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ArtiC{e history: In the past few years, deep learning has been successfully applied to various omics data. However, the
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Currently, data pre-processing using convolutional neural network architecture appears to benefit the
most from deep learning. Compound/structure identification and quantification using artificial neural
network/deep learning performed relatively better than traditional machine learning techniques,
whereas only marginally better results are observed in biological interpretations. Before deep learning
can be effectively applied to metabolomics, several challenges should be addressed, including

Iﬁggﬁgﬁ’;}m s metabolome-specific deep learning architectures, dimensionality problems, and model evaluation
NMR regimes.
Mass spectrometry © 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Artificial neural network Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
Deep learning org/licenses/by/4.0/).
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1. Introduction

Machine learning (ML) or the concept of ‘training’ computa-
tional methods which can improve given more ‘experience’ or data
has been a revolutionizing force in many disciplines, including
metabolomics, for the last 15 years. In particular, deep learning
(DL) [1], an ML method based on artificial neural networks (ANN)
has been increasingly applied to problems in metabolomics, which
are very difficult or infeasible for conventional algorithms to solve.
For example, in nuclear magnetic resonance (NMR) and mass spec-
troscopy (MS) based metabolomics, a variety of ML algorithms
have been developed for data pre-processing, peak identification,
peak integration, compound identification/quantification, data
analysis, and data integration [2-6]. ANNs are part of a broad fam-
ily of ML algorithms that seek to learn rules/conditions from data
examples, and in some cases can be ‘automatically’ improved
through the sheer amount of data available to the model training
process|7]. Ease of use and accessibility of ANN and DL methods
are increasing for the metabolomics community due to develop-
ment of neural network frameworks (such as TensorFlow [8,9],
Keras [10], PyTorch [11]), simplified interfaces to the frameworks
through high-level programing languages (such as Python [12], R
[13], MATLAB [14]), and reduction in model computational time
through optimization using graphics processing units (GPUs),
which can effectively parallelize complex tasks (e.g. matrix multi-
plication) and are readily available through stand-alone graphics
cards in workstation-class machine or cloud computing services
(Amazon Web Service [15], Google Cloud Platform [16], Microsoft
Azure [17]).

ML is part of the broader domain of artificial intelligence (Al). In
traditional programing, predefined sets of rules (i.e. algorithms)
are applied to the data to produce desired output. However, in
ML, a portion of data and examples of desired output are used to
train a model (i.e. to derive rules from the data), which can then
be applied to make predictions on other data. Unlike traditional
ML methods that focus on feature engineering (i.e. transforming
raw data into features that are relevant for machine learning mod-
els [18]), ANN and DL emphasize on tuning model hyperparame-
ters. The ability of these methods to both encode and model the
data removes a large bottleneck and source of potential bias for
traditional ML algorithms. ANNs have simple structures consisting
of three layers of neurons: input, hidden, and output layers. Each
input neuron is connected to every hidden layer neuron by an edge
which defines a weight and a bias. Inspired by how neurons func-
tion in the brain, each artificial neuron will emit (fire) a response
depending on the activation function. For example, if a signal from
an input layer neuron, combined with specific weight and bias, is
higher than a certain threshold set by an activation function, then
the neuron will send out a signal to the output layer [19]. ANN and
DL models differ based on their architectures (i.e. number of layers
and their connections) and structures with less than two hidden
layers are called shallow ANNs, while more complicated architec-
tures are found in the larger class of Deep Neural Network (DNN)
which can be more expressive and efficient than their simpler
ANN variants [20]. For reviews of introductory ANN and DL
methodology, which is outside the scope of this review, we refer
readers to other articles containing historical and methodological
perspectives [21,22].
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2. Landscape of deep learning in metabolomics

