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Background. Sang-Xing-Zhi-Ke-Fang (SXZKF) demonstrates good therapeutic effect against pharyngitis. Nevertheless, the
pharmacological mechanism underlying its effectiveness is still unclear.Objective. To investigate the underlying mechanisms of
SXZKF against pharyngitis using network pharmacology method.Methods. Bioactive ingredients of SXZKF were collected and
screened using published literature and two public databases. Using four public databases, the overlapping genes between these
bioactive compound-related and pharyngitis-related genes were identified by Venn diagram. Protein-protein interaction (PPI)
was obtained using “Search Tool for the Retrieval of Interacting Genes (STRING)” database. “Database for Annotation,
Visualization, and Integrated Discovery ver. 6.8 (DAVID 6.8)” was used to perform Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis to explore the molecular mechanisms of SXZKF against pharyngitis. Finally,
Cytoscape 3.7.2 software was used to construct and visualize the networks. Result. A total of 102 bioactive compounds were
identified. Among them, 886 compounds-related and 6258 pharyngitis-related genes were identified, including 387 over-
lapping genes. Sixty-three core targets were obtained, including ALB, PPARc, MAPK3, EGF, and PTGS2. Signaling pathways
closely related to mechanisms of SXZKF for pharyngitis were identified, including serotonergic synapse, VEGF signaling
pathway, Fc epsilon RI signaling pathway, Ras signaling pathway, MAPK signaling pathway, and influenza A. Conclusion. .is
is the first identification of in-depth study of SXZKF against pharyngitis using network pharmacology..is new evidence could
be informative in providing new support on the clinical effects of SXZKF on pharyngitis and for the development of per-
sonalized medicine for pharyngitis.

1. Introduction

Pharyngitis, a collective term for inflammation caused by
various microorganisms in the pharynx, still has a high
incidence even with the rapid development of modern
medicine [1]. In China, acute pharyngitis is mainly treated
with antiviral drugs, antibiotics or traditional Chinese
medicine (TCM) [2, 3]. TCM plays an increasingly im-
portant role in the treatment of chronic pharyngitis, for the
etiology of chronic pharyngitis is complex, and many studies
have shown that TCM shows significant effect on this disease
[4, 5].

Sang-Xing-Zhi-Ke-Fang is a concoction based on Sang-
Xing-Tang, which is originated form Wen Bing Tiao

BiannBia that had been widely used for more than 200 years
in China. SXZKF has been patented in China (patent
number: 201910302604.4) in 2019 and the oral lozenge based
on it is being developed. SXZKF is composed of Mulberry
Leaf, Armeniacae Amarum Semen, Radix Glehniae, Radix
Rehmanniae Praeparata, Loguat Leaf, Fritillary Bulb, Erio-
botrya japonica .unb, Ligusticum chuanxiong hort,
Earthworm Lumbricus, Mentha haplocalyx Briq, and Exo-
carpium Citrus Grandis. Although we have previously
verified that SXZKF was effective against pharyngitis [6], the
active ingredients and molecular mechanisms of SXZKF in
the treatment of pharyngitis remains unknown.

Network pharmacology is a new discipline based on the
theory of systems biology, analyzing the network of
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biological systems, and selecting specific signal nodes for
multitarget drug molecular design [7]. Based on the ideas
and methodologies of network pharmacology, this study
aimed to obtain the main active ingredients of SXZKF,
screened out the core targets and main biological pathways,
and explored the molecular mechanisms of SXZKF in the
treatment of pharyngitis.

2. Material and Methods

2.1. Screening of Bioactive Compounds of SXZKF.
Information of the bioactive compounds in SXZKF was
obtained from Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP,
http://lsp.nwu.edu.cn/tcmsp.php) and Bioinformatics
Analysis Tool for Molecular mechanism of Traditional
Chinese Medicine (BATMAN-TCM, http://bionet.ncpsb.
org/batman-tcm/) [8]. .e active ingredients of SXZKF
were filtered using the following criteria: (i) oral bioavail-
ability (OB)≥ 30% and (ii) drug-likeness (DL)≥ 0.18 [9, 10].
Other ingredients were obtained through literature analysis
[11, 12].

