Skip to main content
. 2020 Oct 21;16(4):883–893. doi: 10.1007/s11739-020-02523-9

Table 3.

The logistic regression model for prediction of mortality

Variable Unadjusted ORi (95% CIf) Adjusted OR (95% CI) P-value
ACEIsa/ARBsb 1.3 (1.1,1.7) 0.5 (0.4,0.7)  < 0.001
CVDc 2.0 (1.7,2.5) 1.1 (0.8,1.5) 0.480
CKDd 1.4 (1.0,1.9) 1.1 (0.7,1.5) 0.658
CPDe 2.0 (1.7,2.5) 1.8 (1.4,2.2)  < 0.001
DMg 1.8 (1.5,2.3) 1.3 (1.0,1.6) 0.073
Malignancy 2.4 (1.2,4.5) 2.7 (1.3,5.3) 0.005
Chronic use of immunosuppressants 8.3 (4.1,16.9) 7.5 (3.3,16.7)  < 0.001
Gender 1.2 (1.0,1.5) 1.2 (1.0,1.6) 0.049
Age 1.5j (1.4,1.6) 1.5 j (1.4,1.6)  < 0.001
LOS 1.07 (1.05,1.09) 1.03 (1.01,1.05) 0.002
ICUh admission 2.4 (1.9,2.9) 1.7 (1.3,2.1)  < 0.001
Diuretics 2.8 (1.6, 4.8) 1.3 (0.7, 2.5) 0.392
Beta-blockers 2.0 (1.5, 2.8) 1.2 (0.8, 1.8) 0.302
Calcium channel blockers 2.2 (1.6, 2.9) 1.1 (0.8, 1.6) 0.571

Model is adjusted for angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, cardiovascular disease, chronic kidney disease, chronic pulmonary disease, diabetes mellitus, intensive care unit, diuretics, beta-blockers, and calcium channel blockers

aAngiotensin-converting enzyme inhibitors

bAngiotensin receptor blockers

cCardiovascular disease

dChronic kidney disease

eChronic pulmonary disease

fConfidence interval

gDiabetes mellitus

hIntensive care unit

iOdds ratio

jFor every 10 years increase

HHS Vulnerability Disclosure