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Abstract
The causal role of abdominal overweight/obesity, insulin resistance and type 2 di-
abetes (T2D) on the risk of fatty liver disease (FLD) has robustly been proven. A 
consensus of experts has recently proposed the novel definition of ‘metabolic dys-
function-associated fatty liver disease, MAFLD’ instead of ‘nonalcoholic fatty liver 
disease, NAFLD’, emphasizing the central role of dysmetabolism in the disease patho-
genesis. Conversely, a direct and independent contribution of FLD per se on risk of 
developing T2D is still a controversial topic. When dealing with FLD as a potential risk 
factor for T2D, it is straightforward to think of hepatic insulin resistance as the most 
relevant underlying mechanism. Emerging evidence supports genetic determinants 
of FLD (eg PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17B13) as determinants of insu-
lin resistance and T2D. However, recent studies highlighted that the key molecular 
mechanism of dysmetabolism is not fat accumulation per se but the degree of hepatic 
fibrosis (excess liver fat content—lipotoxicity), leading to reduced insulin clearance, 
insulin resistance and T2D. A consequence of these findings is that drugs that will 
ameliorate liver fat accumulation and fibrosis in principle may also exert a beneficial 
effect on insulin resistance and risk of T2D in individuals with FLD. Finally, initial 
findings show that these genetic factors might be directly implicated in modulating 
pancreatic beta-cell function, although future studies are needed to fully understand 
this relationship.
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1  | INTRODUC TION

Fatty liver disease (FLD) is defined by excessive hepatic fat accumu-
lation mainly due to metabolic derangement and excess in alcohol 
intake.1 Abdominal overweight/obesity, insulin resistance and type 2 
diabetes (T2D) are among the strongest acquired risk factors for the 
development of FLD and its progression to advanced fibrosis, cir-
rhosis and hepatocellular carcinoma.2-4 The causal role of abdominal 
overweight/obesity, insulin resistance and T2D on risk of FLD devel-
opment and progression has robustly been proven.5 The opposite, 
namely a direct and independent contribution of FLD per se on risk 
of developing T2D, is still a controversial topic.

However, it is becoming clear that the link between FLD and 
T2D is more complex than previously thought. Human genetic vari-
ations primarily increasing liver fat content do not have a direct 
effect on insulin resistance.6 Indeed, recent evidence suggests 
that quality of fat, rather than quantity, is more important in caus-
ing the increase in insulin resistance.6,7 Furthermore, the effect 
of gender in the development of FLD should not be dismissed.8 
A growing body of evidence suggests that gender and its related 
biological components represent strong determinants of FLD de-
velopment and progression.9 In agreement, also derangement in 
glucose metabolism has a sexual dysmorphism.10-16 Among the 
unknown questions, there is also if genetic determinants of FLD 
interact specifically with sex. Increasing clinical evidence now sug-
gests that FLD may precede and/or promote the development of 
T2D and other cardiometabolic diseases.17 Thus, FLD appears to 
be a good biomarker for predicting risk of incident T2D, irrespec-
tive of established risk factors and may be also used to stratify the 
risk of cardiometabolic diseases and personalize prevention. When 
dealing with FLD as a new risk factor for T2D, it is straightforward 
to think of liver fat content contributing directly to hepatic insulin 
resistance and diabetes as the most likely mechanism.18 However, 
as will be discussed in greater detail, emerging data are now chal-
lenging this notion.

Very recently, a consensus of experts has proposed to replace 
the ‘nonalcoholic fatty liver disease, NAFLD’ with a more appropri-
ate term, namely ‘metabolic dysfunction-associated fatty liver dis-
ease, MAFLD’.19,20 This novel term emphasizes that derangement 
in hepatic lipid and glucose handling, namely metabolic dysfunc-
tion, is the key player in the pathogenesis of chronic liver disease. 
In particular, they propose a set of novel affirmative criteria for 
diagnosing MAFLD (mainly based on the presence of overweight/
obesity, T2D or other metabolic syndrome traits), irrespective of 
other concomitant liver diseases. However, this term has not been 
unanimously accepted21 and therefore, in this review we will use 
the term FLD.

