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ABSTRACT
Peptides mediate up to 40% of known protein–protein interactions in higher eukaryotes and play an important role in cellular signaling.
However, it is challenging to simulate both binding and unbinding of peptides and calculate peptide binding free energies through conven-
tional molecular dynamics, due to long biological timescales and extremely high flexibility of the peptides. Based on the Gaussian accelerated
molecular dynamics (GaMD) enhanced sampling technique, we have developed a new computational method “Pep-GaMD,” which selectively
boosts essential potential energy of the peptide in order to effectively model its high flexibility. In addition, another boost potential is applied
to the remaining potential energy of the entire system in a dual-boost algorithm. Pep-GaMD has been demonstrated on binding of three
model peptides to the SH3 domains. Independent 1 μs dual-boost Pep-GaMD simulations have captured repetitive peptide dissociation and
binding events, which enable us to calculate peptide binding thermodynamics and kinetics. The calculated binding free energies and kinetic
rate constants agreed very well with available experimental data. Furthermore, the all-atom Pep-GaMD simulations have provided important
insights into the mechanism of peptide binding to proteins that involves long-range electrostatic interactions and mainly conformational
selection. In summary, Pep-GaMD provides a highly efficient, easy-to-use approach for unconstrained enhanced sampling and calculations
of peptide binding free energies and kinetics.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021399., s

We have developed a new computational method “Pep-GaMD”
for enhanced sampling of peptide–protein interactions based on the
Gaussian accelerated molecular dynamics (GaMD) technique. Pep-
GaMD works by selectively boosting the essential potential energy
of the peptide to effectively model its high flexibility. In addition,
another boost potential can be applied to the remaining potential
energy of the entire system in a dual-boost algorithm. Pep-GaMD
has been demonstrated on binding of three model peptides to the
SH3 domains. Dual-boost Pep-GaMD has captured repetitive pep-
tide dissociation and binding events within significantly shorter sim-
ulation time (microsecond) than conventional molecular dynamics.

Compared with previous enhanced sampling methods, Pep-GaMD
is easier to use and more efficient for unconstrained enhanced sam-
pling of peptide binding and unbinding, which provides a novel
physics-based approach to calculating peptide binding free energies
and kinetics.

INTRODUCTION

Peptides mediate up to 40% of known protein–protein inter-
actions in higher eukaryotes.1 They play a key role in cellular
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signaling, protein trafficking, immune response, and oncology.1,2

Protein–peptide interactions have emerged as attractive drug tar-
gets for both small molecules and designed inhibitory peptides.3–5

An increasing number of peptide-based drugs are being licensed
to market in recent years.6–9 Therefore, understanding the molecu-
lar mechanism of protein–peptide recognition has important appli-
cations in the fields of biology, medicine, and pharmaceutical
sciences.

It is important to characterize protein–peptide binding con-
formations for rational structure-based design of peptide drugs.
Experimental techniques including x-ray crystallography, nuclear
magnetic resonance (NMR), and cryo-electron microscopy (cryo-
EM) have been utilized to determine the structures of protein–
peptide complexes.2 Recent years have seen a dramatic increase
in the number of experimental protein–peptide structures. How-
ever, only static snapshots of the protein–peptide interactions could
usually be captured in these structures. The thermodynamics and
dynamic mechanism of peptide recognition by proteins remain
poorly understood.10

Computational methods including peptide docking have been
developed to model peptide–protein structures.11,12 In this regard,
modeling of peptide binding to proteins has been shown to be dis-
tinct from that of extensively studied protein-ligand binding and
protein–protein interactions. Notably, small-molecule ligands are
able to bind deeply buried sites in proteins, but peptides normally
bind to the protein surface, especially in the large pockets. On the
other hand, peptide–protein interactions are typically weaker than
protein–protein interactions, because of the small interface between
peptides and their target proteins. Moreover, protein partners usu-
ally have well defined 3D structures before forming protein–protein
complexes, despite possible conformational changes during asso-
ciation. In contrast, most peptides do not have stable structures
before forming complexes with proteins. It is difficult to incor-
porate extremely high flexibility of peptides and their large con-
formational changes (folding and unfolding) into computational
modeling, especially for peptide docking.11

Molecular dynamics (MD) is a powerful technique for all-
atom simulations of biomolecules.13 MD has been used to refine
binding poses of peptides in proteins obtained from docking.14–18

In addition, MD simulations are able to account for the flexi-
bility of peptides and have been applied to explore their mech-
anisms of binding to proteins.8,19–26 Notably, MD simulations
have successfully revealed the pathway of fast association of a
proline-rich motif (PRM) peptide to the SH3 domain.19 Super-
vised MD simulations have captured binding pathways of a nat-
ural peptide BAD to the Bcl-XL protein and the p53 peptide and
SAH-p53-8 stapled peptidomimetic to the MDM2 protein.24 A
weighted ensemble of a total amount of ∼120 μs MD simula-
tions has been performed to investigate binding of the p53 pep-
tide to the MDM2 protein in implicit solvent.23 The simulation
predicted binding rate constant agrees very well with the experi-
ments. Very recently, MD simulation performed for 200 μs at ele-
vated temperature (400 K) using the Anton specialized supercom-
puter has captured 70 binding and unbinding events between an
intrinsically disordered protein (IDP) fragment of the measles virus
nucleoprotein and the X domain of the measles virus phosphopro-
tein complex, which enables detailed understanding of the peptide
“folding-upon-binding” mechanism.26 Despite these remarkable

advances, these studies based on conventional MD (cMD) often
suffer from high computational cost for simulations of peptide–
protein interactions. It remains challenging to sufficiently sample
peptide–protein interactions through cMD simulations, especially
for slow dissociation of various peptides that could take place over
milliseconds and longer timescales.27–31