The number of publications from PubMed search results with
DL as one of the keywords (as of May 2020) in genomics, transcrip-
tomics, proteomics, and metabolomics are shown in Fig. 1A. Note
that the number of DL-associated publications in metabolomics
are significantly lower than all other omics. The following review
focuses on applications of ‘Artificial Neural Networks’, ‘Deep Neu-
ral Networks’ or ‘Deep Learning’ on MS or NMR based measure-
ment of metabolites and small molecules and is divided into the
three following domains: I) peak alignment and identification; II)
structural/compound identification and quantification; and III)
data analysis, interpretation, and integration with other omics
(Fig. 1B). Numbers of hyperparameters of DL models used in these
studies were calculated and shown in log-10 scale in Fig. 1C based
on the number of neurons, number of neuron layers, and type of
model architecture described in the studies. Notice that the num-
ber of parameters in data pre-processing applications are generally
higher than other applications, and studies that used CNN architec-
ture tend to have higher parameters than shallow ANN architec-
ture. The most popular DL framework reviewed is Keras [10],
which can use TensorFlow [8], Theano [23], or PlaidML [24] as
backends to generate and run models. Python [25] were the most
popular programming language interfaces for DL frameworks, fol-
lowed by R [26] and MATLAB [27]. Close to half of the studies
reviewed utilised GPUs (typically one GPU on a workstation-class
machine). In addition to Keras, other DL frameworks used in meta-
bolomic applications included: H20.ai [28], MXNet [29], and
MATLAB'’s Deep Learning Toolbox [30]. All reviewed frameworks,
backends, programing languages, and types of processing units
are summarised in Table 1. The data source (i.e. biological sam-
ples), data types, URLs for raw data access and code depositories
of articles reviewed in this manuscript are summarised in Supple-
mentary Table 1.

Convolutional neural networks (CNN) were the most often uti-
lised DL model architecture across all metabolomics data pipeline
steps. These models are often used in image processing due to their
shift invariant characteristics and their application to metabolomic
data varied across model complexities (e.g. numbers of neurons,
hidden layers, filters, different types of optimizers, activation func-
tions and loss functions). While many of the reviewed studies
employed multiple types of neural networks in their work, includ-
ing for different steps or performance comparisons, the non-linear
rectified linear unit (ReLU) [31] was the most widely used activa-
tion function. This is not surprising because ReLU is generally the
most widely used activation function particularly for CNNs [32]
and may offer some advantages for dealing with the sparse nature
of metabolomics data. All of the reviewed peak alignment applica-
tions included CNNs as the core architecture or part of the work-
flow. DL model architectures for other workflow steps included a
mix of shallow ANN and other variants of DNN such as autoen-
coders and CNNs (Fig. 1C).

3. DL in NMR spectra processing and interpretation

Nuclear magnetic resonance (NMR) spectroscopy is a prevalent
technique for metabolomics analysis owning to its advantages i.e.
non-destructive, fast, accurate, able to detect most of organic com-
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Fig. 1. A) Number of publications with the keyword “deep learning” extracted from PUBMED database from 2015 to April 2020 in the genomics, transcriptomics, proteomics,
and metabolomics. B) Three categories of metabolomics application that have applied deep learning. C) Barplot of the number of parameters based on different neural
network architectures and applications. RNN, recurrent neural network; CNN, convolutional neural network; ANN, shallow artificial neural network.

pounds, and highly reproducible when compared with MS [33,34].
The common step in NMR data handling begins with data pre-
processing to transform the free induction decay (FID) to matrix
of chemical shift and its intensity. The baseline correction, normal-
ization, and alignment are subsequently performed before metabo-
lite quantification and statistical analysis i.e. multivariate or
univariate analysis [35]. NMR is widely used in metabolomics for
both qualitative and quantitative analyses [36]. One-dimensional
(1D) 'H, and 3C NMR are the two most commonly used methods
for measuring primary metabolites. Depending on structural com-
plexity and surrounding environment of the compounds being
measured (e.g. natural products), two-dimensional (2D) NMR is
often considered as the technique of choice [37,38]. Although there
are multiple steps of data processing and analysis, most applica-
tions of DL in metabolomics were for signal processing. This may
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be in part due to the large data requirements for DL for which sim-
ulation or synthetic data creation have been proposed [39]. Hansen
(2019) proposed to use DNN to reconstruct non-uniformly sam-
pling (NUS) NMR spectra. To improve accuracy in spectrum inten-
sity, the author built DNN that was inspired by long short-term
memory (LSTM) networks with a series of 8x10° synthetic one-
dimensional FIDs (free induction decays) to reconstruct the DNN
model. The model was later validated and compared against sparse
multidimensional iterative lineshape-enhanced (SMILE), hmsIST
algorithms by using the experimental '"N-'H HSQC spectrum.
The DL-based approach showed equally good or slightly better
NMR spectra reconstruction results compared with current state
of the field methods [40,41] proposed to use a CNN to reconstruct
fast and high-quality NMR spectra of small and large (metabolites)
and small proteins from fully simulated NMR data [41]. The model
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Table 1
All reviewed frameworks, backends, programing languages, and types of processing units are summarised.
Peak Alignment/ Compound and Structure Identification/ Data Analysis/Omics Total
Identification Quantification Integration
Framework** Keras 2 5 3 10
MXNet 0 0 1 1
H20* 0 0 2 2
FANN/ 0 1 1 2
RPROP
DLT 1 2 0 3
Backend TensorFlow 3 7 2 12
Theano 0 1 1 2
PyTorch 1 0 0 1
MXNet 0 0 3 3
Others 1 3 3 7
Programming Python 4 8 3 15
Language R 0 0 2 2
MATLAB 1 2 0 3
C 0 1 1 2