In this review article, we will focus on the contribution of 
human genetics to the multifaceted and bidirectional relationship 
between FLD and T2D, highlighting the potential clinical use of 
FLD for a better risk stratification of T2D and its related chronic 
vascular complications (mainly cardiovascular and chronic kidney 
disease).

2  | EPIDEMIOLOGY

2.1 | FLD and increased risk of diabetes: 
epidemiological evidence

A body of evidence shows that FLD, as detected by imaging meth-
ods, is an early predictor for the development of incident T2D.3,4 
In Table 1, we included the observational studies, published in the 
last 5 years, investigating the association between FLD and risk of 
incident T2D.22-40 Collectively, all these studies have consistently 
documented that FLD was strongly associated with an increased 
risk of incident T2D, independently of age, sex, adiposity measures 
and other potential confounding factors (Table  1). The increased 
risk of incident T2D ranged approximately from a 50%30 to 3.5-fold 
increase36 in individuals with FLD, becoming even higher in sex-
stratified analyses.35 The significant association between FLD and 
increased risk of incident T2D was also confirmed among FLD indi-
viduals with prediabetes.39

Notably, the increase in the risk of incident T2D was found to 
be proportional to the severity of liver steatosis assessed by ultra-
sonography or computed tomography.23,33,34 For example, in a large 
prospective cohort study of 18,111 Chinese nondiabetic subjects, Li 
et al showed that the incidence rates of T2D at 4.6-year follow-up 
progressively increased with the ultrasonographic severity of FLD 
at baseline, accounting for 18.1% of incident T2D cases in the mod-
erate-severe FLD group, 10.6% in the mild FLD group and 4.7% in 
the normal group, respectively (P <  .001). In the multivariable Cox 
regression analysis, the adjusted hazard ratios (HRs) for incident T2D 
were, respectively, 2.34 (95% CI 1.9-3.0) and 1.88 (95% CI 1.6-2.2) in 
individuals belonging to the moderate-severe and mild FLD groups, 
when compared with those in the non-FLD group (P-trend < 0.001).23

Similarly, in a prospective cohort study of 41,650 Chinese non-
diabetic individuals followed for a mean period of 3.6 years, it has 
been reported that FLD on ultrasonography was independently as-
sociated with increased incidence of both T2D (adjusted HR 1.62, 
95% CI 1.5-1.8) and prediabetes (adjusted HR 1.12, 95% CI 1.1-1.2). 
In particular, compared with subjects without FLD, the HRs for T2D 
development were significantly greater in those belonging to the se-
vere FLD group (adjusted HR 2.66, 95% CI 2.2-3.3), the moderate 
(adjusted HR 1.92, 95% CI 1.7-2.2) or mild (adjusted HR 1.46, 95% CI 
1.3-1.6) FLD groups.33

Interestingly, in a retrospective cohort study of 2,726 South 
Korean nondiabetic individuals, Cho et al have assessed the risk of 
incident T2D during 62 months of follow-up in the following three 
subgroups of subjects: (1) those with persistent FLD on ultraso-
nography both at baseline and at follow-up; (2) those with newly 
diagnosed FLD at follow-up; and (3) those with FLD resolution at 
follow-up examination. Notably, these authors found that compared 
with individuals without FLD, the risk of incident T2D was remark-
ably greater in those with persistent FLD (adjusted HR 3.59, 95% 
CI 2.1-6.3, P  <  .001) and those who developed incident FLD (ad-
justed HR 1.94, 95% CI 1.1-3.5, P = .026) over the follow-up period. 
Conversely, the risk of incident T2D was not increased in those 
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who resolved FLD at follow-up (adjusted HR 1.21, 95% CI, 0.4-3.6, 
P = .733).36

Similarly, in a retrospective cohort study of 7,849 South Korean 
nondiabetic individuals who were followed for a mean period of 
4 years, Bae et al reported that the persistence of FLD on ultraso-
nography was independently associated with an approximately 50% 
increased risk of incident T2D, whereas the risk of individuals who 
resolved FLD over the follow-up was essentially superimposable to 
that of individuals without FLD.30