Furthermore, enhanced sampling MD methods, including
steered MD,32 Modeling by Employing Limited Data (MELD)
using temperature and Hamiltonian replica exchange MD,33,34

temperature-accelerated MD,35 multi-ensemble Markov state mod-
els,36 and metadynamics,37 have been applied to improve sampling
of peptide–protein interactions. Steered MD have allowed simu-
lations of antigenic peptide unbinding from the T-cell receptor
based on a dissociation reaction coordinate.32 MELD-accelerated
MD simulations have been performed to predict binding poses
and relative binding free energies of the p53-derived peptides
and stapled α-helical peptides to the MDM2 and MDMX pro-
teins.33,34 Multi-ensemble Markov models combining hundreds-of-
microsecond cMD and Hamiltonian replica exchange simulations
have been implemented to characterize both dissociation and bind-
ing of the PMI peptide inhibitor to the MDM2 oncoprotein frag-
ment.36 While cMD was able to simulate fast events such as pep-
tide binding, enhanced sampling simulations could capture rare
events such as peptide unbinding beyond the seconds timescale. The
simulation derived dissociation and association rates were found
in good agreement with the experimental data.36 Recently, bias-
exchange metadynamics simulations with eight defined collective
variables (CVs) performed for a total of 27 μs have been used to
calculate binding free energy of the p53 peptide to the MDM2 pro-
tein. Infrequent metadynamics simulations with three CVs have also
been successfully applied to predict peptide binding and dissocia-
tion rates for the same system.37 Therefore, enhanced MD simula-
tions have greatly expanded our capabilities in studies of peptide–
protein interactions. Nevertheless, enhanced sampling of peptide
binding to proteins is still underexplored compared with more
extensive studies of protein-ligand binding and protein–protein
interactions.38–44 The current enhanced sampling approaches are
still computationally expensive for characterizing peptide bind-
ing thermodynamics and kinetics, requiring tens to hundreds of
microsecond simulations.

Here, we develop a new, easy-to-use enhanced sampling
approach based on the robust Gaussian accelerated molecular
dynamics (GaMD) technique for highly efficient and accurate sim-
ulations of peptide–protein interactions. GaMD works by adding a
harmonic boost potential to smooth biomolecular potential energy
and reduce the system energy barriers.45 It accelerates biomolecular
simulations by orders of magnitude.45–48 GaMD provides uncon-
strained enhanced sampling without the requirement of predefined
reaction coordinates or CVs. Compared with enhanced sampling
methods that rely on careful selection of CVs, GaMD could be much
easier to use for studying complex biological processes such as pep-
tide binding to proteins.44 Moreover, because the boost potential fol-
lows a Gaussian distribution, biomolecular free energy profiles can
be properly recovered through cumulant expansion to the second
order.45

Based on GaMD, we have recently developed a new ligand
GaMD or “LiGaMD” method, which allows us to characterize both
thermodynamics and kinetics of ligand binding quantitatively.49
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In LiGaMD, we selectively boost the ligand non-bonded interac-
tion potential energy to enable ligand dissociation. Another boost
potential is applied to the remaining potential energy of the entire
system in a dual-boost algorithm to facilitate ligand rebinding.
LiGaMD has been demonstrated on host-guest and protein-ligand
binding model systems. Repetitive guest binding and unbinding in
the β-cyclodextrin host were observed in hundreds-of-nanosecond
LiGaMD simulations. The calculated guest binding free energies
agreed excellently with experimental data with <1.0 kcal/mol errors.
Compared with converged microsecond-timescale cMD simula-
tions, the sampling errors of LiGaMD_Dual simulations were also
<1.0 kcal/mol. Accelerations of ligand kinetic rate constants in LiG-
aMD simulations were properly estimated using Kramers’ rate the-
ory. Furthermore, LiGaMD allowed us to capture repetitive disso-
ciation and binding of the benzamidine inhibitor in trypsin within
1 μs simulations. The calculated ligand binding free energy and
kinetic rate constants compared very well with the experimental
data.49

Building upon GaMD and LiGaMD, we present a new com-
putational method called peptide GaMD (“Pep-GaMD”), which
enables us to simulate repetitive peptide binding and unbinding
within microsecond simulations. In Pep-GaMD, the essential poten-
tial energy of the peptide is selectively boosted to effectively model
its high flexibility. Selective acceleration has been found useful in
previous enhanced sampling techniques, including selective aMD,50

selectively scaled MD,51 essential energy space random walk,52,53

and LiGaMD.49 In addition, another boost potential is applied on
the protein and solvent in a dual-boost Pep-GaMD algorithm. To
demonstrate the new Pep-GaMD method, the SH3 domain with
important biological functions54,55 is selected as our model system.
Pep-GaMD has been tested on the binding of three PRM peptides,
including “PAMPAR” (PDB: 1SSH), “PPPALPPKK” (PDB: 1CKA),
and “PPPVPPRR” (PDB: 1CKB). Repetitive binding and unbind-
ing of the three peptides to the SH3 domains have been observed
in microsecond Pep-GaMD simulations. The peptide binding free
energies and kinetic rate constants calculated from Pep-GaMD sim-
ulations agree very well with available experimental data. Further-
more, the Pep-GaMD simulations have provided important insights
into the binding mechanism of peptides to their target proteins at an
atomistic level.

METHODS
Peptide Gaussian accelerated molecular dynamics
(Pep-GaMD)

GaMD is an enhanced sampling technique that works by
adding a harmonic boost potential to smooth biomolecular poten-
tial energy surface and reduce the system energy barriers.45 Details
of the GaMD method have been described in previous studies.45–47

A brief summary is provided in the supplementary material. Here,
we developed a new Pep-GaMD method for more efficient sampling
of peptide binding to proteins.

We consider a system of peptide L binding to a protein P in a
biological environment E. The system comprises of N atoms with

their coordinates r ≡ {⇀r1,⋯,⇀rN} and momenta p ≡ {⇀p1,⋯,⇀pN}.

The system Hamiltonian can be expressed as

H(r, p) = K(p) + V(r), (1)

where K(p) and V(r) are the system kinetic and total potential ener-
gies, respectively. Next, we decompose the potential energy into the
following terms:

V(r) = VP,b(rP) + VL,b(rL) + VE,b(rE)
+VPP,nb(rP) + VLL,nb(rL) + VEE,nb(rE)
+VPL,nb(rPL) + VPE,nb(rPE) + VLE,nb(rLE), (2)

where VP ,b, VL ,b, and VE ,b are the bonded potential energies in pro-
tein P, peptide L, and environment E, respectively. VPP ,nb, VLL ,nb,
and VEE ,nb are the self non-bonded potential energies in protein
P, peptide L, and environment E, respectively. VPL ,nb, VPE ,nb, and
VLE ,nb are the non-bonded interaction energies between P-L, P-E,
and L-E, respectively. According to classical molecular mechan-
ics force fields,56,57 the non-bonded potential energies are usually
calculated as

Vnb = Velec + VvdW , (3)

where Velec and VvdW are the system electrostatic and van der Waals
potential energies. Presumably, peptide binding mainly involves in
both the bonded and non-bonded interaction energies of the peptide
since peptides often undergo large conformational changes during
binding to the target proteins. Thus, the essential peptide potential
energy is VL(r) = VLL ,b(rL) + VLL ,nb(rL) + VPL ,nb(rPL) + VLE ,nb(rLE).
In Pep-GaMD, we add boost potential selectively to the essential
peptide potential energy according to the GaMD algorithm,

