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Deep learning for identifying 
corneal diseases from ocular 
surface slit‑lamp photographs
Hao Gu1,8, Youwen Guo2,8, Lei Gu3,4,8, Anji Wei4, Shirong Xie4,5,6, Zhengqiang Ye4,5,6, 
Jianjiang Xu4,5,6, Xingtao Zhou4,5,6, Yi Lu4,5,6, Xiaoqing Liu7* & Jiaxu Hong4,5,6*

To demonstrate the identification of corneal diseases using a novel deep learning algorithm. A novel 
hierarchical deep learning network, which is composed of a family of multi-task multi-label learning 
classifiers representing different levels of eye diseases derived from a predefined hierarchical eye 
disease taxonomy was designed. Next, we proposed a multi-level eye disease-guided loss function to 
learn the fine-grained variability of eye diseases features. The proposed algorithm was trained end-to-
end directly using 5,325 ocular surface images from a retrospective dataset. Finally, the algorithm’s 
performance was tested against 10 ophthalmologists in a prospective clinic-based dataset with 510 
outpatients newly enrolled with diseases of infectious keratitis, non-infectious keratitis, corneal 
dystrophy or degeneration, and corneal neoplasm. The area under the ROC curve of the algorithm 
for each corneal disease type was over 0.910 and in general it had sensitivity and specificity similar to 
or better than the average values of all ophthalmologists. Confusion matrices revealed similarities in 
misclassification between human experts and the algorithm. In addition, our algorithm outperformed 
over all four previous reported methods in identified corneal diseases. The proposed algorithm may be 
useful for computer-assisted corneal disease diagnosis.

Corneal disease is a major cause of reversible blindness worldwide, ranking second only to cataracts1, with an 
estimated 6.8 million people in India2 and 3.2 million in China3 having corneal blindness in at least one eye. 
Importantly, vision loss due to corneal disease may be avoidable through early diagnosis and appropriate therapy4. 
The assessment of the ocular surface, primarily the cornea and conjunctiva, by ocular slit-lamp examination is 
the foundation of corneal disease diagnosis. However, this is highly dependent on the grader’s clinical experi-
ence, which is time-consuming and may have interobserver variation on the same patient. Automated grading 
of medical images could be used to address these issues by reducing the physicians’ workload, increasing the 
efficiency and reproducibility of screening programs, and improving patient prognosis through early detection 
and treatment.

Recent advances on deep learning algorithms, in particular convolutional neural networks (CNN), have 
made it possible to learn the most predictive features of disease directly from medical images when given a 
large dataset of labeled examples5,6. Esteva et al.7 proposed a dermatologist level classification of skin cancer via 
fine-tuning a pre-trained Inception-v38 network. Chilamkurthy et al.9 conducted a retrospective study to detect 
critical findings in CT scans of head via deep learning algorithms. In the field of eye diseases identification, recent 
studies have shown the ability to identify retinal and optic nerve diseases via retinal photographs10–13 or optical 
coherence tomography (OCT) images14,15. Gulshan et al.10 demonstrated the detection of diabetic retinopathy 
through fine-tuning a pre-trained Inception-v38 network on retinal fundus images. Gargeya et al.11 performed 
automated identification of diabetic retinopathy using a ResNet-based architecture16. Similarly, Li et al.12 adopted 
a Inception-v38 network for glaucomatous optic neuropathy detection using color fundus images while Burlina 
et al.13 applied both a pre-trained model and a newly trained from scratch model for automated grading of 
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age-related macular degeneration from color fundus images. In contrast, Schlegl et al.14 and Treder et al.15 both 
proposed automated detection of macular diseases using OCT images.

However, to date, there have been few studies on diagnosing ocular surface diseases. Long et al.17 developed a 
technique for diagnosis of congenital cataracts with acceptable diagnostic accuracy. However, their method was 
trained based on images covering the pupil area only. By using corneal confocal microscopy images, Williams 
et al.18 employed a convolutional neural network with data augmentation to develop an algorithm for analyz-
ing the corneal sub-basal nerve plexus in patients with diabetic neuropathy and their method showed excellent 
performance for the quantification of corneal nerve biomarkers. Unlike Long’s17 and Williams’s work18, to cover a 
wider spectrum of ocular surface diseases, we utilized the whole ocular surface image and were not limited to the 
pupil. This makes our algorithm capable of detecting corneal diseases related to the peripheral cornea and limbus.

In this study, we sought to develop an effective deep learning algorithm for multiple corneal disease iden-
tification by processing ocular surface images. Then, we performed an evaluation of the algorithm’s diagnostic 
performance on outpatients in a prospective manner.