Notably, Mitsuhashi et al have also shown that FLD was a stron-
ger risk factor for incident T2D than the presence of metabolic 
syndrome (MetS) without fatty liver. Indeed, in a population-based 
cohort study of over 17,000 Japanese nondiabetic individuals en-
rolled in a healthy check-up programme for more than 5 years, the 
authors found that the incidence rates of T2D were 1.7% in non-
MetS individuals without FLD, 8.3% in individuals with FLD alone, 
12.5% in those with MetS alone and 21.2% in those with both con-
ditions, respectively. Compared with the normal group, the adjusted 
HRs for incident T2D were 2.35 (95% CI 1.9-2.9) in non-MetS indi-
viduals with FLD, 1.70 (95% CI 1.3-2.2) in those with MetS alone and 
2.33 (95% CI 1.9-2.9) in those with both MetS and FLD, respectively. 
Additionally, patients with FLD (irrespective of coexistence of MetS) 
had a ~ 38% increased risk of developing T2D compared to those 
with MetS alone.29

Using the same population-based cohort, Okamura et al have 
subsequently shown that FLD per se had the strongest adverse ef-
fect on risk of incident T2D (adjusted HR 4.74, 95% CI 1.9-11.7, in 
men and adjusted HR 14.0, 95% CI 7.2-27.1, in women) compared 
with either obesity without FLD (adjusted HR 1.85, 95% CI 1.1-3.3, 
in men and adjusted HR 1.79, 95% CI 0.2-13.2, in women) or vis-
ceral obesity without FLD (adjusted HR 3.41, 95% CI 2.5-4.6, in men 
and adjusted HR 2.30, 95% CI 0.9-6.1, in women). As expected, the 
clustering of these three conditions (obesity, visceral obesity and 
FLD) markedly increased the risk of incident T2D (adjusted HR 10.5, 
95% CI 8.0-13.8, in men and adjusted HR 30.0, 95% CI 18.0-50.0, in 
women).35

In a retrospective cohort study of 396 Swedish nondiabetic adults 
with biopsy-confirmed FLD, Björkström et al have reported that 
the incidence rate of T2D was significantly higher among subjects 
with fibrosis stages 3-4 than among those with fibrosis stages 0-2 
(51% vs. 31%) over a mean follow-up of 18.4 years.27 Subsequently, 
in a cohort study of 106 Swedish nondiabetic subjects with biop-
sy-proven FLD followed for over 20 years, Nasr et al from the same 
research group have observed that the severity of hepatic steatosis, 
quantitatively measured by stereological point counting, was inde-
pendently associated with increased T2D incidence (adjusted HR 
1.03 per 1% increase, 95% CI 1.0-1.1).40

In a small retrospective cohort study of 89 Japanese nondiabetic 
subjects (58% with IGT) with biopsy-confirmed FLD, Seko et al have 
shown that HOMA-estimated insulin resistance was the strongest 
independent predictor of incident T2D over a 5.2-year follow-up 
(adjusted HR 40.1, 95% CI 1.4-119.3).31 Noteworthy, a recent com-
bined meta-analysis and bias analysis including more than 240,000 A
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middle-aged individuals (mostly of Asian ethnicity) has provided fur-
ther strong evidence for a causal relationship between FLD and risk 
of T2D.41

Collectively, all these epidemiological studies support the no-
tion that FLD (defined radiologically or histologically) is strongly as-
sociated with an increased risk of incident T2D in different ethnic 
populations and that the magnitude of risk of incident T2D parallels 
the underlying severity of FLD. However, there are some import-
ant limitations to be considered. First, most of the aforementioned 
observational studies have a retrospective design and are heteroge-
neous in terms of demographic characteristics, length of follow-up, 
covariates included in multivariable regression analyses, as well as 
severity of FLD. Second, most of the studies included individuals 
from Asian countries (especially China and South Korea). Third, only 
few of these studies (Björkström et al,27 Seko et al31 and Nasr et al40) 
have used liver biopsy for diagnosing and staging FLD. Finally, the 
large majority of studies—except for Liu et al,26 Seko et al31 and Nasr 
et al40—did not perform 75-g oral glucose tolerance test for the di-
agnosis of diabetes.