2.2. Screening of Target Genes of Bioactive Compounds and
Pharyngitis. Target genes of bioactive compounds of SXZKF
were obtained from TCMSP, and the Universal Protein
Database (UniProt, https://www.uniprot.org/) was then
used to remove nonhuman target gene names. To ensure the
reliability of prediction, only target genes with “Reviewed/
Swiss-Prot” rots “Human” in UniProt would be selected
[13, 14]. .e targets related to pharyngitis were obtained
from Comparative Toxicogenomics Database (CTD, http://
ctdbase.org/) [15] and .e Human Gene Database (Gene-
Cards, http://www.genecards.org/). By searching the key-
word “pharyngitis,” target genes of pharyngitis were
identified.

2.3. Establishment of Herbs-Compounds-Targets (H-C-T)
Network. .e overlapping target genes relating to both the
bioactive compounds and pharyngitis were identified and
visualized by Venn diagrams (http://bioinformatics.psb.
ugent.be/webtools/Venn/). .en, Cytoscape 3.7.2 software
was used to visualize and analyze the network of interactions
between overlapping genes, bioactive compounds, and
herbs; we named it the H-C-T network.

2.4. Analysis of Network Topological Features. STRING da-
tabase (https://string-db.org/) was used to obtain the
protein-protein interactions (PPI) by uploading 387
overlapping targets between active compounds and phar-
yngitis. Species was limited to “Homo sapiens” with a
confidence score >0.4. Cytoscape 3.7.2 was used to con-
struct the network of PPI, and then the topological features
of the network were analyzed to screen out the core targets
that play a crucial part in the PPI network. .e degree
centrality (DC), betweenness centrality (BC), and closeness

centrality (CC) were analyzed for each node using the
plugin cytoNCA in Cytoscape 3.7.2 [16]. Preliminary
screening was carried out for nodes with a DC equal or
larger than the median of two. Finally, the nodes with BC
and CC, both larger than the median of two, were identified
as the core targets [17].

2.5. Pathway Analyses and Construction of Compounds-
Targets-Pathways (C-T-P) Network. Pathway enrichment
analysis for overlapping genes was performed using DAVID
ver. 6.8 (https://david.ncifcrf.gov/) with the “Homo sapiens”
setting. Generally, the results of KEGG pathway enrichment
were considered to have statistically significant and neces-
sary functional mechanisms of pharyngitis when P< 0.05. To
ensure the accuracy of this study, we set the screening
criteria as P< 0.01. Bubble chart of the concerned KEGG
pathways was plotted using the OmicShare tools (https://
www.omicshare.com/tools). Finally, Cytoscape 3.7.2 was
used to establish and visualize the network of interactions
between compounds, targets, and signaling pathways that
are closely related to pharyngitis. .e complete workflow of
the analysis is given in Figure 1.

3. Results

3.1. Bioactive Compounds of SXZKF. Ninety-three bioactive
compounds were identified from TCMSP and BATMAN-
TCM, while another nine bioactive compounds were
identified through literature survey. Among these, 29
compounds were identified from Mulberry Leaf, 19 com-
pounds from Semen Armeniacae Amarum Semen, 8 com-
pounds from Radix Glehniae, 2 compounds from Radix
Rehmanniae Praeparata, 18 compounds from Loguat Leaf,
10 compounds from Mentha haplocalyx Briq, 7 compounds
from Fritillary Bulb, 7 compounds from Ligusticum
chuanxiong hort, 10 compounds from Exocarpium Citrus
Grandis, and 9 compounds from Earthworm Lumbricus
(Table S1).

3.2. Target Genes of SXZKF and Pharyngitis. A total of 886
targets genes (Table S2) of 63 bioactive compounds were
retrieved from TCMSP and screened by UniProt, and no
genes were related to another 39 compounds. On the other
hand, 6258 targets related to pharyngitis were obtained
(5150 targets from CTD, 1803 targets from GeneCards;
among them 695 duplicate targets), and the information is
listed in Table S3. As shown in Figure 2, the Venn diagram
showed that 387 overlapping target genes were identified by
matching the SXZKF compounds-related target genes with
CTD and GeneCards pharyngitis-related target genes.

3.3. Analysis of H-C-TNetwork. Based on the Venn diagram
and the results of TCMSP retrieval, we can obtain that the
387 potential targets were linked to 19 compounds of SXZKF
against pharyngitis, as shown in Table S4. To get a better
standing of the interactions between herbs, compounds, and
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target genes, a visual network with 415 nodes (including 9
herbs, 19 compounds, and 387 targets) and 546 edges was
established by Cytoscape as shown in Figure 3.

