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Abstract
In recent years, controlled drug delivery has become an important area of research. Nano-biocomposites can fulfil the necessary
requirements of a targeted drug delivery device. This review describes use of polymeric nano-biocomposites in controlled drug

delivery devices. Selection of suitable biopolymer and methods of preparation are discussed.
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Introduction

Nanotechnology offers new ideas for the development of im-
proved diagnostic and therapeutic tools in surgical and medi-
cal treatment (Broichsitter et al. 2010). Nanotechnology is set
to play an important role in sustained and targeted drug deliv-
ery applications due to its ability to provide tailored active site
chemistry and drastically increase the surface area of nano-
scale particles (Liu and Webster 2010; Shi et al. 2010). Nano-
biocomposites and nanoparticles have already been used for
controlled and targeted drug delivery (Steichen et al. 2013;
Alba et al. 2019). Polymeric nano-biocomposites (PNBs) are
materials derived from the combination of polymer-polymer
or nano-scale fillers and polymers whereby the fillers may be
organic or inorganic clays, metal nanoparticles and hydroxy-
apatite (Armentano et al. 2010). Nano-composites constitute a
fascinating multidisciplinary area which brings together ma-
terial science, biological science and nanotechnology and
have significant impact in the area of medical science (Liu
and Webster 2010).

Biodegradable polymers have attracted much attention in
recent years due to reasons associated with the environment
and minimization of natural fossil resources (Rahim and Mas
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Haris 2015; Rahim and Mas Haris 2016; Gao et al. 2019;
Rahim and Mas Haris 2019). In a similar fashion, researchers
have been inspired to produce environment-friendly advance
nano-composite materials (Bordes et al. 2009). Biopolymers
and clay minerals represent interesting constituents in agricul-
tural and pharmaceutical products (Aguzzi et al. 2010).

In recent years, such biopolymers and clay nano-
biocomposites have attracted much attention for therapeutic
and medical applications (Sasmal et al. 2009). Typical applica-
tions of biopolymers in pharmaceutics are prosthesis for tissue
replacement, artificial organs and sustained drug and vaccine
release devices (Chen et al. 2007a, b; Liu and Webster 2010).
Nano-biocomposites can also be used for the treatment of certain
tissue and bone diseases (Basha et al. 2015).

Nano-structure biocomposites

Nano-structured materials have been categorized into four
groups on the basis of three-dimensional geometry, i.e. zero-
(0OD), one- (1D), two- (2D), and three-dimensional (3D) struc-
tures (Lu et al. 2011a, b), as shown in Fig. 1. The spherical
nano-biocomposites are considered as 0D structures also
known as nano-cluster materials or nano-dispersion. The
biocomposites of 1D structure are of nano-scale at one dimen-
sion, while the remaining two dimensions may be of larger
scale. The biocomposites of 1D structure are of tube shape
which is a few nanometres thick and 100-1000 nm long.
The biocomposites of 2D structure are of nano-scale at two
dimensions, while the third dimension may be long and are
known as nano-sheets. The 3D structure nanocomposites are

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12551-020-00750-0&domain=pdf
https://orcid.org/0000-0002-8065-4682
mailto:kpk566@gmail.com

1224

Biophys Rev (2020) 12:1223-1231

Fig. 1 Classification of nano-
biocomposites based on a three-

dimensional structure
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of nano-scale at three dimensions; such biocomposites are
known as iso-dimensional nano-biocomposites which can al-
so form polycrystalline systems (Korotcenkov 2010;
Kaushika et al. 2013).

Kaushika et al. (2013) and Lu et al. (201 1a, b) have focused
on one-dimensional nano-structures because of their unique
chemical and physical properties. Such 1D materials have
very high aspect ratios which are effective in transporting
carrier particles (atoms, ions and molecules) along a con-
trolled direction. One-dimensional nano-biocomposites are
very effective for moving charged ions and active drugs along
the long dimension. A feature of the nano aspect of such
devices is that particle size greatly affects the properties of
nano-structured materials such as structure, spectroscopic,
electronic, thermodynamic, electromagnetic and interfacial
chemistry (Ansari et al. 2010).
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Selection of biopolymer

Polymers can be broadly classified as either natural or
synthetic. Biopolymers are naturally occurring materials
having a well-defined covalent structure, arranged se-
quence of monomers and exact chemical composition
(Nitta and Numata 2013). Prior to use, all polymers (syn-
thetic or natural) must pass through various processes of
purification, modification and derivatization in order to
ensure human health suitability/safety when used for con-
trolled drug delivery (Yang et al. 2020). Commonly used
polymers in pharmaceutical applications have been cate-
gorized by Raizada et al. into six groups on the basis of
their origin and chemical composition (Raizada et al.
2010): (a) water-soluble synthetic polymers, (b) water-
insoluble biodegradable polymers, (c¢) cellulose-based
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polymers, (d) starch-based polymers, (e) plastics and rub-
ber based and (f) hydrocolloids.