Additional larger prospective cohort studies performed on dif-
ferent ethnic groups, considering also the genetic determinants for 
FLD, are certainly needed to better define the magnitude of risk of 
incident T2D associated with FLD.

2.2 | FLD and risk of T2D chronic complications: 
epidemiological evidence

The global prevalence of FLD diagnosed by ultrasonography and 
magnetic resonance spectroscopy among individuals with T2D is 
currently estimated to be approximately 55%, with the highest rates 
reported from Europe (68%) and West Asia (67%), followed by South 
Asia (58%), Latin America (57%), East Asia (52%), the United States 
(52%) and Africa (30%).42 These rates for the global FLD prevalence 
are nearly twice those observed in the general population from the 
same regions.42,43 Similarly, the global prevalence of histologically 
proven nonalcoholic steatohepatitis (NASH) and advanced fibrosis 
among individuals with FLD and T2D is very high, accounting for 
37% and 17%, respectively.42

Additionally, T2D has been adversely related to the onset of FLD 
long-term complications, such as cirrhosis, hepatocellular carcinoma, 
liver-related mortality and all-cause mortality.44-48 In this context, 
T2D seems to be not only a major driven of FLD global burden but 
also an important risk factor for liver disease progression.

A detailed discussion of the link between FLD and risk of chronic 
vascular complications of diabetes is beyond the scope of this re-
view article. In brief, the coexistence of FLD and T2D increases not 
only the risk of developing the more severe forms of FLD (advanced 
fibrosis, cirrhosis and hepatocellular carcinoma), but also the risk of 
developing chronic vascular complications of diabetes. Indeed, to 
date, a number of large population-based and hospital-based co-
hort studies reported an increased incidence of fatal and nonfatal 
cardiovascular events in individuals with FLD, across a wide range 

of disease spectra, including T2D.49,50 For instance, a prospective 
nested case-control study in 744 T2D outpatient individuals with-
out known cardiovascular and or chronic liver damage at baseline 
demonstrated that those with ultrasound-detected FLD had a nearly 
two-fold increased risk of major adverse cardiovascular events over 
a follow-up period of 5  years. Notably, this association was inde-
pendent of traditional cardiovascular risk factors, diabetes-related 
variables and use of hypoglycaemic, antihypertensive, lipid-lowering 
and antiplatelet medications.51 Similar results were also confirmed 
in a subsequent larger cohort study of 2,103 outpatients with T2D 
with a longer follow-up period (6.5 years).52 Accumulating evidence 
also suggests that FLD is associated with valvular heart disease 
(mainly aortic-valve sclerosis) and increased risk of cardiac arrhyth-
mias (mainly permanent atrial fibrillation), especially in individuals 
with T2D.53,54 This supports the notion that the diagnosis of FLD 
identifies a subset of subjects at higher risk of cardiovascular disease 
over time.55

In the last decade, a growing body of epidemiological evidence 
also suggests that FLD is significantly associated with an increased 
prevalence and incidence of microvascular complications of diabe-
tes, especially with chronic kidney disease.56 For instance, in the 
Valpolicella Heart Diabetes Study cohort involving 1,760 T2D out-
patients with normal kidney function at baseline, the presence of 
ultrasound-diagnosed FLD was associated with an increased risk 
of incident chronic kidney disease (CKD stage ≥ 3) over a follow-up 
period of 6.5 years, independently of established renal risk factors, 
diabetes duration, glycaemic control and use of medications.57 A re-
cent updated meta-analysis of nine observational studies (including 
a total of nearly 96,500 adult individuals) confirmed that FLD is as-
sociated with a nearly 40% increase in the long-term risk of incident 
CKD stage  ≥  3 (ie defined as occurrence of estimated glomerular 
filtration rate < 60 ml/min/1.73m2, with or without accompanying 
overt proteinuria). In subgroup analyses, the significant association 
between FLD and increased risk of CKD was particularly evident 
among patients with T2D and FLD.58

However, despite the growing epidemiological evidence that 
links FLD with the long-term risk of chronic vascular complications 
of diabetes, a causal relationship between these two diseases re-
mains to be demonstrated. Additional larger prospective studies in 
different ethnic populations and translational studies are needed to 
firmly establish whether FLD (especially in its more advanced forms) 
actively contributes to the increased risk of macrovascular and mi-
crovascular complications observed among patients with T2D and 
FLD.