3.4. PPI Network and Core Targets. We used the plugin
cytoNCA in the Cytoscape 3.7.2 to calculate the degree
centrality (DC), betweenness centrality (BC) and closeness
centrality (CC) for each node in PPI network, the results are
shown in Table S5. According to these values, the targets
with DC, BC, and CC larger than the median of two were
used as core targets for subsequent analysis (as shown in
Figure 4). As displayed in Table 1, 63 core targets were finally
obtained.

3.5. Pathway Enrichment Analysis. 387 potential targets
were mapped to a total of 109 signaling pathways using
DAVID, 28 of which were identified as P< 0.01 (as shown in
Table S6). Top 20 KEGG pathways’ enrichment analysis is
shown in Figure 5 and Table 2.

3.6. Analysis of C-T-P Network. After reviewing the pub-
lished literature, we narrowed down to 6 of the top 20
signaling pathways, which are closely related to pharyngitis.
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Figure 1: Workflow of this study.
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Figure 2: 387 overlapping genes between SXZKF compounds-related
targets and pharyngitis-related targets from GeneCards and CTD.
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.ese includes serotonergic synapse, VEGF signaling
pathway, Fc epsilon RI signaling pathway, Ras signaling
pathway, MAPK signaling pathway, and influenza
A. Cytoscape 3.7.2 was used to construct the network of
“compounds-key pathways-targets,” consisting of 59 nodes
(including 10 compounds, 6 pathways, and 43 targets) and
158 edges, as demonstrated in Figure 6.

4. Discussion

As seen in Figures 3 and 6, SXZKF has effects on multiple
components, multiple targets, and multiple pathways,
which also indicates that TCM plays a synergistic role in
the treatment of diseases. Many studies have shown that
acute pharyngitis is caused by viral or bacterial infection,
and the overlapping pathogenic bacteria include group A

beta-hemolytic streptococcus (the most overlapping) as
well as groups C and G streptococcus. In addition, in-
fluenza A virus, influenza B virus, rhinovirus, and re-
spiratory syncytial virus are important factors causing
pharyngitis [18]. Although the etiology of chronic phar-
yngitis is complex, bacterial infection is now affirmed as
the most important cause, followed by noninfectious
factors, such as obstructive sleep apnea hypopnea syn-
drome, occupational exposure, laryngeal reflux, and al-
lergic diseases. Noninfectious factors combined with
microbial infection can induce resistance in the disease
progression [19]. Meanwhile, many research have shown
that a variety of cytokines are related to the occurrence
and development of both acute and chronic pharyngitis.
.ese cytokines include inflammatory factor, tumor ne-
crosis factor (TNF), and arachidonic acid and its

Figure 3: H-C-Tnetwork. Yellow nodes represent the herbs of SXZKF, green nodes represent the bioactive compounds of SXZKF, and pink
nodes represent the potential targets of SXZKF against pharyngitis.

Degree ≥ 19

Degree ≥ 38
BC ≥ 0.00173433
CC ≥ 0.4214876

Figure 4: Screening of core targets by analyzing topological features of the PPI network. Red nodes represent the core targets.
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Table 1: Detailed information of 63 core targets.

