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Summary:

The prefrontal cortex undergoes functional and structural reorganization in chronic pain conditions 

in both rodents and humans. We provide an illustrated overview of the molecular, functional, and 

connectivity pathology occurring in the prefrontal cortex in chronic pain states.

The brain integrates information about the intensity, quality and location of noxious inputs 

with other states such as attention, anxiety, fear and expectation. A key brain region where 

this integration occurs is the prefrontal cortex (PFC). Importantly, the PFC is also 

responsible for higher executive functioning [11]. While acute pain is critical for survival, 

chronic pain is a detrimental, pathological state that drives changes in the PFC, culminating 

in pain amplification and cognitive problems. Here, we summarize how chronic pain affects 

the PFC in patients and in preclinical rodent models and why this is an important area of 

research in pain neuroscience.

Decades of lesion studies in rodents have demonstrated that the medial portion of the PFC 

(mPFC) controls higher executive functioning [8; 14; 27; 32]. The mPFC’s subregions, the 

prelimbic (PrL; or dorsolateral PFC in humans) and the infralimbic (IL; ventromedial PFC 

in humans) cortices are highly interconnected with one another as well as with other regions 

such as the amygdala, hippocampus, nucleus accumbens, and striatum [20; 29; 46]. The PrL 

and IL are responsible for modulating goal directed behaviors by integrating thought, 

motivation and action to achieve a goal. As such, a cardinal sign of PFC dysfunction in 

chronic pain patients presents as cognitive impairment which occurs in a variety of chronic 

pain conditions [2; 5; 6; 9; 15–18; 30; 34; 37]. Interestingly, pain relief using currently 

prescribed analgesics is insufficient to reverse cognitive impairments as the deficits persist 

and even worsen after analgesic treatment [16; 17; 34; 37], indicating that PFC dysfunction 

is resistant to transient analgesia.

Another sign of PFC dysfunction in chronic pain patients is gray matter loss. Shrinkage of 

the frontal cortical gray matter has been identified consistently across a variety of pain 

conditions [3; 12; 19; 24–26; 38]. This anatomical abnormality is severe and has been 

equated to the cortical loss seen over 10–20 years of normal aging in a healthy individual 
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[3]. As none of these neuroimaging studies excluded patients who were taking analgesics, it 

is unlikely that cortical thinning is reversed by currently prescribed pain therapeutics. In fact, 

to date, the only two methods shown to reverse cortical thinning are cognitive behavioral 

therapy [39] and effective interventional pain management [35; 36; 40]. Cortical gray matter 

restoration has been observed in patients with hip osteoarthritic pain which dissipated after 

undergoing total hip replacement surgery [35; 36] and in chronic low back pain after spinal 

surgery or facet joint injections [40]. There is a clear need to investigate treatment options 

that can target both pain and its PFC-driven comorbidities.

Importantly, restoration of frontal cortical gray matter in chronic pain indicates the disease is 

not neurodegenerative, suggesting that structural reorganization of resident neurons and/or 

glia in the PFC account for the abnormality. Indeed, PFC morphological plasticity has been 

identified in rodents with neuropathic pain. Layer 2/3 pyramidal neurons display increased 

spine density and basal dendritic branching in the PrL contralateral (right) to nerve injury 

[28], while the apical dendrites of layer 5 pyramidal neurons are shrunken and less complex 

[23]. Axon initial segments are shrunken in the bilateral IL in mice with neuropathic pain 

[41; 42]. Microglia also proliferate [7], activate [7], and appear to take on an M1 phenotype 

as proinflammatory cytokines such as interleukin-6 and interleukin-1β are markedly 

increased in the PFC of rodents with neuropathic pain [44].

Neuroinflammation or structural pruning are either the cause or consequence of 

physiological dysfunction in PFC neurons. Reductions in PFC glutamate levels have been 

detected in rats [23] and humans [31] with chronic pain. Correspondingly, layer 5 pyramidal 

neurons display a loss in spontaneous and evoked firing arising from enhanced peri-somatic 

inhibition by local GABAergic interneurons in the PrL [21–23]. This disruption in 

excitation-inhibition balance is driven by augmented monosynaptic connections from 

basolateral amygdala (BLA) projection neurons onto layer 5 PrL inhibitory interneurons, 

resulting in feed-forward inhibition [21; 22]. Interestingly, strengthened glutamatergic inputs 

onto PrL inhibitory interneurons is due to a loss of the Gi-coupled cannabinoid receptor 1, 

resulting in disinhibition of glutamatergic afferents into the PrL [21]. While detection of 

PFC activity changes in humans has been inconsistent [4; 13], the emerging picture is that 

the PFC is deactivated in chronic pain.

Additionally, rodents with chronic pain show a loss in activity of PrL L5 pyramidal neurons 

that signal to the periaqueductal gray (PAG) [10; 21], a region responsible for mediating 

endogenous analgesia. Restoration of PrL cortical activity or activation of PrL afferents to 

the PAG can attenuate nociceptive behaviors in rodents with neuropathic pain [21; 45]. The 

chronification of pain may result in part from disruption of this descending analgesic 

circuitry that stems from PFC deactivation. Human data shows there is a loss of fiber track 

density and reorganization of white matter connectivity from the PFC to the insula, basal 

ganglia and other regions involved in pain processing such as the anterior cingulate cortex 

[19; 43], indicating that PFC output may be disrupted in human chronic pain patients as 

well.

Transcriptome analysis of the mPFC using quantitative real‐time PCR or sequencing has 

also identified specific mRNA transcripts that are dysregulated in chronic pain. Rodents with 
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neuropathic pain display an increase in brain-derived neurotrophic factor, prodynorphin, and 

κ-opioid receptor [33]. Interestingly, mRNA for glial fibrillary acidic protein (GFAP), a 

commonly-used marker of astrocytes, was shown to be down-regulated in the mPFC of mice 

that had neuropathic pain for 6 months, suggesting that astrocyte populations may be 

diminishing at these later time points [1].

The work summarized here shows that complementary human and rodent studies have led to 

important insight into how the PFC changes in chronic pain states. A reverse translational 

approach has clearly been embraced wherein human symptomology and neuroimaging is 

directing preclinical investigations. Although there is still much unknown, the current 

picture is that the PFC modulates the pain experience in critical ways and that many 

comorbidities of painful disease are driven by PFC changes. Continuously growing insight 

into this pathology has great promise for improving pain care.
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