3  | HUMAN GENETIC S

3.1 | Common genetic variants associated with risk 
of FLD

In the last decade, several common genetic variants have been re-
ported to confer increased genetic susceptibility to or protection 
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against FLD.59 Notably, these common genetic variants had a several 
fold larger effect if compared to common variants of susceptibility 
in other complex disease traits, including T2D or obesity. A detailed 
discussion of the association between rare genetic variants of FLD 
and risk of insulin resistance and diabetes is beyond the scope of 
this review article. Briefly, rare mutations in apolipoprotein B (APOB) 
predispose to familial hypobetalipoproteinaemia and progressive 
liver disease due to impaired triglycerides assembly into very low-
density lipoproteins and failure to secrete triglycerides from the 
liver.60 Consistently with common genetic variations, despite higher 
liver fat content, the risk of insulin resistance and diabetes seems not 
to be greatly increased in carriers of APOB variants.61-65 Moreover, 
although the coexistence of obesity, visceral adiposity and insulin 
resistance promotes the development of hepatic fat accumulation in 
these subjects, familial hypobetalipoproteinaemia represents a con-
dition that per se leads to higher degree of FLD.66,67 In this section, 
we will discuss the evidence of an association between common ge-
netic variants of FLD and T2D or insulin resistance.

3.2 | Patatin-like phospholipase domain-
containing 3

To date, the patatin-like phospholipase domain-containing 3 (PNPLA3) 
rs738409 encoding for an isoleucine to methionine substitution at 
position 148 (I148M) of the protein is the most robust genetic de-
terminant of FLD.68,69 This genetic variant is associated with insulin 
resistance or T2D mainly in individuals with obesity but not in those 
with normal weight.68,70-76 A possible reason for this association is 
that obesity uncovers the effect of the PNPLA3 variant, increasing 
its effect size.73,77 Additionally, quality of intrahepatic lipids, rather 
than quantity, may exert a major impact on the development of insu-
lin resistance and glucose intolerance.6,7,78-82 In particular, in meta-
bolically related FLD, but not in PNPLA3-related FLD, the liver was 
found to be predominantly enriched with saturated triglycerides and 
with markers of de novo ceramides synthesis.6,7 Notably, ceramides 
have been strongly associated with hepatic insulin resistance, thus 
supporting their key role in the pathogenesis of metabolically related 
FLD.6,7,78 On the other side, in PNPLA3-associated FLD the quality of 
triglycerides shifted towards polyunsaturated fatty acids.7

However, there are also some studies showing a significant rela-
tionship between PNPLA3 I148M polymorphism and greater insulin re-
sistance in nonobese individuals from Taiwan and South Korea.83,84 In 
addition, in a prospective cohort study of 2,189 Chinese middle-aged 
and elderly individuals with a follow-up of 4.2 years, Xia et al showed 
that the PNPLA3 rs738409 was significantly associated with lower 
risk of incident T2D.85 Furthermore, in a study of Brazilian individuals 
with T2D, Machado et al reported that the PNPLA3 I148M variant was 
significantly correlated to a better glycaemic control.86 All these data 
suggest that in addition to obesity there are also other factors possibly 
related to ethnicity that can modulate the effect of the PNPLA3 genetic 
variant on T2D risk. Further studies are needed to establish the mag-
nitude of genetic and environmental risk factors in FLD pathogenesis 

and to better characterize the different clinical FLD phenotypes result-
ing from their interactions.