ΔVL(r) =
⎧⎪⎪⎨⎪⎪⎩

1
2
kL(EL − VL(r))2, VL(r) < EL

0, VL(r) ≥ EL,
(4)

where EL is the threshold energy for applying boost potential and kL
is the harmonic constant. The Pep-GaMD simulation parameters are
derived similarly to that in the previous GaMD algorithm (see details
in the supplementary material). When E is set to the lower bound
as the system maximum potential energy (E = Vmax), the effective
harmonic force constant k0 can be calculated as

k0 = min(1.0, k′0) = min(1.0,
σ0

σV
Vmax − Vmin

Vmax − Vavg
), (5)

where Vmax, Vmin, Vavg , and σV are the maximum, minimum, aver-
age, and standard deviation of the boosted system potential energy,
and σ0 is the user-specified upper limit of the standard deviation of
ΔV (e.g., 10kBT) for proper reweighting. The harmonic constant is
calculated as k = k0 ⋅ 1

Vmax−Vmin
with 0 < k0 ≤ 1. Alternatively, when

the threshold energy E is set to its upper bound E = Vmin + 1
k , k0 is

set to

k0 = k′′0 ≡ (1 − σ0

σV
)Vmax − Vmin

Vavg − Vmin
, (6)
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if k′′0 is found to be between 0 and 1. Otherwise, k0 is calculated using
Eq. (5).

In addition to selectively boosting the peptide, another boost
potential is applied on the protein and solvent to enhance confor-
mational sampling of the protein and facilitate peptide binding. The
second boost potential is calculated using the total system potential
energy other than the essential peptide potential energy as

ΔVD(r) =
⎧⎪⎪⎨⎪⎪⎩

1
2
kD(ED − VD(r))2, VD(r) < ED

0, VD(r) ≥ ED,
(7)

where VD is the total system potential energy other than the essential
peptide potential energy, ED is the corresponding threshold energy
for applying the second boost potential, and kD is the harmonic
constant. This leads to dual-boost Pep-GaMD with the total boost
potential ΔV(r) = ΔVL(r) + ΔVD(r). Pep-GaMD is currently imple-
mented in the Graphics Processing Unit (GPU) version of AMBER
20,58 but should be transferable to other MD programs as well (see
the supplementary material).

The Pep-GaMD approach is in contrast to previous standard
GaMD, in which the boost potential was applied to the system dihe-
drals and/or total potential energy.45–47 It is based on earlier studies
showing that the essential energy space random walk provided very
efficient enhanced sampling52,53,59 and convergence of aMD simula-
tions was improved by selectively applying boost potential to only
interesting regions of biomolecules.50 Pep-GaMD also uses distinct
boost potential formulas compared with LiGaMD, in which only
the non-bonded potential energy of a bound ligand was selectively
boosted to accelerate its dissociation.49 In comparison, the total
potential energy of both bonded and non-bonded interactions is
boosted in Pep-GaMD for a peptide that is significantly more flexible
than a small-molecule ligand.

Peptide binding free energy calculations from 3D
potential of mean force

We calculate peptide binding free energy from 3D potential of
mean force (PMF) of peptide displacements from the target protein
as the following:60,61

ΔG0 = −ΔW3D − RTLn
Vb

V0
, (8)

where V0 is the standard volume, Vb = ∫b e
−βW(r)dr is the average

sampled bound volume of the peptide with β = 1/kBT, kB is the Boltz-
mann constant, T is the temperature, and ΔW3D is the depth of the
3D PMF. ΔW3D can be calculated by integrating Boltzmann distri-
bution of the 3D PMF W(r) over all system coordinates except the
x, y, z of the peptide,

ΔW3D = −RTLn∫u
e−βW(r)dr

∫u dr
, (9)

where Vu = ∫u dr is the sampled unbound volume of the pep-
tide. The exact definitions of the bound and unbound volumes
Vb and Vu are not important as the exponential average cut off
contributions far away from the PMF minima.61 A python script

“PyReweighting-3D.py” in the PyReweighting tool kit (http://miao.
compbio.ku.edu/PyReweighting/)49,62 was applied for reweighting
Pep-GaMD simulations (see the section titled “Methods” in the
supplementary material) to calculate the 3D reweighted PMF and
associated peptide binding free energies.

Peptide binding kinetics obtained from reweighting
of Pep-GaMD simulations

Reweighting of peptide binding kinetics from Pep-GaMD sim-
ulations followed a similar protocol using Kramers’ rate theory
that has been recently implemented in kinetics reweighting of the
GaMD48 and LiGaMD49 simulations. Provided sufficient sampling
of repetitive peptide dissociation and binding in the simulations, we
record the time periods and calculate their averages for the peptide
found in the bound (τB) and unbound (τU) states from the simula-
tion trajectories. The τB corresponds to the residence time in drug
design.63 Then, the peptide dissociation and binding rate constants
(koff and kon) were calculated as

koff =
1
τB

, (10)

kon =
1

τU ⋅ [L]
, (11)

where [L] is the peptide concentration in the simulation system.
According to Kramers’ rate theory, the rate of a chemical

reaction in the large viscosity limit is calculated as48

kR ≅
wmwb

2πξ
e−ΔF/kBT , (12)

where wm and wb are frequencies of the approximated harmonic
oscillators (also referred to as curvatures of the free energy sur-
face64,65) near the energy minimum and barrier, respectively, ξ is the
frictional rate constant, and ΔF is the free energy barrier of transi-
tion. The friction constant ξ is related to the diffusion coefficient D
with ξ = kBT/D. The apparent diffusion coefficientD can be obtained
by dividing the kinetic rate calculated directly using the transition
time series collected directly from simulations by that using the
probability density solution of the Smoluchowski equation.66,67 In
order to reweight peptide kinetics from the Pep-GaMD simulations
using Kramers’ rate theory, the free energy barriers of peptide bind-
ing and dissociation are calculated from the original (reweighted,
∆F) and modified (no reweighting, ∆F∗) PMF profiles, similarly for
curvatures of the reweighed (w) and modified (w∗, no reweighting)
PMF profiles near the peptide bound (“B”) and unbound (“U”) low-
energy wells and the energy barrier (“Br”), and the ratio of apparent
diffusion coefficients from simulations without reweighting (modi-
fied, D∗) and with reweighting (D). The resulting numbers are then
plugged into Eq. (12) to estimate accelerations of the peptide bind-
ing and dissociation rates during Pep-GaMD simulations,48 which
allows us to recover the original kinetic rate constants.