Methods
In the current study, our dataset comes from two major eye centers in China: the Shanghai Eye, Ear, Nose, and 
Throat Hospital and the Affiliated Hospital of Guizhou Medical University, Guizhou Province. From April 2017 
to October 2017, we retrospectively collected 5,325 ocular surface slit-lamp images including 870 from normal 
subjects and 4,455 from patients with one of the five tested eye diseases for developing the deep learning algo-
rithm (Supplemental Fig. 1). For the prospective study, we obtained patient’s informed consent to apply our 
algorithm for screening a separate clinic-based dataset with 510 images from these two major eye centers from 
June 2018 to July 2018. All ocular surface slit-lamp images were obtained by the IM 900 or IM 600 digital slit 
lamp photography system (Haag-Streit, Switzerland). Only images covering and centering around the cornea 
were used from patients. Pictures from normal subjects were randomly selected from the database, while pictures 
from patients were consecutively collected during the study period. The institutional review board of Shanghai 
Eye, Ear, Nose and Throat Hospital approved this project (EENTIRB20170607), and we conducted the research 
according to the tenets of the Declaration of Helsinki.

Ocular surface disease photograph grading and reference standard.  Thirty-two ophthalmolo-
gists were invited to grade the images of the retrospective database. During the training of ophthalmologists, a 
dataset of 90 images (30 infectious keratitis, 10 non-infectious keratitis, 20 corneal dystrophy or degeneration, 
and 30 corneal neoplasm) was used for the test. The participants’ results were compared with those of two senior 
corneal specialists (H.G. and J.H.), and those participants did not complete the training until they achieved a κ 
value of 0.75 or more (A κ value of 0 indicates that observed agreement is the same as that expected by chance, 
and a κ-value of 1 indicates perfect agreement. A κ-value of 0.6 to 0.8 indicates substantial agreement and 0.8 to 
1.0 almost perfect agreement). As a result, only 20 ophthalmologists qualified as graders to classify the images. 
Each photograph was reviewed with the same standard and graded via face-to-face communication between 
two ophthalmologists. All 5325 ocular surface slit-lamp images had personal medical history, etiology test, and 
the original diagnosis recorded in the medical charts, graders were asked to review and check all information, 
and then classify the images, as shown in Fig. 1. Corneal disease was defined as any disease affecting the corneal 
area, including infectious keratitis, non-infectious keratitis, corneal dystrophy or degeneration, and corneal and 
limbal neoplasm. Finally, 5325 ocular surface slit-lamp images were collected over a 7-month period (Retrospec-
tive dataset, Table 1) for the training and validation phases of our study. The mean number of images graded per 
ophthalmologist was 637 (range 556–746).

Development and validation of the deep learning algorithm in a retrospective dataset.  To 
take the advantage of fine-grained information embedded within the images, a domain taxonomy structure has 
been defined to partition diseases into coarse-to-fine classes hierarchically arranged in a Pie structure as shown 
in Fig. 1. Inspired by Esteva et al.7, the taxonomy was derived by ophthalmologists using a bottom-up proce-
dure: individual diseases, initialized as leaf nodes, were merged based on clinical and visual similarity, until the 
entire structure was connected. This aspect of the taxonomy is useful in generating training classes that are both 
well-suited for machine learning classifiers and medically relevant. The first two levels of the taxonomy are used 
in performance validation. However, extension to more levels can be easily implemented via our flexible and 
extensive framework.

In the current study, 5325 high-quality ocular surface images were collected for the training framework and 
the validation. Among the 5325 fully gradable photographs, 20% of them (i.e., 772 images) were selected ran-
domly using a random sampling and treated as the testing dataset, and the remaining images were used as the 
training set. It needs to be mentioned that the disease distributions (i.e., the ratio of each disease in each subset) 
in the training and validation sets are the same.

The proposed hierarchical deep learning framework.  As shown in Fig. 2, the proposed hierarchical 
deep learning framework is a flexible and extensible hierarchical learning system that is composed of a family of 
multi-task multi-label learning classifiers representing different levels of eye disease classification derived from 
the hierarchical eye disease taxonomy. We utilized an Inception-v3 convolutional neural network architecture7 
as the backbone of the proposed framework and the final classification layer of the Inception-v3 network was 
replaced with our novel multi-task multi-label classification layers, hierarchically representing various levels of 
eye disease classification. As a result, the classification results of each lower level classifier can be used as the prior 
for corresponding higher levels of classifiers, thereby improving the final classification performance.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17851  | https://doi.org/10.1038/s41598-020-75027-3

www.nature.com/scientificreports/

We train the model by minimizing our novel multi-level eye disease-guided loss function consist-
ing of multiple levels of losses. The objective function for two levels can be represented as follows: 
Loss = α ∗ level1loss + (1− α) ∗ level_2_loss