Among the first group (water-soluble synthetic polymers),
polylactic acid (PLA), polyglycolic acid (PGA), poly (DL-
lactide-co-glycolide) (PLG), polyanhydrides, carbomer and
polymethyl acrylates are the most common synthetic poly-
mers used for controlled drug delivery (Van and Kiekens
2002; Pandey and Khuller 2004; Singh 2011). Outside of this
group, we make particular note of starch-based and
hydrocolloid-based polymer groupings. Starch-based poly-
mers have been used extensively in pharmaceutical and med-
ical applications because of their biodegradability, bio-safety
and biocompatibility (Lu et al. 2009). Starch-based biopoly-
mers are the most frequently used biopolymers for the prepa-
ration of nano-biocomposites for controlled and targeted drug
delivery. Among the hydrocolloids, alginate and chitosan are
cost-effective and environmentally friendly (Alba et al. 2019,
b) as well as being biodegradable (Termsarasab et al. 2013;
Tiyaboonchai 2013). Alginate is popular because of its ability
to be employed as a base material in grafting, blending, deriv-
atization and copolymerization reactions (Lee and Mooney
2012). Alginate is a natural water-soluble linear polysaccha-
ride obtained from seaweed and is composed of alternating
blocks of (1—4)-linked «-L-gluluronic (G) and «-D-
mannuronic acid (M) units, whereas chitosan is a water-
insoluble copolymer of 3-(1 — 4)-lined D-glucosamine and
N-acetyl-D-glucosamine units obtained from chitin via N-
deacetylation; the chemical structure of alginate and chitosan
is shown in Fig. 2 (Tsigos et al. 2000; Basu et al. 2011).

alpha-L Guluronic Acid

beta-D Mannuronic Acid

Alginic Acid

Fig. 2 Chemical structure of chitosan and alginate

Types of nano-biocomposites

According to the literature, nano-biocomposites have been
categorized into two groups, i.e. intercalated and delaminated
(Gilman 1999). The intercalated or layered nano-
biocomposites are those composites in which the extended
polymer has been intercalated between the host polymers in
well-ordered multilayers; in delaminated nano-biocomposites,
the host polymer may be of nano-scale which should be dis-
persed in continuous polymer matrix (Burnside and Giannelis
1995; Weimer et al. 1999). Within the literature, some consid-
er the delaminated group as being split into two further
groups, namely, flocculated and exfoliated (Fig. 3). The
categorization is based on the interfacial interactions
between extended and host polymers (Sinha and Okamoto
2003; Chen et al. 2008). With regard to these three groups,
we note the following:

(a) Intercalated nano-composites: are composites in which
the insertion of inorganic materials or polymer (extended
polymer or inorganic material) into another polymer
(host polymer) occurs in a regular manner irrespective
of the polymer-polymer or polymer-inorganic material
ratio. The composites are regularly inter-layered with
properties similar to ceramic materials.

(b) Flocculated nano-composites: are almost similar to the
intercalated nano-composites; the only difference is the
arrangement of the extended polymer within host
polymer.

(c) Exfoliated nano-composites: in exfoliated nano-compos-
ites, extended polymer layer should be separated in a
continuous polymer matrix with a mean space that de-
pends on the filler’s loading. Generally, the filler amount
has been observed lower than that of the other types of
nano-biocomposites.

Colloidal nano-composites

Colloidal nano-composites are the dispersion of blobs (blob’s
particle size of 100—1000 nm) in a non-reactive solvent gen-
erally water. Recently, attention has been focused on polymer/
silica nano-composites with specific morphology, characteris-
tic and structure. Colloidal nano-composites are the new class
of hybrid materials that frequently exhibit remarkable optical,
electrical, mechanical, chemical and rheological properties
(Balmer et al. 2008; Pyun 2012; Hill and Pyun 2014).
Disadvantages of the colloidal nano-composites are—the re-
action mixture should be proceeded in moderate acidic
mefium. The reaction mixture is highly exothermic; they
may be limited to rather low concentration of monomers.
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Fig. 3 Types of nano-
biocomposites based on
interfacial interactions between
monomers of the extended and
host polymer

W

Inorganic Materials

A%

~4
==\
=

Intercalated Flocculated Exfoliated

7

The reaction solutions often contain significant amounts of
contaminants, and therefore subsequent purification can be a
big issue (Balmer et al. 2008). Aside from the colloidal prep-
aration method, other types of polymerizations are based on
the creation of suspensions (Mayes and Mosbach 1996;
Jayaratne and Sita 2000; Liu et al. 2011), mini-emulsions,
dispersions and supercritical fluid polymerizations (Bourgeat
and Lang 1998; Asua 2002; Ferguson et al. 2005; Lin et al.
2005).