Protein–peptide binding simulations

Pep-GaMD simulations using the dual-boost scheme were per-
formed on binding of three model peptides to the SH3 domains.
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X-ray crystal structures of the SH3 domains bound by “PAMPAR”
(PDB: 1SSH), “PPPALPPKK” (PDB: 1CKA),68 and “PPPVPPRR”
(PDB: 1CKB)68 were used. The N- and C-termini of the peptides
were capped with the acetyl (ACE) and primary amide (NHE) neu-
tral groups, respectively. The missing hydrogen atoms were added
using the tleap module in AMBER.69 The AMBER ff14SB force
field70 was used for the peptides and protein. Each system was neu-
tralized by adding counter ions and immersed in a cubic TIP3P
water box,71 which was extended 13 Å from the protein–peptide
complex surface.

Each simulation system was first energy minimized with
1.0 kcal/mol/Å2 constraints on the heavy atoms of the protein and
peptide, including the steepest descent minimization for 50 000 steps
and conjugate gradient minimization for 50 000 steps. The system
was then heated from 0 K to 300 K for 200 ps. It was further equi-
librated using the NVT ensemble at 300 K for 200 ps and the NPT
ensemble at 300 K and 1 bar for 1 ns with 1 kcal/mol/Å2 constraints
on the heavy atoms of the protein and peptide, followed by 2 ns
short cMD without any constraint. The Pep-GaMD simulations pro-
ceeded with 14 ns short cMD to collect the potential statistics, 46 ns
Pep-GaMD equilibration after adding the boost potential, and then
three independent 1000 ns production runs.

It provided more powerful sampling to set the threshold energy
for applying the boost potential to the upper bound (i.e., E = Vmin
+ 1/k) in our previous study of ligand dissociation and binding
using LiGaMD.49 Therefore, the threshold energy for applying the
peptide boost potential was also set to the upper bound in the Pep-
GaMD simulations. For the second boost potential applied on the
system total potential energy other than the essential peptide poten-
tial energy, sufficient acceleration was obtained by setting the thresh-
old energy to the lower bound. In order to observe peptide dis-
sociation during Pep-GaMD equilibration while keeping the boost
potential as low as possible for accurate energetic reweighting, the
(σ0P, σ0D) parameters were finally set to (2.2 kcal/mol, 6.0 kcal/mol),
(4.0 kcal/mol, 6.0 kcal/mol), and (4.0 kcal/mol, 6.0 kcal/mol) for
the Pep-GaMD simulations of the 1SSH, 1CKA, and 1CKB systems,
respectively. Pep-GaMD production simulation frames were saved
every 0.2 ps for analysis.

The VMD72 and CPPTRAJ73 tools were used for simulation
analysis. The 1D, 2D, and 3D PMF profiles, as well as the peptide
binding free energy, were calculated through energetic reweight-
ing of the Pep-GaMD simulations. Root-mean square deviations
(RMSDs) of the peptides relative to x-ray structures with the pro-
tein aligned, the peptide radius of gyration (Rg), distances between
two protein residues that are located in the peptide-binding sites
(denoted dD-W for Asp19-Trp40 in the 1SSH structure and Asp150-
Trp169 in the 1CKA and 1CKB structures), and a salt bridge distance
between the protein and peptides (denoted dD-R/K for Asp19 (SH3)-
Arg10 (peptide) in the 1SSH structure, Asp150 (SH3)-Lys8 (peptide)
in the 1CKA structure, and Asp150 (SH3)-Arg7 (peptide) in the
1CKB structure) were chosen as reaction coordinates for calculating
the PMF profiles. The RMSD of peptides with protein aligned was
chosen as the reaction coordinate for calculating the 1D PMF pro-
file. The bin size was set to 1.0 Å. 2D PMF profiles of dD-W/dD-R/K/Rg
and peptide backbone RMSD were calculated to analyze confor-
mational changes of the protein and important interactions upon
peptide binding. The bin size was set to 1.0 Å for these reaction
coordinates. The cutoff for the number of simulation frames in one

bin was set to 500 for reweighting 1D and 2D PMF profiles. The 3D
PMF profiles of peptide center-of-mass displacements from the SH3
domains in the X, Y, and Z directions were further calculated from
the Pep-GaMD simulations. The bin sizes were set to 1.0 Å in the X,
Y, and Z directions. The cutoff of simulation frames in one bin for
3D PMF reweighting was set to the minimum number below which
the calculated global minimum of 3D PMF will be shifted. The pep-
tide binding free energies (ΔG) were calculated using the reweighted
3D PMF profiles.

RESULTS AND DISCUSSIONS
Microsecond Pep-GaMD simulations captured
repetitive dissociation and binding of peptides
to the SH3 domains

All-atom Pep-GaMD simulations were performed on X-ray
crystal structures of the SH3 domains bound by three peptides:
“PAMPAR” (PDB: 1SSH), “PPPALPPKK” (PDB: 1CKA),68 and
“PPPVPPRR” (PDB: 1CKB)68 [Figs. 1(a)–1(c)]. Three independent
1000 ns Pep-GaMD production trajectories were obtained on each
of the three peptide systems (Table I). The Pep-GaMD simula-
tions of the 1SSH system recorded an average boost potential of
12.83 kcal/mol–13.01 kcal/mol with 3.75 kcal/mol–3.80 kcal/mol
standard deviation. In comparison, the average boost potential was
25.59 kcal/mol–26.56 kcal/mol with 4.91 kcal/mol–4.95 kcal/mol
standard deviation in three simulations of the 1CKA system. The
boost potential applied in simulations of the 1CKB system was sim-
ilar to that of the 1CKA system, with an average of 27.85 kcal/mol–
28.30 kcal/mol and 4.96 kcal/mol–5.14 kcal/mol standard deviation
(Table I).

The peptide backbone RMSDs with the SH3 protein domain
aligned were calculated as a function of simulation time [Figs. 1(d)–
1(f)] to record the number of peptide dissociation and binding
events (ND and NB) in each of the 1 μs Pep-GaMD simulations. With
close examination of the peptide binding trajectories, cutoffs of the
peptide backbone RMSD for the unbound and bound states were
set to >25 Å and <5.0 Å, respectively. Because of the peptide fluctu-
ations, we recorded only the corresponding events lasted for more
than 1.0 ns. Repetitive dissociation and binding of the three peptides
were successfully captured in each of the 1 μs Pep-GaMD simula-
tions [Figs. 1(d)–1(f) and S1]. In each simulation of the 1SSH system,
about 3–4 binding and three dissociation events were observed for
the peptide. In simulations of the 1CKA system, about 2–4 dissoci-
ation and 3–5 binding events were observed. A similar number of
peptide dissociation (2–3) and binding (3–4) events were observed
in simulations of the 1CKB system (Table I).