Where Loss is the total loss of the final model, level_1_loss and level_2_loss represent the loss of first level and 
second level of eye diseases identification, respectively (level 1 and level 2 disease labels were listed in Fig. 1a). α 
is a weight parameter which is used to control the balance between the two losses. Since multiple diseases may 
simultaneously coexist, we use sigmoid function for each class instead of the commonly used softmax function 
which is normally used in the case of one choice from all classes. For the loss function of each level, we applied 
Kaiming He’s focal loss19, which not only reduces the impact of data imbalance, but also is better than the usual 

Figure 1.   A schematic illustration of the novel taxonomy and example test set images. (a) A subset of the top 
two levels of the taxonomy of ocular surface diseases affecting the corneal area. (b) Example images from four 
representative corneal diseases including infectious keratitis, non-infectious keratitis, corneal dystrophy and 
degeneration, and corneal neoplasm.
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loss function for model training since focal loss down weight easy classified samples and puts training focus on 
hard negatives. The focal loss function can be represented as:

where

FL
(

pt
)

= −(1− pt)
γ log(pt)

Table 1.   Proportion of ocular surface slit-lamp images covering the cornea area in the training, validation, 
and test datasets. *In the current study, corneal diseases include infectious keratitis, non-infectious keratitis, 
corneal dystrophy or degeneration, and ocular surface neoplasm affecting the cornea.

Retrospective dataset
n (%)

Prospective dataset
n (%)

Normal Subjects 870 (16.3%) 87 (17.1%)

Cataract 1,860 (34.9%) 160 (31.4%)

Infectious keratitis 845 (15.9%) 86 (16.9%)

Non-infectious keratitis 785 (14.7%) 81 (15.9%)

Corneal dystrophy or degeneration 550 (10.3%) 54 (10.6%)

Corneal Neoplasm 415 (7.8%) 42 (8.2%)

Total 5,325 510

Figure 2.   The proposed network architecture based on the backbone network of Inception v3. In our 
framework, a family of multi-task multi-label classification layers were utilized hierarchically representing 
various levels of eye disease. Next to each module, identify the size of input and output. ‘Conv 3 × 3/2’ indicates 
that a 3 × 3 convolution kernel is used and stride = 2. Different spatial factorized inception modules are presented 
here. Inception A contains the factorization of the original 5 × 5 convolutions; Inception B factorizes general nxn 
convolutions, and Inception C has expanded the filter bank outputs.
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(1− pt)
γ is a modulating factor to the cross-entropy loss, with tunable focusing parameter γ ≥ 0.

The whole network was trained via fine-tuning the parameters pre-trained on the ImageNet dataset20 (approx-
imately 1.28 million images of 1000 object categories) across all layers with our dataset. Due to the unbalanced 
property of data, various of data augmentation methods (such as flipping, color jitter, etc.) were also applied for 
all classes independently to balance the data. Since we use a multi-task multi-label structure, each task branch 
consists of several stacked fully connected (FC) units. First, the multi-task branches were trained by freezing 
the backbone’s weights for 5 epochs. We used Adam optimizer and used the learning rate of 0.0001 and epsilon 
of 0.1. During this process, the classification loss weight for level 1 classifier and level 2 classifier was 3:7. Then, 
we performed a multi-step re-training strategy. In this strategy, we gradually unfroze the layer weights in steps, 
with the first few layers being unfrozen last. In these steps, we used progressively reduced learning rates (0.0001, 
0.00001, and so on with other parameters unchanged). Every step lasted 20 epochs. We used Facebook’s Pytorch21 
deep learning framework with strong GPU acceleration to train, validate, and test the algorithm networks.

We also examined the internal features via t-distributed Stochastic Neighbor Embedding (t-SNE)22 where 
point clouds with different colors represent different disease categories. As demonstrated in Fig. 3, each point 
represents an eye image projected from the n-dimensional output of the last hidden layer of Inception-v38 back-
bone into two dimensions. We see clusters of points from the same clinical classes. This visualization represents 
our method’s ability to objectively separate normal patients from those cases for referral. As shown in Fig. 3, 
patients with cataracts cluster in the center, while normal cornea cluster on the lower left. Corneal and limbal 