DLT = Deep Learning Toolbox in MATLAB, note that this also includes old implementation Neural Network Toolbox

Others = MATLAB toolboxes, RPROP

* Since 2018, H20 no longer uses MXNet or TensorFlow as backend. As these studies were conducted prior to 2018, we assumed (according to the source code) that the

framework still employed default backend, which is Apache MXNet)

** Some studies employed TensorFlow directly as their framework in Python. Therefore, the number of studies in framework rows are not matched with number of Backend

rows.

performance was validated with an input of 2D 'H-!>N HSQC spec-
trum with 25% NUS data quality against the fully sampled 2D and
3D spectra and obtained a correlation of peak intensities of 0.99.
This model also displayed correlation coefficient greater than
0.98 to 2D spectra [41] even in low-density regions.

4. DL in MS spectra processing and interpretation

Mass spectrometry (MS)-based metabolomics measures the
mass-to-charge (m/z) ratio and corresponding intensities of
metabolite species in a sample. A raw MS data file of an individual
sample contains a set of chromatograms recorded in sequence. Lit-
erally, each chromatogram, consisting of mass spectra or finger-
print of the detected metabolite represents the abundance of an
ionized molecule [42]. Raw data files are subjected to a series of
data processing steps and information extraction into an expres-
sion matrix (containing retention times, accurate mass spectrum
and intensity values) of the measured metabolites for subsequent
analyses [43].

Raw MS-based data processing is a critical step that can affect
quality of downstream analyses and interpretation of metabolo-
mics data. General MS data pre-processing steps include noise fil-
tering, peak detection, peak alignment and normalization [44-46].
Data filtering is to remove or reduce analytical noise or baseline.
Peak detection distinguishes real signals of measured molecules
from noise. Peak (feature) alignment is an effort to correct reten-
tion time shift across different samples, and data normalization
removes systematic variations between samples. Numerous free
and commercial software are available for MS-based data process-
ing such as MZmine [47], XCMS [45], metaMS [48], and metAlign
[49], to name a few. However, key challenges, such as false positive
signals, co-eluting compounds and non-linear retention time shift,
still need to be addressed [50-52]. With the complexity of MS data,
DL approaches have been proposed to solve this key data pre-
processing step and major bottleneck of MS-based metabolomics
pipelines. A study from Risum et al. [53] used CNN to classify dif-
ferent elution profiles from raw GC-MS chromatographic data.
These profiles were initially modelled by PARAllel FACtor analysis2
(PARAFAC2) [50,54] and subsequently delineated into chemical
peaks (metabolite), baselines and other non-related peak areas
by the CNN model, which resolved which peak component were
most suitable for selection or integration. Similarly, Melnikov
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et al. proposed ‘peakonly’ algorithm [51] for both peak detection
and integration that used a CNN model to classify raw LC-MS data
into regions of noise, chemical peaks, and uncertain peaks, which
was then used to determine peak boundaries for integration. Auto-
mated and high accuracy peak classifiers would greatly improve
efficiency in these critical steps, which often heavily rely on
domain experts.

Peak alignment is commonly performed to address retention
time shift in MS methods employing chromatographic separations.
Li and Wang et al. proposed ChromAlignNet [55], which uses LSTM
network (a variant of recurrent neural network (RNN)) for peak
alignment of GC-MS data. They showed that the algorithm per-
formed well for the alignment of complex GC-MS data without
the need for additional parameter selection and reference chro-
matograms. Discrimination of true chromatographic peaks from
noise is particularly challenging. DL based peak filtering
approaches seek to overcome the limitations of traditional meth-
ods for handling low signal to noise, diverse and irregular peak
shapes and poor baseline resolution. For example, Kantz et al
[56] used a CNN model to detect true spectral peaks vs. artifacts
using stacked peak images of LC-MS chromatographic features as
input data. This approach was shown to eliminate up to 90% of
all false noise peaks. The versatility of DL models for encoding
and modeling diverse forms of data have increased their adoption
among the dominant metabolomics methods including LC-MS, GC-
MS, and NMR.

