCs via indirect mechanisms such as radical production or induction of abortive enzymatic 

reactions (black arrows). Persistent DPCs can inhibit important cellular activities on 

chromatin such as DNA replication, and induce mutations, DSBs, and genomic alterations, 

all of which could contribute to carcinogenesis.
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Figure 2. Formation of DPCs by environmental crosslinking substances.
(A) DPC formation induced by formaldehyde. A reaction of formaldehyde with an amine 

group of DNA forms a Schiff base (Left), which can react with protein to form a DPC. 

Alternatively, a reaction of formaldehyde with an amine group of protein forms a Schiff base 

(Right), which can react with DNA to form a DPC. (B) DPC formation induced by 1,3-

butadiene. 1,3-butadiene is metabolized to 1,2-epoxy-3-butene and then to 1,2:3,4-

diepoxybutane by cytochrome P450 (CYP450) isozymes in cells. Two epoxy groups in 

1,2:3,4-diepoxybutane individually react with nucleophilic residues in DNA and protein to 
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form a crosslink. Nu: nucleophilic residue. (C) DPC formation induced by Cr(VI). Cr(VI) is 

reduced to Cr(III) in cells and reactive Cr(III) generates crosslinks through reactions with 

nucleophilic residues on DNA and protein. Nu: nucleophilic residue. X: ligand.
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Figure 3. Indirect mechanisms of DPC formation by environmental substances.
(A) DPC formations through free radicals on DNA and/or proteins. (B) Structures of 

TOP1cc (left) and TOP2cc (right). A covalent bond between the topoisomerase active site 

tyrosine and the phosphate in DNA is formed at 3’-end (TOP1cc) or 5’-end (TOP2cc) of 

DNA. (C) Examples of stable TOP1cc formation through DNA damage caused by 

environmental carcinogens. DNA damage, such as base damages and an AP site, near TOP1-

mediated incision inhibit re-ligation of TOP1 (left). A SSB downstream of the TOP1-

mediated incision in the same strand (middle) or in the opposite strand (right) also prevents 
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re-ligation by creating a gap or DSB, respectively. (D) DPC formation at AP sites. 5’-dL (5’-

deoxyribonolactone) is generated when an AP site is spontaneously oxidized and cleaved by 

APE1, and Polβ is covalently trapped through reaction with the 5’-dL (Top). HMCES reacts 

with the open-ring form of an AP site to form a DPC (Bottom). Circled “P”: phosphate. “Y” 

in hexagon: tyrosine side chain.
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Figure 4. Crosstalk of DNA repair pathways for DPC resolution.
DPC proteins can be degraded via replication-dependent or -independent proteolysis to a 

peptide level. The resulting DNA-peptide crosslinks are bypassed by TLS during DNA 

replication and repaired later by NER. Phosphotyrosyl bonds of TOP1cc and TOP2cc are 

cleaved by TDP1 and TDP2, respectively. DPCs at 5’-end of DSBs can be removed together 

with a flanking DNA fragment by nuclease activity of the MRN complex. HR is required to 
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repair DSBs that are generated as a DPC repair intermediate or those that result from 

replication collisions with DPCs. NHEJ is also employed during TOP2cc processing.
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