pt =

{

p if y = 1
1− p otherwise

Figure 3.   The t-SNE visualization of the last hidden layer representations in the algorithm for diseases from 
the prospective dataset (510 images). Colored point clouds represent disease categories, showing how the 
algorithm clusters the diseases. Clusters of points represent our method’s ability to objectively separate normal 
patients from those with corneal diseases. Each point represents an ocular surface image projected from the 
2048-dimensional output of the last hidden layer of the Inception-v3 backbone into two dimensions. We 
see clusters of points of the same clinical diseases. Patients with cataracts cluster in the center, while normal 
cornea cluster on the lower left. Corneal and limbal neoplasm cluster on the upper left. Among corneal disease, 
infectious keratitis is split across the corneal disease point cloud, indicating that it is prone to confusion with 
non-infectious keratitis and corneal dystrophy, which is in agreement with the confusion matrices results 
(Fig. 4).
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neoplasm cluster on the upper left. Among corneal disease, infectious keratitis is split across the corneal disease 
point cloud, indicating that it is prone to confusion with non-infectious keratitis and corneal dystrophy (Fig. 3, 4).

Prospective study of the deep learning algorithm in a clinical setting.  Two tertiary eye cent-
ers (one in Shanghai City from East China and one in Guiyang City from West China) were involved in the 
algorithm’s validation. 1,218 outpatients were invited to participate in this study, of which 510 agreed to receive 
the test and took ocular surface slit-lamp photos before their physician visits. Informed consent was obtained 
from all subjects. A software practitioner participating in this study fed the images as inputs to the trained deep 
learning software model. The algorithm generates a probability distribution over the classification nodes in a 
sequential top-down manner, i.e., one level by one level. For each case, a particular disease was diagnosed if the 
probability value of that corneal disease subtype was ranked highest by the algorithm. ROC curves were plotted. 
To compare our algorithm’s sensitivity and specificity to that of 10 ophthalmologists on the diagnostic task of 
these 510 cases, each ophthalmologist was asked the diagnosis of the images.

Confusion matrices.  Figure 4 shows the confusion matrix of our method over the identified five diseases 
and normal case of the validation strategy in comparison to the tested ophthalmologists. This demonstrates the 
misclassification similarity between the algorithm and human experts. Element (i, j) of each confusion matrix 
represents the empirical probability of predicting class j given that the ground truth was class i.

Statistical analysis.  The area under the ROC curve (AUC) with 95% confidence intervals was used to 
evaluate the algorithm’s diagnostic performance. In addition, the system’s accuracy, sensitivity, and specificity 
were also evaluated.

Results
The statistics of images included in the study are listed in Table 1 consisting of images with eye diseases affecting 
the corneal photography (four common corneal diseases plus cataract) as well as images of disease free (Normal) 
eyes. The algorithm was trained with a randomly selected 80% of the retrospective dataset and the remaining 
20% of images was used to validate the algorithm. Receiver operating characteristic (ROC) curves were plotted to 
assess specificity and sensitivity. The areas under the curve (AUC) of the proposed deep learning algorithm were 
0.930 (95% confidence interval 0.904–0.952) for infectious keratitis, 0.934 (95% confidence interval 0.911–0.957) 
for non-infectious keratitis, 0.939 (95% confidence interval 0.910–0.969) for corneal dystrophy or degenera-
tion, and 0.951 (95% confidence interval 0.921–0.986) for corneal and limbal neoplasm, 0.903 (95% confidence 
interval 0.881–0.924) for cataract, and 0.951 (95% confidence interval 0.929–0.973) for normal ocular surface 
(Fig. 5a, Supplemental Fig. 2).

We also prospectively tested the algorithm’s performance versus ten board-certified ophthalmologists in 
identifying corneal diseases from 510 patients newly enrolled in the outpatient clinic of two tertiary eye centers 
(Table 1). For each test, previously unseen images with a definite diagnosis were displayed and ophthalmologists 
were asked to determine the disease. As shown in Fig. 5b, each ophthalmologist provided a single diagnosis per 

Figure 4.   Reasons for misclassification output from the algorithm in the prospective dataset. (a) A patient with 
central corneal lesions was diagnosed as cataracts by the algorithm. (b) A patient with corneal dystrophy was 
diagnosed as cataracts by the algorithm. The misclassification in these two images was primarily the result of the 
corneal lesion being limited to the pupil area (red arrow). (c) A patient with arcus senilis (red arrow), a common 
corneal degeneration in older subjects, was diagnosed as cataracts by the algorithm. (d) A patient with non-
infectious keratitis was diagnosed as infectious keratitis by the algorithm and the junior ophthalmologist. (e) A 
patient with a complicated case of cataracts was diagnosed as infectious keratitis by the algorithm. (f) A normal 
subject was diagnosed as infectious keratitis by the algorithm. We postulate that multiple and irregular corneal 
reflecting light (red arrow) may manifest as a corneal lesion to the algorithm.
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image represented by a single blue point on the graph. The red points are the average of all the ophthalmologists 
for each task (calculated from n = 510 and 10 tested ophthalmologists for infectious keratitis, non-infectious 