Small molecule structure identification remains one of the big-
gest challenges in metabolomics (particularly for MS-based meth-
ods). Typically, retention time, accurate mass and mass spectra
acquired from various analytical platforms are searched against
reference databases [57-59] such as HMDB [60], METLIN [61]
and MassBank [62] to name a few. Similarities between unknow
and reference compounds’ data are typically estimated based on
correlation [63], weighted cosine similarity [64] and Euclidean dis-
tance[65] which are used to rank the matching candidate hits [66].
This approach is limited by availability of known compounds and
their spectral coverage in the reference databases [67]. Recently,
Fan et. al. [68] used a CNN for identification of components in
raw Raman spectra of mixtures without the need for any prior
spectral processing which can otherwise introduce variability
and errors. In another DL-based structure identification example,
Fine et. al. [69] applied an autoencoder to calculate a lower-
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dimensional encoding of Fourier Transform Infrared (FTIR) and MS
data together with multi-layered perceptron (MLP) to predict func-
tional groups. A similar approach was used by Lim et. al. [68] to
elucidate candidate structures using a CNN classifier to predict
the presence/absence of substructures based on compounds’ mass
spectra and chemical formula. DeepMass, presented by Ji et. al.
[59], addresses the limitation of availability of spectra in the refer-
ence databases by increasing the chance to identify unknown com-
pounds by augmenting the search results based on structural
similarity to related known metabolites. The developed method
leverages structural similarity between biochemical reactant and
product pairs’ substructures and their resultant mass spectra
[70]. The authors used KEGG substrate-product pair information
to determine structural similarity scores between pairs of
unknown-known metabolites (MASS score) from their MS/MS
spectra. The authors then calculated fingerprint correlation score
[71] (FP score), another structure similarity score for unknown-
known structure matching, to compute the final list of putative
compounds. Other studies, such as those from Allen et. al. [72]
and Wei et. al. [73] attempted to increase spectral library coverage
by predicting MS spectra for small molecules. Competitive Frag-
mentation Modeling-Electron lonization (CFM-EI) [72] from Allen
et al. used a probabilistic Markov model together with ANN to pre-
dict the tendency of bond breaking in a molecule and fragmenta-
tion likelihoods resulting in spectral peaks. Meanwhile, Wei et.
al. [73] employed a MLP to predict MS spectra for small molecules.
The input data for the bidirectional prediction model, Neural Elec-
tron — Ionization Mass Spectrometry (NEIMS) model, is the
mapped additive Extended Circular Fingerprints (ECFPs), which
capture local structures in the molecule [74] and the model output
is a vector of intensity at all m/z bins.

ML algorithms including DNN models have also been used to
predict collision cross section (CCS) value [57,67,75,76], a chemical
property of ion separation that can be directly obtained from ion
mobility-MS (IM-MS)[70]. The CCS is exploited to narrow down
the search space for unknown compound identification [77]. Given
that CCS information is still limited, Plante et. al. [67] proposed
CNN-based model (DeepCCS) for predicting the CCS value of a com-
pound given the simplified molecular-input line-entry system
(SMILES) representation and the ion type. Colby et. al. [76] gener-
ated a model, DarkChem, built from a variational autoencoder
(VAE) architecture for predicting m/z and CCS values of specified
molecular structures, as well as computing possible structures
from given chemical properties. The predicted CCS values can be
used in addition to spectral database matching to increase confi-
dence while performing compound matching [57,58].

5. Biological data interpretation & integration with other ’omics

Post data pre-processing, metabolomics data can be repre-
sented in a tabular format (e.g. samples as rows and measured
metabolites as columns) making it amenable for a variety of down-
stream data analyses or ML tasks. For example, data normalization,
outlier detection, missing values imputation and feature selection
are a few common analyses often conducted prior to ML modeling
[78]. Analyses specialized for metabolomics data often utilise
information about the measured species’ structural and or bio-
chemical properties to improve the biological and systems biology
interpretation of the results (e.g. pathway enrichment, structural
similarity or biochemical precursor to product networks).