Methods for biocomposite preparation
Blending

Blending is one of the traditional, simple and easy methods to
prepare biocomposites. Polymers can be directly mixed with
each other mainly by two methods, i.e. melt blending and
solution blending. As the melt blending method is both effi-
cient and environmentally friendly, researchers have preferen-
tially focused on the melt blending as compared with the so-
lution blending method. As the particle load increases, the
polymer does not melt or the melt polymer is overly viscous
meaning that both the melt and solution blend methods
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become infeasible. To overcome this situation, a solid blend
method has been developed which avoids thermal and solvent
problems (Johnston 1992; Prut and Zelenetskii 2001).

General polymerization technique

The general polymerization method for preparation of nano-
biocomposites involves three main steps—the preparation of
additives and surface modification, the dispersion of additives
into monomer, and then solution or bulk polymerization. This
method has advantages over other techniques such as better
efficiency, higher speed and better performance of the product
(Zou et al. 2008).

Photopolymerization

Photopolymerization is the process where liquid monomer has
been transferred very fast into solid film under the influence of
UV light. The process involves the production of and capture
of radical species by the interaction of UV light using a suit-
able initiator. Similarly, electron beam—induced polymeriza-
tion has attracted much attention because the process is
solvent-free which is significantly green and environment-
friendly (Yokoyama et al. 2003; Zhou et al. 2008; Zou et al.
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2008). However, UV light can deactivate and degrade bioac-
tive molecules such as drugs and therefore sometimes cause
bioactive ingredients to lose their activity.

Solution polymerization

Solution polymerization is a method of industrial polymeriza-
tion whereby the monomers can be dissolved in a non-reactive
solvent. Sometimes a catalyst is incorporated in order to initi-
ate polymerization. The main disadvantage of this type of
polymerization is the presence of solvent when high concen-
tration of the polymer is required. Oftentimes, removal of
excess solvent is also difficult on industrial scale. The advan-
tage of this method is that the heat produced by the reaction
can be absorbed by the solvent, thereby modifying the rate of
reaction. Overheating can be controlled which disturbs the
activity of bioactive molecules (Desai and Hubbell 1991;
Seidel and Malmonge 2000; Edmondson et al. 2004).

Emulsion polymerization

Emulsion polymerization is the most widely used method for
fabricating polymeric particles (Fan et al. 2017). Emulsion
polymerization starts with the formation of an emulsion of
monomers, surfactant and water. Oil-in-water is the most
common type of emulsion polymerization due to its ease of
production (Feast and Moore 1981; Burguicre et al. 2001;
Chen et al. 2007a, b). However, the emulsion polymerization
reaction also has many disadvantages, such as the situation
where the adsorptive bonded emulsifier desorbs upon which
it can then immediately migrate to the surface along with the
polymer bulk. Similarly, hydrophilicity of the polymer surface
increases as the hydrophilicity of the end product decreases
(Tauer et al. 1990).

Surface-induced polymerization

Interfacial interactions play a key role in the construction of
nano-composites. Two routes have been developed for the
grafting of polymer chains at the particle surface that are
known as grafting-to and grafting-from techniques.

(a) Grafting-to method: This method involves chemical re-
action between the reactive groups on the substrate sur-
face and the (end-)functionalized polymer. Such polymer
grafting-to methods have been widely used for solid sur-
face modification. A thin polymer layer (end-)grafted to a
solid substrate can significantly affect the properties of
the polymer surface such as lubrication, friction, wetta-
bility, adhesion and biocompatibility (Minko et al. 2002;
Zdyrko and Luzinov 2011).

(b) Grafting-from method: The grafting-from polymeriza-
tion procedure is dramatically effective for preparing

nano-composites. Solid surfaces can be modified directly
using an immobilized initiator. On the solid substrate the
initiator is immobilized and the polymer layer is pro-
duced via in situ polymerization (Choi et al. 2005;
Goda et al. 2006).

Selection of preparative method

Research has been focused on the development of drug car-
riers in which the drugs should be active only in the targeted
area (Kim et al. 2005; Cao et al. 2010). Therefore, methods of
preparation should be selective and specific in order to prepare
the nano-composites. Each method has several advantages
and disadvantages; the majority of published literature survey
reveals that most researchers tend to use the solution polymer-
ization method. Solution polymerization is (as mentioned)
better than other methods because the heat produced during
the process can be absorbed by the solvent, and therefore
overheating can be controlled, thereby helping to secure the
bioactivity of active ingredients. Additionally the by-products
produced during the reaction can be washed away easily (Lai
et al. 2003; Wang et al. 2007; Sun et al. 2008; Abdeen and
Salahuddin 2013).