3.3 | Transmembrane 6 superfamily member 2

A body of evidence shows that the rs58542926 in transmembrane 6 
superfamily member 2 (TM6SF2) (E167K) is a robust genetic determi-
nant of FLD,87-89 inducing a reduction in APOB100 containing lipo-
protein lipidation and secretion.90,91

Furthermore, studies have also investigated the relationship be-
tween FLD, insulin sensitivity and T2D among individuals carrying 
the TM6SF2 E167K. As for the PNPLA3 I148M, lines of evidence have 
described the TM6SF2 E167K as a potential risk variant for T2D de-
velopment,92,93 mainly linked to increased hepatic and adipose insu-
lin resistance and impaired pancreatic beta-cell function.94 On the 
other hand, TM6SF2 E167K has been reported to be associated with 
preserved insulin sensitivity, estimated by HOMA-IR and adipose 
insulin resistance or measured by hyperinsulinaemic euglycaemic 
clamp.84,95

3.4 | Membrane bound O-acyltransferase domain-
containing protein 7

The membrane bound O-acyltransferase domain-containing protein 
7 (MBOAT7) is a 6-transmembrane domain protein96 that promotes 
the remodelling of membrane phosphatidylinositol with polyun-
saturated fatty acids.96-99 Depletion of MBOAT7 increases liver fat 
content by inducing hepatic synthesis of triglycerides fueled by an 
accelerated turnover of phosphatidylinositol.100 Hyperinsulinaemia 
also contributes to liver fat accumulation by enhancing hepatic 
MBOAT7 down-regulation, independently of MBOAT7 rs641738 
genotype,99 thus suggesting that MBOAT7 activity might be influ-
enced by insulin signalling pathways.

To date, there are very few studies examining the effect of 
MBOAT7 rs641738 on T2D-related metabolic traits. Viitasalo 
et al did not find any association of MBOAT7 rs641738 with plasma 
glucose and insulin levels among Caucasian obese children.101 
Similarly, no association was found between the MBOAT7 rs641738 
and HOMA-estimated insulin resistance among Asian adult indi-
viduals.84 However, in a multiethnic cohort of 860 obese youths, 
Umano et al showed that MBOAT7 rs626283 (ie a genetic variant in 
strong linkage disequilibrium with the MBOAT7 rs641738) was asso-
ciated with both hyperisulinaemia and impaired insulin sensitivity in 
European individuals, but not in Hispanics and African Americans.102

3.5 | Glucokinase regulator

The rs1260326 in glucokinase regulator (GCKR) (P446L) reduces 
GCKR ability to inhibit glucokinase, resulting in constitutive activa-
tion of glucose uptake and increased hepatic de novo lipogenesis.103 
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This results in the occurrence of FLD with lower insulin resistance 
and decreased risk of T2D as shown in several ethnic groups, mostly 
European and Asian populations.104-116

Notably, as for other genetic variants, a GCKR-related protection 
against development of T2D was not observed in African American 
individuals,113,114,116 supporting that the impact of GCKR variant on 
T2D risk and its related clinical traits might differ depending on eth-
nicity. Moreover, the association of the GCKR variant with fasting 
glucose, insulin levels and insulin sensitivity seems to be less pro-
nounced in children or adolescents compared to adults, suggesting 
that the GCKR-induced hypoglycaemic effect might become more 
evident with increasing age.117,118 Unexpectedly, the rs1260326 
or rs780094 (an intronic variant in high linkage disequilibrium) in 
GCKR gene variants have been associated with increased 2-hour 
postload plasma glucose levels.106,114,119 Finally, inconsistent results 
have been reported regarding the association between GCKR poly-
morphisms and pancreatic beta-cell function, as estimated by the 
HOMA-B index.106,110,114

3.6 | Hydroxysteroid 17-beta dehydrogenase 13

The loss-of-function rs72613567:TA in hydroxysteroid 17-beta de-
hydrogenase 13 (HSD17B13) was recently found to protect against 
the development and progression of both alcoholic and nonalco-
holic chronic liver disease, while showing no association with sim-
ple steatosis.120-122 It has been hypothesized that the HSD17B13 
rs72613567:TA may result in defective HSD17B13 enzymatic activ-
ity, leading to impaired synthesis of several proinflammatory lipid 
species (eg leukotriene B4) into the liver.120 However, the exact 
molecular mechanism(s) and the protein function need further 
investigation.