Next, we computed 1D PMF free energy profiles from the Pep-
GaMD simulations to quantitatively characterize peptide binding to
the SH3 domains. The RMSD of each peptide relative to the native
x-ray structure with the protein domain aligned was chosen as the
reaction coordinate. The PMF profiles were calculated for three indi-
vidual 1 μs Pep-GaMD simulations and averaged for each system
[Figs. 1(g)–1(i)]. The global free energy minima were all identified
in the “Bound” state with ∼2 Å peptide backbone RMSD. Error
bars (standard deviations) of free energy values in the PMF pro-
files were mostly <1.0 kcal/mol, suggesting reasonable convergence
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FIG. 1. Pep-GaMD simulations have captured repetitive dissociation and binding of three model peptides to the SH3 domains: [(a)–(c)] x-ray structures of the SH3 domains
bound by peptides (a) “PAMPAR” (PDB: 1SSH), (b) “PPPALPPKK” (PDB: 1CKA), and (c) “PPPVPPRR” (PDB: 1CKB). The SH3 domains and peptides are shown in green
and magenta cartoon, respectively. Key protein residues Asp19 and Trp40 in the 1SSH structure and Asp150 and Trp169 in the 1CKA and 1CKB structures, and peptide
residues Arg10 in the 1SSH structure, Lys8 in the 1CKA structure, and Arg7 in the 1CKB structure are highlighted in sticks. The “N” and “C” labels denote the N-terminus and
C-terminus of the peptides. [(d)–(f)] Time courses of peptide backbone RMSDs relative to x-ray structures with the protein aligned calculated from three independent 1 μs
Pep-GaMD simulations of the (d) 1SSH, (e) 1CKA, and (f) 1CKB structures. [(g)–(i)] The corresponding PMF profiles of the peptide backbone RMSDs averaged over three
Pep-GaMD simulations of the (g) 1SSH, (h) 1CKA, and (i) 1CKB structures. Error bars are standard deviations of the free energy values calculated from three Pep-GaMD
simulations.

of the Pep-GaMD simulations. Notably, differences were identified
among the three peptide binding systems in the magnitudes of PMF
values near the “Intermediate,” “Unbound,” and energy barrier
regions. The “Intermediate” low-energy state was identified for the
1SSH and 1CKA systems with the peptide backbone RMSD in
the range of ∼9 Å to 25 Å, although fluctuations were observed in the

calculated PMF values [Figs. 1(g) and 1(h)]. In comparison, no clear
low-energy well was identified in the “Intermediate” state for the
1CKB system, which showed rather a plateau in the region of 7.0 Å
–25.0 Å peptide backbone RMSD [Fig. 1(i)]. This plateau sug-
gested no significant energy barrier and thus a faster kinetic rate for
peptide binding in the 1CKB system than in the other two systems
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TABLE I. Summary of Pep-GaMD simulations performed on binding of three model peptides to the SH3 domains. ΔV is the
total boost potential. ND and NB are the number of observed peptide dissociation and binding events, respectively. ΔGsim
and ΔGexp are the peptide binding free energies obtained from Pep-GaMD simulations and experiments, respectively.

PDB ID Length (ns) ΔV (kcal/mol) ND NB ΔGsim (kcal/mol) ΔGexp (kcal/mol)

1SSH
Sim1 1000 13.01 ± 3.79 3 4

−7.41 ± 0.12 -Sim2 1000 12.88 ± 3.75 3 3
Sim3 1000 12.83 ± 3.80 3 3

1CKA
Sim1 1000 25.65 ± 4.91 4 5

−7.72 ± 0.54 −7.8428Sim2 1000 26.56 ± 4.95 3 3
Sim3 1000 25.59 ± 4.89 2 3

1CKB
Sim1 1000 27.98 ± 5.02 3 4

−6.84 ± 0.14 −7.2428Sim2 1000 28.30 ± 5.14 2 3
Sim3 1000 27.85 ± 4.96 3 3

(see details below). PMF values of the “Unbound” state relative to
the “Bound” state were approximately 8.0 kcal/mol, 7.1 kcal/mol,
and 7.5 kcal/mol for three peptides in the 1SSH, 1CKA, and 1CKB
systems, respectively.

Peptide binding free energies calculated from
Pep-GaMD simulations agreed well with available
experimental data

We computed binding free energies of three peptides to the
SH3 domains based on their 3D PMF profiles (see details in Meth-
ods). The 3D PMF was calculated from each individual 1 μs Pep-
GaMD simulation of peptide binding to the SH3 domain in terms
of displacements of the Cα atom in the central peptide proline
residue (Pro8 in the 1SSH structure, Pro6 in the 1CKA structure,
and Pro5 in the 1CKB structure) from the Cα atom in a protein
residue (Asn55 in the 1SSH structure, Pro185 in the 1CKA and
1CKB structures) in the X, Y, and Z directions. The 3D PMF was
energetically reweighted through cumulant expansion to the second
order (see the supplementary material). We then calculated the pep-
tide binding free energies using the 3D reweighted PMF profiles.
For the 1CKA system, the average of calculated peptide binding free
energy values was −7.72 kcal/mol and the standard deviation was
0.54 kcal/mol, which was highly consistent with the experimental
value of −7.84 kcal/mol28 (Table I). For the 1CKB system, the result-
ing binding free energy was −6.84 ± 0.14 kcal/mol, being closely
similar to the experimental value of −7.24 kcal/mol28 (Table I). In
this context, not only the relative ranks of the peptide binding free
energies were consistent with experimental data, but also the abso-
lute binding free energy values calculated from Pep-GaMD simula-
tions were in excellent agreements with those from the experiments.
The differences between the simulation predicted and experimen-
tally determined binding free energies were less than 1.0 kcal/mol.
An error of only 1.0 kcal/mol was widely used as a high level of
prediction accuracy in small-molecule ligand binding free energy
calculations.74,75 Provided the fact that peptides usually have larger
sizes and significantly higher flexibility than the small-molecule lig-
ands, it would be valuable to achieve similar accuracy (1.0 kcal/mol

error) in Pep-GaMD simulation prediction of the peptide binding
free energy. For the 1SSH system, the calculated peptide binding free
energy was −7.41 ± 0.12 kcal/mol. However, experimental peptide
binding free energy of this system was not available in the literature
for comparison. According to the simulation prediction, the peptide
binding free energy in the 1SSH system was between those of the
1CKA and 1CKB systems.

In summary, peptide binding free energies in the SH3 domains
calculated from microsecond Pep-GaMD simulations agreed well
with available experimental data. Compared with the experimental
values, errors in the peptide binding free energies predicted from the
Pep-GaMD simulations were smaller than 1.0 kcal/mol. Therefore,
both efficient enhanced sampling and accurate free energy calcu-
lations of peptide binding were achieved through the Pep-GaMD
simulations.