Figure 5.   Corneal diseases identification performance of the proposed deep learning algorithm and 
ophthalmologists. (a) The algorithm achieves acceptable AUC values in identifying corneal diseases on the 
testing dataset with 772 images. (b) Our algorithm was tested against 10 ophthalmologists for the 510-subject 
dataset. The algorithm outperforms the average of the 10 ophthalmologists at corneal inflammation disease 
(infectious and non-infectious keratitis) and achieves performance on par with them in corneal dystrophy, 
corneal degeneration, and neoplasm when using ocular surface photographic images. (c) Confusion 
matrices for diagnosis of normal, cataract and four common corneal diseases between the algorithm and two 
ophthalmologists with varying levels of clinical experience reveal similarities in misclassification between 
human experts and the algorithm. The distribution across column 1—cataract—is pronounced in all plots, 
demonstrating that many lesions are easily confused with this disease. Note that both the algorithm and the 
ophthalmologists noticeably confuse infectious and non-infectious keratitis (diseases 2 and 3) with each other, 
with ophthalmologists erring on the side of predicting infectious keratitis. The distribution across row 5 in 
all plots shows the difficulty of classifying corneal dystrophy or degeneration, which tends to be diagnosed 
as infectious keratitis. (d) Performance comparison with four existing methods, namely Resnet34, Densenet, 
Inception-v3, and Ensemble. Our algorithm achieved better AUC than Resnet34, Densenet, Inception-v3, and 
Ensemble in most of corneal diseases. Only Densenet has a higher AUC than ours in diagnosing corneal and 
limbal neoplasm.
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keratitis, corneal dystrophy or degeneration, and corneal and limbal neoplasm, respectively). The algorithm 
achieves superior performance to an ophthalmologist if the sensitivity–specificity point of the ophthalmologist 
lies below the green curve. The AUC of ROC curves of the algorithm for each corneal disease type was over 0.910 
and in general it had sensitivity and specificity similar to or better than the average values of all ophthalmolo-
gists (Fig. 5b). Importantly, we observed negligible changes in AUC (all < 0.04, Supplemental Table 1) when 
we compared the retrospective dataset used to build the algorithm (Fig. 5a) with the independent real-world 
prospective dataset (Fig. 5b). This suggests that the results of our algorithm are reliable and generalizable across 
different datasets.

Confusion matrices for the algorithm and two ophthalmologists across the normal, cataract and four common 
corneal diseases classifications reveal similarities in misclassification between human experts and the algorithm 
(Fig. 5c). Many images are mistaken as class 1, cataract, owing to the high variability of diseases in this category. 
Note that non-infectious keratitis is commonly confused for other diseases both by the algorithm and oph-
thalmologists. The high variability of this disease is challenging to visually diagnose. Similarly, the distribution 
across row five in all plots shows the difficulty of classifying corneal dystrophy or degeneration, which tends to 
be diagnosed as infectious keratitis. Examples of misclassifications by the algorithm in the prospective dataset 
are examined in Fig. 4 with domain expert’s explanations.

In addition, we also compared the performance of our algorithm with four previous reported methods, namely 
Inception-v38, ResNet16, DenseNet23 and Ensemble24. Using similar approach as Gulshan et al.10, instead of train-
ing new models from scratch, we applied a fine-tuning strategy directly on pre-trained models of Inception-v38, 
ResNet16 and DenseNet23 using a multi-step retraining strategy. In this strategy, we gradually unfroze the layer 
weights in steps with the first few layers being unfrozen last. In these steps, we also used progressively reduced 
learning rates from 0.0001 to 0.000001 and with other parameters unchanged. The Ensemble24 model combined 
all backbone features extracted from the other three models (namely the Inception-v3, ResNet, DenseNet models) 
and applied a tree-based classifier for the final classification. As shown in Fig. 5d, our algorithm outperformed 
over all four existing methods in identified corneal diseases. For example, for infectious corneal disease, our 
algorithm achieved AUC 0.960 whereas the Inception-v38, ResNet16, DenseNet23 and Ensemble24 models achieved 
AUC 0.950, 0.938, 0.954, and 0.908, respectively.