NO. Target name Degree centrality Betweenness centrality Closeness centrality
1 ALB 132 0.10194051 0.57963875
2 SREBF1 101 0.04648343 0.54058193
3 APOB 88 0.02798912 0.52373887
4 APOE 87 0.03066411 0.52765321
5 PPARc 84 0.02496889 0.53082707
6 MAPK3 82 0.03803816 0.52923538
7 HMGCR 79 0.02839721 0.51911765
8 EGF 77 0.0326961 0.51683748
9 LDLR 74 0.01786479 0.5
10 FASN 74 0.01620772 0.502849
11 PPARA 74 0.01758367 0.5130814
12 PTGS2 73 0.03636725 0.50573066
13 SREBF2 72 0.02642683 0.4862259
14 APP 68 0.02026671 0.50500715
15 LEP 67 0.01366234 0.50864553
16 ABCA1 66 0.02050839 0.49509116
17 SCD 66 0.01940855 0.48891967
18 APOA1 65 0.0104694 0.48891967
19 CAT 59 0.0231604 0.50070922
20 ADIPOQ 59 0.01236963 0.49788434
21 CYP3A4 59 0.01670894 0.48356164
22 ESR1 58 0.0240653 0.49509116
23 DGAT1 54 0.00895186 0.47446237
24 CYP2B6 53 0.01261496 0.48422497
25 APOC3 51 0.00521994 0.45844156
26 ACACA 51 0.0040295 0.47638327
27 CREB1 51 0.01442992 0.49164345
28 SIRT1 50 0.01736748 0.49301676
29 MAPK14 48 0.00877424 0.47702703
30 FABP1 48 0.01145724 0.46693122
31 CAV1 48 0.01458166 0.48092643
32 SQLE 47 0.00778386 0.44853875
33 AGT 47 0.00760543 0.47510094
34 CLU 47 0.00773464 0.45844156
35 LIPE 47 0.00794991 0.47638327
36 FADS1 47 0.00692009 0.45607235
37 LIPC 46 0.00999712 0.44968153
38 CYP2E1 46 0.01342474 0.4738255
39 IL4 45 0.00870765 0.47192513
40 ACOX1 45 0.0035187 0.45784695
41 HMGCS1 44 0.00325402 0.44853875
42 ACLY 44 0.01071917 0.46083551
43 CYP19A1 44 0.01030837 0.47255689
44 CYP2C9 44 0.00700349 0.46754967
45 SCARB1 44 0.00915057 0.47003995
46 FDFT1 43 0.00425437 0.45140665
47 DGAT2 43 0.00166345 0.44291092
48 APOA4 43 0.00578781 0.45314506
49 CD44 43 0.01055526 0.46816976
50 CYP51A1 41 0.00425467 0.44180225
51 HSD3B1 41 0.00690686 0.44180225
52 DHCR7 41 0.00378824 0.42891859
53 PON1 41 0.00478681 0.46693122
54 LSS 40 0.00646986 0.44570707
55 ACE 40 0.00407366 0.47255689
56 ABCG2 40 0.02206365 0.46816976
57 F2 39 0.00736964 0.47319035
58 KRAS 39 0.00749875 0.46143791
59 LCAT 39 0.00395196 0.46204188
60 NR3C1 39 0.00692536 0.47003995
61 FABP4 38 0.0045635 0.44796954
62 ABCB1 38 0.01106088 0.46693122
63 HNF4A 38 0.01122196 0.47574124
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cyclooxygenase metabolites, serotonin (5-HT, also known
as serotonin), interleukins (IL-1, IL-2, IL-4, IL-6, IL-10,
etc.), epidermal growth factor (EGF), and so on [20].

In our current study, a total of 102 bioactive ingredients
were identified in SXZKF. .e main active ingredients are
arachidonic acid, quercetin, kaempferol, eicosapentaenoic
acid, and luteolin, the compounds with higher degree value
of node in the H-C-T and C-T-P network, whose chemical
structures were shown in Figure 7. Among, the main active
ingredients identified, metabolites of arachidonic acid (AA)
contribute to inflammation as well as to resolving inflam-
mation. Zhang et al. study demonstrated that AA can

directly bind to TLR4 coreceptor, myeloid differentiation
factor 2 (MD2), and prevent saturated fatty acids from
activating TLR4 proinflammatory signaling pathway. AA
can also reduce lipopolysaccharide- (LPS-) induced in-
flammation in macrophages and septic death in mice
through binding to MD2 [21]. Eicosapentaenoic acid (EPA)
plays an anti-inflammatory role in the body, which can
interfere with the PPARα-IκB-NF-κB signaling pathway in
inflammatory cells to inhibit the inflammatory response due
to the strong anti-inflammatory effects of resolvin and
protectin [22]. .e proinflammatory and anti-inflammatory
effects of AA and EPA intercoordinate to prevent excessive
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Figure 5: Bubble chart of top 20 signaling pathways linked to SXZKF against pharyngitis. Bubble size represented the number of genes
enriched in this pathway, color depth represented the P value, and rich factor represented the ratio of the enriched targets in the pathway to
the total number of targets in the pathway.
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Figure 6: C-T-P network. Yellow nodes represent the bioactive compounds, red nodes represent the key pathways, and purple nodes
represent the target genes.
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inflammatory response and chronic low-grade inflammation
[23]. Besides, kaempferol, luteolin, and quercetin can reduce
the production of the proinflammatory factor IL-6 or tumor
necrosis factor (TNF) to promote the production of the anti-

inflammatory factor IL-10 or reduce the expression of Cox-2
and inducible nitric oxide synthase (iNOS) to downregulate
the level of NO and PGE2 [24]. Kim et al. showed that
quercetin and kaempferol can significantly reduce mice’s ear

Table 2: Functions of 387 target genes based on KEGG pathway analysis.