Kinetics of peptide binding to SH3 domains

With accurate prediction of the peptide binding free energy,
we analyzed the Pep-GaMD simulations further to determine the
kinetic rate constants of peptide binding to SH3 domains. We
recorded the time periods for the peptide found in the bound (τB)
and unbound (τU) states throughout the Pep-GaMD simulations
(Table S1). With only one peptide molecule in the simulations, the
peptide concentrations were 0.0033M, 0.0034M, and 0.0034M in the
1SSH, 1CKA, and 1CKB systems, respectively. Without reweight-
ing of the Pep-GaMD simulations, the peptide binding (kon∗) and
dissociation (koff ∗) rate constants of 1SSH were calculated to be
4.90 ± 0.73 × 1010 M−1 s−1 and 7.09 ± 1.27 × 106 s−1, respec-
tively. For 1CKA, the peptide binding (kon∗) and dissociation (koff ∗)
rate constants were calculated to be 1.24 ± 0.27 × 109 M−1 s−1 and
2.09 ± 0.44 × 107 s−1, respectively. The peptide binding (kon∗) and
dissociation (koff ∗) rate constants in 1CKB were calculated to be
1.81 ± 0.86 × 109 M−1 s−1 and 1.28 ± 0.30 × 107 s−1, respectively
(Table II).

Following a similar protocol as described in the analysis of LiG-
aMD simulations,49 we reweighted the peptide-SH3 domain binding
simulations to calculate acceleration factors of the peptide binding
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TABLE II. Comparison of kinetic rates obtained from experimental data and Pep-GaMD simulations for the three model peptides binding to the SH3 domains. kon and koff are
the kinetic dissociation and binding rate constants, respectively, from experimental data or Pep-GaMD simulations with reweighting using Kramers’ rate theory. kon

∗ and koff
∗

are the accelerated kinetic dissociation and binding rate constants calculated directly from Pep-GaMD simulations without reweighting.

Method kon (M−1 s−1) koff (s−1) kon∗ (M−1 s−1) koff ∗ (s−1)

1SSH Experiment . . . . . . . . . . . .

Pep-GaMD 1.92 ± 1.17 × 1010 749.19 ± 1.57 4.90 ± 0.73 × 1010 7.10 ± 1.27 × 106

1CKA Experiment . . . . . . . . . . . .

Pep-GaMD 1.80 ± 1.05 × 109 511.65 ± 314.04 1.24 ± 0.27 × 109 2.09 ± 0.44 × 107

1CKB Experiment28 1.5 × 109 8.9 × 103 . . . . . .

Pep-GaMD 4.06 ± 2.26 × 1010 1.45 ± 1.17 × 103 1.81 ± 0.86 × 109 1.28 ± 0.30 × 107

and dissociation processes (Table S2) and recover the original kinetic
rate constants using Kramers’ rate theory. For 1SSH, the dissocia-
tion free energy barrier (∆Foff ) decreased by ∼70% from 8.16 ± 0.16
kcal/mol in the reweighted PMF profile to 2.40 ± 0.32 kcal/mol in
the modified PMF profile (Table S2). On the other hand, the free
energy barrier for peptide binding (∆Fon) decreased slightly from
0.69 ± 0.20 kcal/mol in the reweighted profile to 0.61 ± 0.14 kcal/mol
in the modified PMF profile (Table S2). Furthermore, curvatures of
the reweighed (w) and modified (w∗, no reweighting) free energy
profiles were calculated near the peptide bound (“B”) and unbound
(“U”) low-energy wells and the energy barrier (“Br”), as well as
the ratio of apparent diffusion coefficients calculated from the Pep-
GaMD simulations with reweighting (D) and without reweighting
(modified, D∗) (Table S2). According to Kramers’ rate theory, the
peptide binding and dissociation were accelerated by 2.55 and 9.47
× 103 times, respectively. Therefore, the reweighted kon and koff were
calculated to be 1.92 ± 1.17 × 1010 M−1 s−1 and 749.19 ± 1.57 s−1,
respectively.

For 1CKA, the dissociation free energy barrier (∆Foff )
decreased by ∼81% from 7.42 ± 0.64 kcal/mol in the reweighted
PMF profile to 1.35 ± 0.084 kcal/mol in the modified PMF pro-
file (Table S2). The free energy barrier for peptide binding (∆Fon)
decreased from 2.02 ± 1.12 kcal/mol in the reweighted profile to 1.17
± 0.04 kcal/mol in the modified PMF profile (Table S2). Accord-
ing to Kramers’ rate theory, the peptide binding rate was actually
decreased by a factor of 0.69, while the peptide dissociation was
accelerated by 4.08 × 104 times. Therefore, the reweighted kon and
koff were calculated to be 1.80 ± 1.05 × 109 M−1 s−1 and 511.65
± 314.04 s−1, respectively. For 1CKB, the dissociation free energy
barrier (∆Foff ) decreased by ∼79% from 7.84 ± 0.32 kcal/mol in the
reweighted PMF profile to 1.62 ± 0.32 kcal/mol in the modified PMF
profile (Table S2). The free energy barrier for peptide binding (∆Fon)
decreased from 1.01 ± 0.18 kcal/mol in the reweighted profile to 0.94
± 0.22 kcal/mol in the modified PMF profile (Table S2). Accord-
ing to Kramers’ rate theory, the peptide binding actually slowed
down by a factor of 0.044 but the dissociation was accelerated by
8.82 × 103 times. Therefore, the reweighted kon and koff were calcu-
lated to be 4.06 ± 2.26 × 1010 M−1 s−1 and 1.45 ± 1.07 × 103 s−1,
respectively. They were comparable to the experimental data28 of
kexpon = 1.5 × 109 M−1 s−1 and kexpoff = 8.9 × 103 s−1 (Table II). Among

the three studied peptide systems, the 1CKB system exhibited the
highest peptide binding rate constant kon. This appeared to correlate
with the plateau observed in the PMF profile of peptide binding in
the 1CKB system [Fig. 1(i)]. Although Pep-GaMD could slow down
the peptide binding process (1CKA and 1CKB), significant accelera-
tions were achieved in the rate-limiting step of peptide dissociation
during Pep-GaMD simulations. The peptide dissociation and bind-
ing were more balanced in Pep-GaMD, thereby resulting in overall
improved sampling.