In an effort to improve efficiency in a clinical setting, we also created a heatmap via gradient-weighted class 
activation mapping (Grad-CAM) algorithm25, which can produce visual explanations for convolutional neural 
network based deep learning models, thereby establishing prediction trust and interpretation for physicians. In 
our case, it helped to indicate the potential corneal lesion regions for further examination by physicians (Fig. 6). 
Grad-CAM uses the gradient information flowing into the last convolutional layer to understand the importance 
of each neuron for a decision of interest thereby highlighting the important regions in the image for predicting 
the disease. It first computes the gradient of the score for a given class with respect to feature maps of a convo-
lutional layer. Then, these gradients are averaged-pooled to obtain the neuron importance weights. Finally, the 
coarse heat-map for a given class is generated via a weighted combination of forward activation maps followed 
by a ReLU function. As an example, the ocular image in Fig. 6a highlights regions of corneal edema and opacity, 
as well as hypopyon, in the central and inferior quadrants, indicating infectious keratitis.

Discussion
Ocular surface examinations are recommended for detecting corneal diseases26,27. Furthermore, access to OCT 
imaging can pose logistical and economic challenges for many patients, particularly normal subjects. For the 
above reasons, we chose ocular surface images for developing the deep learning algorithm. In order to prevent 
overfitting problems associated with deep learning algorithms, we split the images into training, validation, and 
test datasets. The AUCs based on both the validation and test datasets showed that the algorithm is generalizable 
and can provide accurate results in a real-world setting for cases not previously examined. In addition to clas-
sifying the images, the heatmap visualization feature accurately detects abnormal corneal regions in the images, 
enabling clinical review and the verification of the algorithm’s diagnoses. In a recent published study, Li et al28 
reported a workflow for the segmentation of anatomical structures and the annotation of pathological features 
in slit-lamp images to improve the performance of a deep-learning algorithm for diagnosing ophthalmic dis-
orders. By using 1,772 slit-lamp images, they could detect corneal opacity and corneal neovascularization with 
acceptable sensitivity and specificity. Unlike our study, they tried to detect the clinical signs of the pathological 
cornea rather than the diagnosis of patients with corneal diseases.

Our deep learning algorithm showed an excellent diagnostic performance for the detection of corneal disease 
when applied in outpatient clinics and it also strived to differentiate diseases that are easily confused with each 
other, especially corneal lesions located in the central cornea, particularly in the pupil area, and cataracts. While 
our algorithm performed well in calling these difficult cases, it must be improved in the future for truly accurate 
and robust detection. One potential improvement would be to train our algorithm on corneal OCT images, 
targeting specific characteristics of the corneal sagittal plane.

Several limitations to our study should also be mentioned. First, the collection of a larger image dataset with 
additional types of ocular surface diseases from different digital slit lamp photography systems and hospitals 
(not only level 2 corneal disease labels in the Fig. 1a, but also level 3 labels and the other ocular diseases such as 
glaucoma, uveitis, and conjunctival disease) is warranted as additional gains achieved by increasing the diversity 
of training data. However, only images covering and centering around the cornea can be applied. Second, we 
did not perform a detailed analysis for level 3 labels in the current study due to the limitation of our sample 
size (about 160–200 images for each label in level 3). We will enroll more images to make a comparison with 
the network that has the finest level3 classifier in the future. Third, there may be an ascertainment bias in the 
prospective part of our study as we noted that outpatients with decreased best-corrected visual acuity were more 
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likely to participate. This suggests the algorithm may not perform as effectively on images having corneal disease 
without vision problems. Finally, due to the limited resources, our algorithm has been trained to identify only 
the ocular surface diseases listed in the methods section. The algorithm may miss other eye diseases with normal 
ocular surface for which it was not trained to identify. Further research, especially a prospective study focusing 
on patients’ prognosis undergoing the AI diagnosis-oriented therapy, is necessary to determine whether it could 
ultimately improve patient care and outcomes as well as save physicians’ time and energy.

In conclusion, based on a large dataset of ocular surface photographs, we developed a deep learning algorithm 
that has high sensitivity and specificity for detecting four common corneal diseases. In addition, we repeated 
these results in a prospective study in outpatient clinics. For the proper clinical application of our method, further 
tests are needed to overcome the variation in images taken by different imaging systems and to optimize our 
algorithm for different demographics during clinical use. Finally, it should be noted that deep learning algorithms 
benefit from every additional piece of data they examine. As such, we envision that routine use of this algorithm 
in a clinical setting will result in continued improvement of diagnoses made.

Data availability
Data and source code are publicly available under the restrictions of scientific research and publication review 
purpose only. The training and testing data are publicly available at Shanghai EENT Hospital of Fudan Univer-
sity’s Database (https​://223.167.111.163:7000/link/F655D​03ECA​E7732​7EA99​D8548​33FC6​CB).

