Skip to main content
. 2020 Oct 21;16(4):883–893. doi: 10.1007/s11739-020-02523-9

Table 3.

The logistic regression model for prediction of mortality

Variable Unadjusted ORi (95% CIf) Adjusted OR (95% CI) P-value
ACEIsa/ARBsb 1.3 (1.1,1.7) 0.5 (0.4,0.7)  < 0.001
CVDc 2.0 (1.7,2.5) 1.1 (0.8,1.5) 0.480
CKDd 1.4 (1.0,1.9) 1.1 (0.7,1.5) 0.658
CPDe 2.0 (1.7,2.5) 1.8 (1.4,2.2)  < 0.001
DMg 1.8 (1.5,2.3) 1.3 (1.0,1.6) 0.073
Malignancy 2.4 (1.2,4.5) 2.7 (1.3,5.3) 0.005
Chronic use of immunosuppressants 8.3 (4.1,16.9) 7.5 (3.3,16.7)  < 0.001
Gender 1.2 (1.0,1.5) 1.2 (1.0,1.6) 0.049
Age 1.5j (1.4,1.6) 1.5 j (1.4,1.6)  < 0.001
LOS 1.07 (1.05,1.09) 1.03 (1.01,1.05) 0.002
ICUh admission 2.4 (1.9,2.9) 1.7 (1.3,2.1)  < 0.001
Diuretics 2.8 (1.6, 4.8) 1.3 (0.7, 2.5) 0.392
Beta-blockers 2.0 (1.5, 2.8) 1.2 (0.8, 1.8) 0.302
Calcium channel blockers 2.2 (1.6, 2.9) 1.1 (0.8, 1.6) 0.571

Model is adjusted for angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, cardiovascular disease, chronic kidney disease, chronic pulmonary disease, diabetes mellitus, intensive care unit, diuretics, beta-blockers, and calcium channel blockers

aAngiotensin-converting enzyme inhibitors

bAngiotensin receptor blockers

cCardiovascular disease

dChronic kidney disease

eChronic pulmonary disease

fConfidence interval

gDiabetes mellitus

hIntensive care unit

iOdds ratio

jFor every 10 years increase