Peptide binding to the SH3 domains was mediated
by electrostatic interactions

Next, we examined key residue interactions during peptide
binding to the SH3 domains (Fig. 2). In the X-ray structures
[Figs. 1(a)–1(c)], a conserved salt-bridge was found between the SH3
domains and bound peptides, i.e., SH3:Asp19 – peptide:Arg10 in the
1SSH structure, SH3:Asp150 – peptide:Lys8 in the 1CKA structure,
and SH3:Asp150 – peptide:Arg7 in the 1CKB structure. Therefore,
the salt-bridge distance between these protein and peptide residues
(denoted dD-R/K) and the peptide backbone RMSD relative to the
x-ray structure with the protein aligned were chosen as reaction
coordinates to compute 2D PMF profiles. Two low-energy “Bound”
and “Intermediate” states were identified from the 2D PMF profiles
of all three systems [Figs. 2(a)–2(c)]. In the 1SSH system, peptide
backbone RMSD and dD-R/K of the “Bound” and “Intermediate”
states were centered around (2.0 Å, 4.2 Å) and (20.0 Å, 5.0 Å),
respectively [Fig. 2(a)]. In the 1CKA system, peptide backbone
RMSD and dD-R/K of the two states were centered around (2.7 Å,
4.4 Å) and (21.5 Å, 5.2 Å) [Fig. 2(b)]. In the 1CKB system, peptide
backbone RMSD and dD-R/K of the two states were centered around
(1.7 Å, 3.7 Å) and (25.0 Å, 8.0 Å) [Fig. 2(c)]. Therefore, the salt
bridge distances in the “Intermediate” state of the 1SSH and 1CKA
structures were similar to those in their “Bound” state, but the salt-
bridge distance increased to 8.0 Å in the “Intermediate” state of the
1CKB structure.

Figures 2(d)–2(f) depict the “Intermediate” conformations of
the three peptide systems compared with their native “Bound” con-
formations. While the salt bridge became partially open in the
“Intermediate” conformation of the 1CKB system [Fig. 2(f)], it
remained fully closed in the “Intermediate” conformations of the
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FIG. 2. Free energy profiles and low-energy conformational states of peptide binding to the SH3 domains: (a) 2D PMF profiles regarding the peptide backbone RMSD and
the distance between protein Asp19 and peptide Arg10 in the 1SSH structure. (b) 2D PMF profiles regarding the peptide backbone RMSD and the distance between protein
Asp150 and peptide Lys8 in the 1CKA structure. (c) 2D PMF profiles regarding the peptide backbone RMSD and the distance between protein Asp150 and peptide Arg7
in the 1CKB structure. [(d)–(f)] Low-energy intermediate conformations (red) as identified from the 2D PMF profiles of the (d) 1SSH, (e) 1CKA, and (f) 1CKB structures,
respectively. X-ray structures of the peptide-bound complexes are shown in green and magenta for protein and peptide, respectively. Protein residues Asp19 and Trp40 in
the 1SSH structure and Asp150 and Trp169 in the 1CKA and 1CKB structures, and peptide residues Arg10 in the 1SSH structure, Lys8 in the 1CKA structure, and Arg7 in
the 1CKB structure are highlighted in sticks. The “N” and “C” labels denote the N-terminus and C-terminus of the peptides.

1SSH and 1CKA systems [Figs. 2(d) and 2(e)]. In summary, long-
range electrostatic interactions played a key role in peptide binding
to the SH3 domains. The salt bridge described here appeared to be
an anchor that pulled the peptides to their target binding site in the
SH3 domains. Similar findings were obtained from previous cMD
simulations.19

Peptides bound to the SH3 domains via
conformational selection

In order to further explore the mechanism of peptide bind-
ing to the SH3 domains, we computed 2D PMF free energy pro-
files to characterize conformational changes of the three systems
upon peptide binding. By closely examining the Pep-GaMD simu-
lation trajectories, we observed the largest conformational changes
in protein residue Trp40 in the 1SSH structure or residue Trp169 in
the 1CKA and 1CKB structures, which was located at the peptide
binding site of the SH3 domains [Figs. 2(d)–2(f)]. Therefore, we

calculated 2D reweighted PMF profiles from the Pep-GaMD sim-
ulations regarding the peptide backbone RMSD relative to the X-ray
structure with the protein aligned and the dD-W distance between
Asp19-Trp40 in the 1SSH structure or Asp150-Trp169 in the 1CKA
and 1CKB structures [Figs. 3(a)–3(c)]. For the 1SSH system, two
low-energy states were identified from the 2D PMF profile, includ-
ing the “Bound” and “Intermediate,” in which the protein residue
Trp40 at the peptide-binding site adopted primarily the “Closed”
and “Open” conformations, respectively [Figs. 3(a) and 2(d)]. The
peptide backbone RMSD and dD-W were centered around (2.0 Å,
6.2 Å) in the “Bound/Closed” state and (9.8 Å, 9.0 Å) in the “Inter-
mediate/Open” state [Fig. 3(a)]. For the 1CKA system, three low-
energy states were identified from the 2D PMF profile, includ-
ing the “Bound,” “Intermediate,” and “Unbound,” in which the
protein residue Trp169 adopted primarily the “Closed,” “Open,”
and “Open” conformations, respectively [Figs. 3(b) and 2(e)]. The
peptide backbone RMSD and dD-W were centered around (2.7 Å,
5.9 Å), (13.5 Å, 9.3 Å), and (33.5 Å, 9.3 Å) in the “Bound/Closed,”
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FIG. 3. (a) 2D PMF profiles of peptide backbone RMSD and the distance between protein Asp19 and Trp40 calculated from Pep-GaMD simulations of the 1SSH structure.
[(b) and (c)] 2D PMF profiles of the peptide backbone RMSD and the distance between protein Asp150 and Trp169 calculated from Pep-GaMD simulations of the (b) 1CKA
and (c) 1CKB structures. [(d)–(f)] 2D PMF profiles regarding the peptide backbone RMSD and peptide Rg in the (d) 1SSH, (e) 1CKA, and (f) 1CKB structures.

“Intermediate/Open,” and “Unbound/Open” states, respectively
[Fig. 3(b)]. Three similar low-energy conformational states were
identified in the 1CKB system as in the 1CKA system. The pep-
tide backbone RMSD and dD-W were centered around (1.7 Å, 5.8 Å),
(11.5 Å, 9.3 Å), and (36.0 Å, 8.8 Å) in the “Bound/Closed,” “Interme-
diate/Open,” and “Unbound/Open” states, respectively [Fig. 3(c)].