Similarly, it is still not known whether the HSD17B13 gene locus 
influences susceptibility to T2D and insulin resistance. A study by 
Luukkonen et al have recently reported that in European nondiabetic 
individuals, the HSD17B13 rs72613567:TA was not significantly as-
sociated with changes in fasting glucose and insulin levels or insulin 
sensitivity, as directly quantified by euglycaemic hyperinsulinaemic 
clamp technique.123

3.7 | Causal relationships between FLD, 
insulin resistance and diabetes: Mendelian 
randomization studies

In the last few years, an increasing number of studies have applied 
a Mendelian randomization approach to establish a possible causal 
relationship between FLD and its related metabolic traits, that is in-
sulin resistance and T2D.89,124

Interestingly, it has been shown that the presence of geneti-
cally determined fatty liver (by using a genetic risk score including 
PNPLA3, TM6SF2, GCKR and MBOAT7 variants) was causally asso-
ciated with greater insulin resistance, as estimated by HOMA-IR, 

in individuals at risk of progressive liver disease (ie those with sus-
pected NASH or severe obesity), but not in the general population.89 
However, it should be noted that as reported by Stender et al these 
genetic variants strongly interact with obesity125 and, therefore, it is 
not surprising that the deleterious metabolic effect of these genetic 
variants was observed principally among those at higher risk for FLD. 
Moreover, this study also suggested that FLD per se does not directly 
cause insulin resistance, but the risk is mainly mediated by the de-
gree of liver fibrosis, in other words by the duration and severity of 
liver disease (Figure 1).89

Within this context, hyperinsulinaemia might be secondary to 
intrahepatic accumulation of specific lipotoxic species in addition 
to fibrosis-induced defect in hepatic insulin clearance.59 Similarly, 
given the well-recognized association between cirrhosis and in-
creased risk of incident T2D,126 it would be not surprising if ge-
netically related FLD may cause pancreatic beta-cell dysfunction 
through the same underlying mechanism, that is advanced liver 
fibrosis. However, this issue has yet to be studied in greater detail 
in future studies. It is worth noting that the accuracy of Mendelian 
randomization methodology can be compromised by the pleio-
tropic effects of genetic variants, although this disadvantage is 
largely minimized by using polygenic risk scores. Another lim-
itation of human-based studies is partly due to the presence of 
multiple potential confounding factors (eg comorbidities or use of 
certain medications) that may weaken or mask the specific genetic 
associations. For example, the coexistence of severe obesity was 
found to strongly influence the impact of PNPLA3 I148M on sys-
temic insulin sensitivity.70 Experimental studies conducted in ani-
mal models may help to stem these issues. To support this, a recent 
experimental study published by Liu et al reported that PNPLA3 
I148M was associated with chronic hyperglycaemia and increased 
visceral adiposity, but not with insulin resistance. Interestingly, 
the authors proposed that PNPLA3-induced reduction in glucose 
tolerance was largely mediated by pancreatic chronic inflamma-
tion, leading to impaired pancreatic insulin and glucagon secre-
tion.124 Taken all this together, it would appear that genetically 
determined liver steatosis does not carry the same diabetogenic 
risk associated with the metabolically determined liver steato-
sis. Moreover, quality of intrahepatic lipids, rather than quantity, 
decides whether the accumulation of fat in the liver will result in 
changes in glucose metabolism rather than only a deleterious ef-
fect for the hepatocyte.

Based on this evidence, it is likely that the use of drugs that 
will ameliorate liver steatosis and fibrosis in principle should also 
exert a beneficial effect on insulin resistance and risk of T2D as-
sociated with FLD. Currently, several pharmacological therapies 
have shown promising results in improving liver fat content and in-
flammation, such as the peroxisome proliferator-activated recep-
tor γ (PPAR-γ) agonist pioglitazone and the glucagon-like peptide 
1 (GLP-1) receptor agonist liraglutide.127-130 In addition to these 
well-known antidiabetic drugs, the stearoyl CoA desaturase-1 
(SCD1) modulator aramchol showed improvement in hepatic ste-
atosis and glycaemic control in individuals with prediabetes or T2D 
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and biopsy-proven NASH (NCT02279524). On the other hand, de-
spite ameliorating hepatic steatosis and fibrosis, the farnesoid X 
receptor (FXR) agonist obeticholic acid was found to increase a) 
insulin resistance, estimated by HOMA-IR and b) circulating lev-
els of low-density lipoproteins, resulting in a more proatherogenic 
profile.131 Similarly, the chemokine receptor (CCR) 2/5 antagonist 
cenicriviroc, which showed a primary antifibrotic activity, appears 
to be likely metabolically neutral.132,133 However, larger phase 3 
clinical trials are required to further validate these results. Finally, 
the pleiotropic effects of genetic factors and of drug pathways 
should be borne in mind when prescribing a drug for individuals 
with FLD.