Drug loading and release

The most effective nano-composite system is one which has a
high capacity for drug loading in order to minimize the
amount of carrier. Drug loading can be achieved by two
methods either the incorporation or the impregnation method.
The incorporation method involves the drug being entrapped
by nano-composites at the time of preparation. The impregna-
tion method involves drug entrapment by incubation of the
nano-composites in a solution. Higher entrapment efficiencies
of nano-composites can be achieved by the incorporation
method rather than impregnation technique (Soppimath et al.
2001; Braga et al. 2008). However most of the published drug
loading studies have been carried out using the impregnation
method. The impregnation method is somewhat superior to
the incorporation method because the activity of active mate-
rials may be lost during the incorporation process (Yong et al.
1994; Ray et al. 2003; Charnay et al. 2004; Chen et al. 2010;
Keetal. 2011). Braga et al. 2008 reported that the recording of
sorption isotherms provides valuable information for design-
ing the best formulation of targeted drug delivery. Similarly,
sorption isotherms also provide the sorption capacity of the
nano-composites and the final actual amount of sorbed drug
(Soppimath et al. 2001). It has been suggested that sorption
and release kinetic data should be analysed using different
isotherms (such as linear, Freundlich, Langmuir isotherms
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and BET model) to discern the mechanism of drug binding
associated with the impregnation method (Chung et al. 2015).

Drug release from nano-biocomposites and subsequent
biodegradation are also important factors for determination
of the most effective formulations. The drug release rate de-
pends on the following factors; surface-bound release, diffu-
sion through nano-composite matrix, erosion of nano-
composite matrix and combined release due to diffusion-
erosion (Lu et al. 2011a, b; Kaczmarek and Sionkowska
2017). Therefore, drug release studies based on the determi-
nation of the release mechanism should be conducted using
the following methods; dialysis bag, side-by-side diffusion
(using biological membrane), reverse dialysis sac and ultrafil-
tration techniques (Gross et al. 1973; Stringer and Peppas
1996; Heiati et al. 1997; Boyd 2003).

Conclusion

The use of biopolymers for sustained drug delivery is a well-
established method. Use of nano-biocomposites as sustained
or targeted drug delivery devices have attracted much atten-
tion because of their potential advantages in the areas of bio-
degradation and biocompatibility, safe-use, environment-
friendly and cost-effectiveness. In recent years, a number of
nano-biocomposite-based drug delivery devices have become
commercially available. Starch-based biopolymers particular-
ly alginate and chitosan are presently the most suitable mate-
rials for nano-biocomposites preparation. The in situ solution
and emulsion polymerization methods have been shown to be
highly suitable for nano-biocomposite preparation. Novel
methods for nano-biocomposites preparation with specific ar-
rangement of monomer units in three-dimensional space rep-
resent the next direction for improvement of nano-composites
in targeted and controlled drug delivery processes. Our re-
search group, along with others, are attempting to prepare
such materials for the controlled release of drugs.

Future of nano-biocomposites for targeted
and controlled-release drugs

Nano-biocomposites have a wide range of applications in ag-
riculture and biomedical sciences (Oyen 2008). Tissue engi-
neering represents one important application in biomedical
science. Tissue engineering is the development of three-
dimensional structure that can serve to support the regenera-
tion and replacement of tissues in a natural way. Biopolymer
scaffolds and nano-biocomposites potentially offer them-
selves as key materials in tissue engineering (Rajzer et al.
2014; Shahini et al. 2014; Wu et al. 2014).
Nano-biocomposites can be used in combination with im-
aging agent to exploit magnetic resonance imaging (MRI) for
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the diagnosis and detection of various diseases such as cancer,
tissue and bone injury and infections (An et al. 2014; Wang
et al. 2014). Biopolymer nano-composites can be used to sup-
port permanent or temporary prostheses of tissue replace-
ments, surgical operation and artificial organs. The materials
can also be used for targeted delivery of hormones, vaccines,
specific targeted delivery of insulin and as anti-cancer drug
controlled-release devices.

Biosensors are electrochemical devices that are capable to
provide quantitative information using receptor (biological
recognition element) directly connected with a transduction
element (Motahare et al. 2012; Swain et al. 2014). Tsai (Tsai
et al. 2007) reported nano-biocomposites as surface coatings
in biosensor devices and therefore may have potential signif-
icance in this area (Sharma et al. 2009; Sanchez et al. 2010).

Heavy metals have received extensive attention due to their
toxic effects even at low concentration. Various methods (sol-
vent extraction, ion-exchange, precipitation, reduction and
membrane-process) have been applied to remove heavy
metals from water. Recently, one of the efficient and cost-
effective methods is the sorption of heavy metals via nano-
biocomposite (Masoumi et al. 2014). However, the mentioned
applications require further improvement before their effec-
tive use with nano-biocomposites for sorbents of heavy
metals.
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