Metabolomics datasets are often ‘wide’ (i.e. samples < mea-
surements) which poses significant challenge for ML applications
which require abundant samples or representations for training
and validation. For example, ML model validation often involves
splitting the data representations into a training (used to build
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model) and test (used to validate model performance) sets. Other
challenges include many highly correlated variables which can
be the outcome of linked biochemical processes, but pose chal-
lenges for predictive modeling (multicollinearity) which can make
identification of important biomarkers (feature selection) less
robust. Metabolomics specialized ML approaches include methods
incorporating dimensional reduction (e.g. PCA) with classification
or regression models (e.g. PLS-DA, OPLS, etc). However, these
non-DL methods generally cannot model non-linear relationships
and are highly sensitive to noise and outliers. Given enough repre-
sentations, the expressivity of DL architectures can be used to build
internal representations of the data which may lead to superior
predictive performance compared to non-DL approaches.

Analysis requirements may encompass both supervised (regres-
sion and classification), semi-supervised (partially labeled data)
and unsupervised (e.g. clustering) tasks. Supervised and semi-
supervised methods are used to predict known values (labels) such
as sample groups (classification) or continuous values (regression)
given samples’ metabolic profiles. Unsupervised algorithms do not
required labels and are instead used as unbiased methods to group
(cluster) and explore the data. Herein, we present a few applica-
tions comparing binary (two-class) and multi-class classification,
and regression using several types of DL models.

DL has not been shown to be superior to other ML methods for
predictive modeling tasks in metabolomics. For example, two DL
and six ML algorithms for binary classification across ten clinical
metabolomics datasets were compared [79]. While DL-based pre-
dictions on test data yielded good to excellent classifier perfor-
mances, no single DL or ML algorithm could be identified as
superior [79]. In another study, Bahado-Singh and colleagues eval-
uated the application of DL techniques to amniotic fluid metabolo-
mics and proteomics alone and in combination with sonographic,
clinical and demographic information to predict obstetric out-
comes in asymptomatic pregnant women with short cervical
lengths [80]. The authors further compared classifier performance
derived from DL to that of six commonly used ML techniques.
Higher area under the receiver-operating characteristic curve
(AUC) point estimates were consistently achieved with DL in com-
parison with that of the other ML methods [80]. A third study
examined the accuracy of feed-forward networks, a type of DL
framework, as well as six widely used ML models to predict ER sta-
tus based on a publicly available metabolomics data set [81]. The
DL framework yielded the highest AUC point estimate for classify-
ing ER+/ER- subjects based on metabolomics data compared to that
of the other six ML algorithms. Importantly, biological interpreta-
tion of the first hidden layer identified by the DL framework
revealed enrichment of eight cancer-relevant metabolic pathways
that were not identified through the conventional ML algorithms
[81]. Although the authors caution that the classifier performance
of the DL method was very sensitive to sample size and discretion
should be used when applying DL methods to small sample sets
[81]. Wang and colleagues utilised SMARTS-encoded metabolic
reaction rules to extract molecular fingerprints and, using these
fingerprints, employed DL algorithms to interrogate drug metabo-
lism and predict those biochemical reactions that are most likely to
occur [82]. Performance of the DL algorithm was additionally com-
pared against the rule-based method SyGMa [83]. In the test set,
the DL algorithm achieved an accuracy of 78% for the top-10 com-
mon metabolic reactions, which was substantially improved rela-
tive to the SyGMa method (accuracy of 70%).

Only one study used DL in multi-class classification for classify-
ing three types of heart disease, adenocarcinoma status, and three
polymorphisms of NOS1AP genes from untargeted GS-/LC-MS data
[84]. In this study, DL was no better than convention ML methods
[84]. For linear regression, one study used an ensemble DNN
approach to predict fish size from metabolites measured by NMR
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[85]. Like the aforementioned study, using DL-based regression to
model the relationship between fish sizes and their metabolic pro-
files yielded a model with comparable performance to that of a tra-
ditional ML, Random Forest (RF) model, [85]. These authors note,
however, that disparity in DL model performance could be due to
the simplicity of the DL architectures used to analyze heteroge-
neous and complex data or due to limitations in sample numbers
which were required for the neural network to separate the signal
from the noise.