Code availability
Source code are available. Project name: Corneal Diseases Classification with Deep Learning. Project home page: 
https​://gigan​tum.com/guoyo​uwen/corne​al-disea​se-proje​ct.  Operating system(s): ubuntu 16.4 64bit.  Program-
ming language: Python 3.6.  Other requirements: Pytorch 1.0+, cnn_finetune: pip install cnn_finetune.  License: 
GPL.

Figure 6.   The heatmap for images with various referral corneal diseases. These visualizations are generated 
automatically, locating regions for closer examination after a patient is seen by a consulting ophthalmologist. 
The bluer the color, the lower the attention of the model; the redder the color, the higher the attention of the 
model. (a) An ocular surface image shows a case with infectious keratitis. (b) The heatmap highlights the 
pathologic regions in the central and inferior cornea. (c,d) The heatmap reveals pathologic regions in the nasal 
cornea of a case with a peripheral corneal ulcer. (e,f) The heatmap indicates pathologic regions in the whole 
cornea of a case with macular corneal dystrophy. (g,h) The heatmap highlights pathologic regions in the nasal 
quadrant of a case with pterygium.

https://223.167.111.163:7000/link/F655D03ECAE77327EA99D854833FC6CB
https://gigantum.com/guoyouwen/corneal-disease-project


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17851  | https://doi.org/10.1038/s41598-020-75027-3

www.nature.com/scientificreports/

Received: 25 June 2020; Accepted: 7 October 2020

References
	 1.	 Whitcher, J. P., Srinivasan, M. & Upadhyay, M. P. Corneal blindness: a global perspective. Bull. World Health Organ. 79, 214–221 

(2001).
	 2.	 Dandona, R. & Dandona, L. Corneal blindness in a southern Indian population: need for health promotion strategies. Br. J. Oph-

thalmol. 87, 133–141. https​://doi.org/10.1136/bjo.87.2.133 (2003).
	 3.	 Song, X. et al. A multi-center, cross-sectional study on the burden of infectious keratitis in China. PLoS ONE 9, e113843. https​://

doi.org/10.1371/journ​al.pone.01138​43 (2014).
	 4.	 Austin, A., Lietman, T. & Rose-Nussbaumer, J. Update on the management of infectious keratitis. Ophthalmology 124, 1678–1689. 

https​://doi.org/10.1016/j.ophth​a.2017.05.012 (2017).
	 5.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https​://doi.org/10.1038/natur​e1453​9 (2015).
	 6.	 Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88. https​://doi.org/10.1016/j.media​

.2017.07.005 (2017).
	 7.	 Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118. https​://doi.

org/10.1038/natur​e2105​6 (2017).
	 8.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) 2818–2826, https​://doi.org/10.1109/CVPR.2016.308 (2016).
	 9.	 Chilamkurthy, S. et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 

392, 2388–2396. https​://doi.org/10.1016/S0140​-6736(18)31645​-3 (2018).
	10.	 Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus 

photographs. JAMA 316, 2402–2410. https​://doi.org/10.1001/jama.2016.17216​ (2016).
	11.	 Gargeya, R. & Leng, T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124, 962–969. https​

://doi.org/10.1016/j.ophth​a.2017.02.008 (2017).
	12.	 Li, Z. et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. 

Ophthalmology 125, 1199–1206. https​://doi.org/10.1016/j.ophth​a.2018.01.023 (2018).
	13.	 Burlina, P. M. et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional 

neural networks. JAMA Ophthalmol. 135, 1170–1176. https​://doi.org/10.1001/jamao​phtha​lmol.2017.3782 (2017).
	14.	 Schlegl, T. et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125, 

549–558. https​://doi.org/10.1016/j.ophth​a.2017.10.031 (2018).
	15.	 Treder, M., Lauermann, J. L. & Eter, N. Automated detection of exudative age-related macular degeneration in spectral domain 

optical coherence tomography using deep learning. Graefe’s Arch. Clin. Exp. Ophthalmol. 256, 259–265. https​://doi.org/10.1007/
s0041​7-017-3850-3 (2018).

	16.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 770–778, https​://doi.org/10.1109/CVPR.2016.90 (2016).

	17.	 Long, E. et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. 
Biomed. Eng. 1, 0024 (2017).

	18.	 Williams, B. M. et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal 
confocal microscopy: a development and validation study. Diabetologia 63, 419–430. https​://doi.org/10.1007/s0012​5-019-05023​
-4 (2020).