In addition to the target protein, we analyzed conformational
changes of the peptides during binding. In this regard, the radius
of gyration (Rg) was calculated and monitored for possible con-
formational changes and even folding and unfolding of the pep-
tides. Then, the peptide Rg and backbone RMSDs relative to X-ray
structures with SH3 domain aligned were used as reaction coordi-
nates to calculate 2D PMF profiles. Large conformational changes
were observed in the three studied peptide systems during the Pep-
GaMD simulations, for which large conformational space with a
wide range of Rg was sampled for each of the three peptides during
binding to SH3 domains [Figs. 3(d)–3(f)]. Therefore, it is impor-
tant to include the peptide bonded potential energy for applying the
first boost potential to account for extremely high flexibility of the
peptides. From the reweighted 2D PMF profiles [Figs. 3(d)–3(f)],
we identified a clear low-energy “Bound” state in all three systems,
for which the peptide backbone RMSD and Rg in the 1SSH, 1CKA,
and 1CKB structures were centered around (2.0 Å, 5.9 Å), (2.7 Å,
7.9 Å), and (1.7 Å, 7.5 Å), respectively. Another “Intermediate”

low-energy state was also identified in the 1SSH, 1CKA, and 1CKB
systems, for which the peptide backbone RMSD and Rg were cen-
tered around (11.2 Å, 4.7 Å), (8.5 Å, 5.6 Å), and (8.8 Å, 5.6 Å),
respectively. Furthermore, a low energy “Unbound” state appeared
in the reweighted 2D PMF profiles of the 1CKA [Fig. 3(e)] and 1CKB
[Fig. 3(f)], but not in the reweighted 2D PMF profile of the 1SSH
system [Fig. 3(a)]. Nevertheless, the “Unbound” state was found in
the 2D PMF profiles without energetic reweighting for all three sys-
tems, similarly for the “Bound” and “Intermediate” states (Fig. S2).
This suggested that complete peptide binding processes were suc-
cessfully sampled in the Pep-GaMD simulations, despite differences
in the free energy profiles. More importantly, the peptides sam-
pled a large conformational space with a wide range of Rg in the
“Unbound” state, but only a subset of the conformations was chosen
upon binding to the target protein. Therefore, peptide binding to the
SH3 domains followed predominantly a “conformational selection”
mechanism.

CONCLUSIONS

A new computational method called Pep-GaMD has been
developed for efficient enhanced sampling and free energy and
kinetics calculations of peptide binding. Pep-GaMD works by
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selectively boosting the essential potential energy of the peptide to
effectively model its high flexibility. Microsecond Pep-GaMD sim-
ulations have allowed us to capture repetitive peptide dissociation
and binding as demonstrated on binding of three model peptides to
the SH3 domains. Pep-GaMD has thus enabled highly efficient free
energy and kinetics calculations of peptide binding.

Pep-GaMD appears to be more efficient and/or easier to use
for enhanced sampling of peptide binding as compared with exist-
ing methods, including the cMD,26 replica exchange,33,34,37 weighted
ensemble,23 Markov state models,36 and metadynamics.37 In par-
ticular, 200 μs Anton cMD simulations at elevated temperature
(400 K) were performed to capture repetitive dissociation and bind-
ing of an IDP peptide.26 A number of replica simulations were
needed to model peptide binding using the replica exchange algo-
rithm,33,34,37 while an independent microsecond Pep-GaMD simu-
lation was able to capture multiple events of peptide binding and
unbinding. A total of ∼120 μs cMD simulations were needed to
calculate peptide binding rate constants using the weighted ensem-
ble approach.23 Multi-ensemble Markov models that were used to
characterize kinetics of the PMI peptide binding to the MDM2 pro-
tein were constructed using ∼500 μs cMD and ∼50 μs Hamiltonian
replica exchange simulations combined.36 Bias-exchange metady-
namics simulations and a total of 27 μs infrequent metadynamics
simulations were applied to calculate the p53-MDM2 binding free
energy and kinetic rates, respectively,37 but they required predefined,
carefully chosen CVs with expert knowledge of the studied system.
Moreover, the predefined CVs could potentially lead to constraints
on the peptide binding pathway and conformational space to be
sampled.37 When important CVs were missed, the simulations could
suffer from the “hidden energy barrier” problem and slow con-
vergence.76 Overall, the above methods were still computationally
expensive, requiring tens to hundreds of microsecond simulations
to characterize peptide binding thermodynamics and kinetics. In
this context, Pep-GaMD that has enabled such calculations through
only microseconds simulations provides a highly efficient and easy-
to-use approach to enhanced sampling of peptide binding, although
testing on more peptide binding systems is still needed. Pep-GaMD
has already been implemented in the GPU version of AMBER
20 simulation package, which should facilitate further testing and
usage of the method58 (see the section titled “Methods” in the
supplementary material).

Pep-GaMD simulations showed that long-range electrostatic
effects played an important role in peptide binding to the SH3
domains. The electrostatic interactions were also identified in ear-
lier cMD19 and NMR studies.28,77 For example, multiple short cMD
simulations (aggregated to 0.8 μs) were performed to capture bind-
ing of a PRM peptide to the C-CRK N-terminal SH3 domain.19 The
simulations suggested that long-range electrostatic effects played a
major role in the peptide diffusion and facilitated formation of a
transient peptide–protein complex. Skrynnikov et al.28,77 combined
cMD and NMR experiments to investigate electrostatic interactions
involved in the formation of the electrostatic encounter complex.
With improved force field parameters and long cMD simulations up
to 3 μs, binding of the Sos peptide to the C-CRK N-terminal SH3
domain was successfully captured. However, peptide dissociation
was still not observed in these long cMD simulations. In contrast,
microsecond Pep-GaMD simulations here captured both binding
and unbinding of peptides, further supporting the important role of

electrostatic interactions in forming the “intermediate” and “bound”
states of the peptide–protein systems (Fig. 2).

Pep-GaMD shall be of wide applicability for studies of many
other peptide–protein interactions1 other than peptide binding to
the SH3 domains. Beyond accurate peptide binding free energy
(thermodynamics) calculations, we have also successfully derived
the dissociation and binding kinetic rate constants of peptide bind-
ing to the SH3 domains. While peptide dissociation has been accel-
erated by ∼4 to 5 orders of magnitude, peptide binding in two of
the three studied systems has been surprisingly slowed down in this
study (Table II). To facilitate peptide rebinding in the future studies,
one can include multiple peptides in the system within their solu-
bility limits, an approach that has been shown to accelerate ligand
binding in the recently developed LiGaMD method.49 These devel-
opments are expected to further improve the Pep-GaMD method for
applications in enhanced sampling of peptide–protein interactions.

SUPPLEMENTARY MATERIAL

A detailed description of the GaMD and energetic reweighting
methods, Tables S1 and S2, and Figs. S1 and S2 are provided in the
supplementary material.
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