6. Future perspectives and beyond
6.1. Data integration applications are still lacking

Despite several publications on multi-omics data integration
using deep learning [86,87], there are only two studies which we
could identify that directly combined metabolomics with other
omics data. The first study aggregated temporal proteomics and
metabolomics data of cardiovascular mouse models, and then used
DL-based clustering methods to identify biologically relevant clus-
ters of metabolites that linked to the conditions [88]. The second
study integrated a large compendium of multi-omics data from
E. coli to predict its cellular state. While a myriad of DL methods
have been proposed as candidates for multi-omics data integration
[89], few metabolomics data sets have been successfully incorpo-
rated into the models. The reasons for this deficiency may include
a lack of data availability, especially human-centric data. For com-
parison, Sequence Read Archive (SRA) database, a repository for
next-generation sequencing data, has ~ 1,000 human-related stud-
ies [90], whereas Metabolomics Workbench database has 68
human-related projects [91]. Ultimately, this might be due to dif-
ferent cost structures between genomics [92] and metabolomics
[93,94], as well as lack of interdisciplinary research opportunities
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among deep learning practitioners, metabolomics experts, and
other omics scientists [93].

6.2. Dealing with the curse of dimensionality

Low numbers of samples compared to many measured features
leads to the curse of dimensionality, where predictive models can
be overfitted and are not able to generalise to other data sets
[22,95]. A few methods that can overcome this limitation include
data augmentation and weight sharing (Fig. 2A). For example, a
study employed data augmentation, where original near infrared
spectra were modified by adding random variations in offset, slope,
and multiplication to improve robustness of the neural network
models [96]. Another study introduced a concept called weight
sharing, where two or more data sets are subjected to the same
CNN architecture without resizing dimensions of one data set to
fit the other, and the weights are shared during the training pro-
cess [97]. Other methods have also been specifically designed for
high dimensional low sample size data (HDLSS). For example, the
Deep Neural Pursuit model designed specifically for genomics data,
can be used for feature selection from a subset of samples com-
bined with multiple dropouts technique [98] to reduce overfitting
which may also benefit modeling of metabolomics data.

6.3. Specialized models for metabolomics data are needed

Compared to genomics, DL applications in metabolomics lack
custom features that take advantage of specific properties of meta-
bolomics data. Several comprehensive reviews of DL in genomics
and proteomics showed well-defined problem statements and
methods, which utilised unique approaches purposefully built for
genomics applications [86,87]. Such examples in genomics are
CNN models for DNA/RNA binding motif prediction [99,100] and
functional non-coding sequence variant prediction [101]. These

Non-image data conversion
for CNN algorithms
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Fig. 2. A) Combination of data augmentation and weight sharing from different studies can alleviate dimensionality problem in metabolomics. B) Biological data
interpretation could benefit from non-image data conversion to leverage the power of CNN architecture. C) Model evaluation should employ nested cross-validation instead

of conventional k-fold cross validation.
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methods employed a strategy that converts DNA/RNA sequences
into one-hot encoded representations that are suitable for CNN
architecture. Protein contact map prediction also benefited from
the strategy previously described, where protein sequence and
predicted structure profiles (o-helix, pB-strand, and loop region)
are transformed by one-dimensional (1D) CNN to two-
dimensional (2D) matrix, and then parsed to 2D CNN. DL analysis
in metabolomics, especially biological interpretation, could benefit
from a similar strategy, by converting non-image data to image-
like data which is suitable for CNN [102] (Fig. 2B).

6.4. Re-evaluating model validation

Model accuracy and generalisability are often major priorities
for ML applications. However, even with data augmentation and
multiple data sets integration, compared to other domains, meta-
bolomics data still lacks the sheer number of samples used in stan-
dard machine learning applications [103]. Even some of the
standard techniques used for model validation such as k-fold
cross-validation [43,104] may not be applicable for HDLSS metabo-
lomics data. For example, some studies cautioned that random
data splitting techniques like k-fold cross-validation might yield
overfit and unstable models [79] from HDLSS data. To address this
issue, researchers have developed an alternative technique called
nested cross-validation [105] (Fig. 2C). A recent simulation study
showed that models trained with nested cross-validation yielded
unbiased performance even with small sample sizes [106].

In conclusion, DL is starting to make a significant impact on
metabolomics data processing and analysis pipelines. The applica-
tion of DL in both NMR- and MS-based metabolomics is expected
to grow rapidly as the metabolomics community begins to imple-
ment and develop novel DL architectures specific to metabolomics
data applications.

7. Key points

e While machine learning has been used in metabolomics for dec-
ades, the application of artificial neural networks and particu-
larly deep learning has only recently emerged.

e Deep learning has been most widely applied in data pre-
processing and convolutional neural networks are the most
commonly used model architecture.

e Development of deep learning applications specifically for
metabolomics is not as mature as that for other omics domains
such as genomics.
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