Term Number of pathway gene P value

Linoleic acid metabolism CYP3A4, CYP2J2, CYP2C19, CYP2C9, CYP2C8, CYP2E1, CYP1A2, PLA2G4A,
PLA2G1B, PLA2G2A, PLA2G6, PLA2G3, PLA2G4C, PLA2G5 1.20E− 11

VEGF signaling pathway PIK3CG, PRKCA, PTGS2, MAPKAPK2, PRKCB, PLA2G4A, KRAS, RAC2, MAPK14,
MAPK3, RAC1, PLA2G4C, AKT2 2.69E− 06

Serotonergic synapse PRKCA, PLA2G4A, APP, CYP2J2, KRAS, CYP2C19, PTGS2, CYP2C9, CYP2C8,
CYP2D6, MAPK3, PTGS1, ALOX12B, PRKACA, ALOX5, PLA2G4C, PRKCB 4.54E− 06

Fc epsilon RI signaling pathway IL4, PIK3CG, PRKCA, PRKCB, PLA2G4A, KRAS, RAC2, MAPK14, MAPK3, RAC1,
PLA2G4C, SYK, AKT2 8.83E− 06

Alpha-linolenic acid metabolism ACOX1, PLA2G4A, PLA2G2A, PLA2G1B, PLA2G6, PLA2G4C, PLA2G3, PLA2G5 3.08E− 05

Pancreatic cancer PIK3CG, KRAS, RAC2, TGFBR1, MAPK3, TGFBR2, RAC1, NFKB1, SMAD2, EGF,
TGFB1, AKT2 3.17E− 05

Chagas disease (American
trypanosomiasis)

PIK3CG, CCL3, TGFBR1, TGFBR2, NFKBIA, NFKB1, SMAD2, BDKRB2, CALR,
TGFB1, ACE, MAPK14, MAPK3, FAS, AKT2 3.98E− 05

Metabolism of xenobiotics by
cytochrome P450

CYP3A4, CYP2A13, CYP3A5, CYP1B1, CYP1A1, CYP2B6, CYP2C9, CYP2D6,
CYP2A6, CYP2E1, CYP1A2, AKR1C1 1.09E− 04

Sphingolipid signaling pathway PRKCA, PIK3CG, SGMS2, CERS5, NFKB1, SGMS1, BDKRB2, PRKCB, KRAS, RAC2,
MAPK14, MAPK3, RAC1, ABCC1, AKT2 1.93E− 04

Chemical carcinogenesis CYP3A4, CYP2A13, CYP3A5, CYP1B1, CYP1A1, CYP2C19, PTGS2, CYP2C9,
CYP2C8, CYP2A6, CYP2E1, CYP1A2 2.22E− 04

Ras signaling pathway
PRKCA, PIK3CG, FGFR4, CSF1, NFKB1, PRKCB, PLA2G4A, KRAS, RAC2, RAC1,
MAPK3, PLA2G1B, PLA2G2A, PLA2G6, PRKACA, FGF1, PLA2G3, PLA2G4C, EGF,

PLA2G5, AKT2
4.17E− 04

Osteoclast differentiation PIK3CG, NCF2, TGFBR1, CSF1, CREB1, PPARG (PPARcP), TGFBR2, NFKBIA,
NFKB1, TGFB1, MAPK14, MAPK3, RAC1, AKT2, SYK 4.83E− 04

Colorectal cancer PIK3CG, KRAS, RAC2, TGFBR1, MAPK3, TGFBR2, RAC1, SMAD2, TGFB1, AKT2 5.51E− 04

FoxO signaling pathway PIK3CG, TGFBR1, TGFBR2, SMAD2, SIRT1, TGFB1, G6PC, KRAS, MAPK14, MAPK3,
PRKAA1, CAT, PRKAA2, EGF, AKT2 6.08E− 04