3.8 | Effect of FLD genetics on T2D chronic 
complications

To date, emerging evidence supports the existence of a significant 
relationship between some genetic determinants of FLD and suscep-
tibility to diabetic nephropathy, although the topic needs to be fur-
ther explored.134 Notably, the PNPLA3 I148M has been associated 

with lower estimated glomerular filtration rate and increased risk of 
chronic kidney disease among European individuals with T2D.135,136 
Interestingly, the significant association between the PNPLA3 I148M 
variant and increased risk of kidney dysfunction was independent of 
established renal risk factors and severity of FLD, suggesting that 
the PNPLA3 I148M might be directly involved in the pathophysiol-
ogy of diabetic nephropathy. In line with this hypothesis, PNPLA3 
expression was found to be high in the renal cortex, mainly in podo-
cytes.136 Conversely, the steatogenic allele in GCKR locus seems to 
protect against the development of chronic kidney disease among 
T2D individuals,137,138 consistently with the GCKR-related hypogly-
caemic effect observed in nondiabetic individuals.

Some evidence also suggests that PNPLA3 and TM6SF2 gene 
variants may protect against cardiovascular risk, whereas variants 
in GCKR are associated with increased risk of cardiovascular disease, 
perhaps mediated by a decrease in the atherogenic dyslipidemia in 
both PNPLA3 and TM6SF2 carriers and an increase in the athero-
genic dyslipidemia in GCKR carriers.139 However, further research is 
needed to clarify whether ‘genetic-related FLD’ and ‘metabolic-re-
lated FLD’ exert differential effects on risk of major adverse cardio-
vascular events.49,140

F I G U R E  1  Causal relationship between genetically determined fatty liver disease, insulin resistance and diabetes. A Mendelian 
randomization study published by Dongiovanni et al89 showed that: 1) genetically determined fatty liver disease (FLD) is causally associated 
with insulin resistance in individuals at risk of progressive liver disease (eg those with suspected NASH or severe obesity); 2) impairment 
of insulin sensitivity is mediated by increased hepatic fibrosis (excess liver fat content—lipotoxicity). Similarly, a Mendelian randomization 
study by Liu et al124 confirmed that genetically determined FLD causes the development of type 2 diabetes (T2D), although the underlying 
molecular mechanism(s) has yet to be entirely elucidated. In accord with the well-recognized link between cirrhosis and increased T2D 
onset,126 the association between genetically determined FLD and enhanced risk of incident T2D might again be largely mediated by 
increased hepatic fibrosis
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4  | CONCLUSIONS AND FUTURE 
PERSPEC TIVES

New insights by molecular human genetics robustly support that 
FLD is causally associated with dysmetabolism and T2D.89,124 
Recent studies highlighted that the key molecular mechanism of 
dysmetabolism is not fat accumulation per se but the degree of 
hepatic fibrosis (excess liver fat content—lipotoxicity), leading to 
reduced insulin clearance, insulin resistance and T2D.59 Notably, 
initial findings show that these genetic factors might be directly 
implicated in modulating pancreatic beta-cell function,124 although 
future studies are needed to fully understand this relationship. 
In this context, it is worth noting that a consensus of experts has 
recently proposed novel criteria for diagnosing MAFLD (mainly 
based on the presence of overweight/obesity, T2D or other meta-
bolic syndrome traits), irrespective of other concomitant liver dis-
eases.19,20 We believe that this novel definition is the first attempt 
to define the complexity of FLD and its heterogeneous clinical 
phenotypes, paving the way for a more fit design of clinical trials 
that will lead to precision medicine. Finally, it is also reasonable to 
speculate that the quantitative assessment of liver fat content by 
novel unconventional methods and the discovery of specific bio-
markers of hepatic lipotoxicity will provide a better opportunity to 
improve the overall risk prediction of incident T2D in all individuals 
with FLD.
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