	19.	 Lin, T. Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal loss for dense object detection. 2017 IEEE International Conference on 
Computer Vision (ICCV) 2999–3007, https​://doi.org/10.1109/ICCV.2017.324 (2017).

	20.	 Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).
	21.	 Paszke, A. et al. Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems (NIPS) (2017).
	22.	 Maaten, L. & Hinton, G. E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
	23.	 Huang,G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. 2017 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR) 2261–2269, https​://doi.org/10.1109/CVPR.2017.243 (2017).
	24.	 Van Veen, H.J., The Dat, L.N. & Segnini, A. Kaggle Ensembling Guide. https​://mlwav​e.com/kaggl​e-ensem​bling​-guide​ (2015).
	25.	 Selvaraju, R.R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. 2017 IEEE International 

Conference on Computer Vision (ICCV) 618–626, https​://doi.org/10.1109/ICCV.2017.74 (2017).
	26.	 Chidambaram, J. D. et al. Prospective study of the diagnostic accuracy of the in vivo laser scanning confocal microscope for severe 

microbial keratitis. Ophthalmology 123, 2285–2293. https​://doi.org/10.1016/j.ophth​a.2016.07.009 (2016).
	27.	 Fuentes, E. et al. Anatomic predictive factors of acute corneal hydrops in keratoconus: an optical coherence tomography study. 

Ophthalmology 122, 1653–1659. https​://doi.org/10.1016/j.ophth​a.2015.04.031 (2015).
	28.	 Li, W. et al. Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of 

ophthalmic disorders. Nat. Biomed. Eng. 4, 767–777. https​://doi.org/10.1038/s4155​1-020-0577-y (2020).

Acknowledgments
The authors thank Chaoran Zhang MD, Lan Gong MD, Yan Wang MD, Jun Xiang MD, Yujing Yang MD, Xiaobo 
Yu MD, Jingyi Chen MD, Xinhan Cui MD, and Lijia Tian MD from Shanghai EENT Hospital and Jinhua Zheng 
MD, Hao Jiang MD, Li Tang MD, Lu Liu MD, Yuanling Xia MD, Xian Wang MD, Xia Yang MD from The Affili-
ated Hospital of Guizhou Medical University for their help on the data collection and integration.

Author contributions
X.L., and J.H. composed the manuscripts; J.H., X.L., S.X., Z.Y., Y.L., and X.Z. conceptualized and designed 
the algorithms and collected data; Y.G., H.G., L.G., A.W. and J.X. implemented the algorithms and conducted 
experimental study; H.G. and A.W. collected data; L.G., and Y.G. developed the taxonomy, oversaw the medical 
tasks; J.H., A.W. and J.X. recruited ophthalmologists; X.L. and J.H. supervised the project.

Funding
This work was supported by grants from the National Natural Science Foundation of China (81670820, 81670818, 
and 81870630); the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions 
of Higher Learning; Shanghai Rising-Star Program (18QA1401100); and the Guizhou Science and Technology 
Program (2016-2825). The sponsor or funding organization had no role in the design or conduct of this research.

https://doi.org/10.1136/bjo.87.2.133
https://doi.org/10.1371/journal.pone.0113843
https://doi.org/10.1371/journal.pone.0113843
https://doi.org/10.1016/j.ophtha.2017.05.012
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1016/S0140-6736(18)31645-3
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1016/j.ophtha.2017.02.008
https://doi.org/10.1016/j.ophtha.2017.02.008
https://doi.org/10.1016/j.ophtha.2018.01.023
https://doi.org/10.1001/jamaophthalmol.2017.3782
https://doi.org/10.1016/j.ophtha.2017.10.031
https://doi.org/10.1007/s00417-017-3850-3
https://doi.org/10.1007/s00417-017-3850-3
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s00125-019-05023-4
https://doi.org/10.1007/s00125-019-05023-4
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/CVPR.2017.243
https://mlwave.com/kaggle-ensembling-guide
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1016/j.ophtha.2016.07.009
https://doi.org/10.1016/j.ophtha.2015.04.031
https://doi.org/10.1038/s41551-020-0577-y


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17851  | https://doi.org/10.1038/s41598-020-75027-3

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information  is available for this paper at https​://doi.org/10.1038/s4159​8-020-75027​-3.

Correspondence and requests for materials should be addressed to X.L. or J.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-75027-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs
	Methods
	Ocular surface disease photograph grading and reference standard. 
	Development and validation of the deep learning algorithm in a retrospective dataset. 
	The proposed hierarchical deep learning framework. 
	Prospective study of the deep learning algorithm in a clinical setting. 
	Confusion matrices. 
	Statistical analysis. 

	Results
	Discussion
	References
	Acknowledgments