Retinol metabolism CYP3A4, CYP3A5, DGAT1, CYP1A1, CYP2B6, CYP2C9, CYP2C8, HSD17B6, CYP2A6,
CYP1A2 7.00E− 04

MAPK signaling pathway
PRKCA, FGFR4, TGFBR1, TGFBR2, NFKB1, HSPA1A, HSPA1B, MAPKAPK2, TGFB1,
PRKCB, PLA2G4A, KRAS, RAC2, MAPK14, RAC1, MAPK3, PRKACA, FAS, FGF1,

PLA2G4C, EGF, AKT2
7.04E− 04

Drug metabolism-cytochrome P450 CYP3A4, CYP3A5, CYP2C19, CYP2B6, CYP2C9, CYP2C8, CYP2D6, CYP2A6,
CYP2E1, CYP1A2 0.001095

B Cell receptor signaling pathway PIK3CG, KRAS, RAC2, MAPK3, RAC1, CD81, NFKBIA, NFKB1, AKT2, SYK 0.001218

Hepatitis C PIK3CG, PPARA, LDLR, RXRA, NFKBIA, NFKB1, KRAS, MAPK14, MAPK3, CD81,
SCARB1, EGF, AKT2, NR1H3 0.001755

Influenza A PRKCA, PIK3CG, IL18, FDPS, NFKBIA, NLRX1, HSPA1A, NFKB1, HSPA1B, NLRP3,
PRKCB, MAPK14, MAPK3, PYCARD, FAS, AKT2 0.002805
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Figure 7: Chemical structures of key compounds. (a) Arachidonic acid. (b) Quercetin. (c) Kaempferol. (d) Eicosapentaenoic acid.
(e) Luteolin.
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swelling, relieves writhing response, and can significantly
prevent cough in mice, indicating anti-inflammatory, an-
algesic, and antitussive activities of these compounds [25]. In
terms of antiviral effects, Yan et al. showed that luteolin has a
certain inhibitory effect on influenza A virus (H1N1), as it
may reduce the mRNA expression of hemagglutinin (HA)
and neuraminidase (NA) in virus-infected cells [26]. In
terms of antibacterial effects, extracts of luteolin and
kaempferol have the highest activity against Gram-positive
bacteria in vitro, especially against Streptococcus aureus,
Streptococcus pneumoniae, Streptococcus epidermidis, Ba-
cillus cereus, and Bacillus subtilis [27].

A total of 63 key targets for SXZKF in the treatment of
pharyngitis were identified. DC, CC, and BC analysis in-
dicated that ALB (serum albumin), PPARc (peroxisome
proliferator-activated receptor gamma), MAPK3 (mitogen-
activated protein kinase 3), EGF (epidermal growth factor),
and PTGS2 (prostaglandin G/H synthase 2) are closely re-
lated to pharyngitis. ALB is an important substance to
maintain plasma colloid osmotic pressure, but bacterial
infection in the throat can cause local vascular permeability
to increase, lead to vasodilatation and exudation of the
serous fluid, and finally result in hyperemia, pain, and even
thickening of the mucosa. When localized albumin synthesis
increases when the throat is inflamed, ALB acts to maintain
intravascular osmotic pressure, reduce serous exudation,
and alleviate the symptoms as well as processes of pha-
ryngeal inflammation [28]. EGF promotes the growth of
various epidermal cells and play an important role as a
mucosal protector inmucosal defense and ulcer healing [29].
Studies have shown that EGF is related to the healing of
chronic pharyngeal inflammation and participates in the
pharyngeal mucosa repair [30]. PPARc is an essential
transcription factor, which can act as an inhibitor for in-
flammatory gene expression, blocking the reverses inflam-
mation [31, 32]. MAPK can transmit signals from receptors
on the cell surface to DNA in the nucleus and participate in
biological processes, such as cell growth, death, and cell
cycle, and also in the regulation of pathological processes,
such as inflammation and stress response. As a member of
the MAPK family, MAPK3 plays an important role in the
process of proliferation, differentiation, and formation of
inflammatory cells [33, 34]. PTGS2 is an inducible imme-
diate response gene that is not expressed in most cells under
normal physiological conditions, but during pathological
reactions such as inflammation or tumors, the expression of
PTGS2 is rapidly upregulated, producing a large amount of
prostaglandins. Prostaglandins are mediators of inflamma-
tion that expand blood vessels and increase the sensitivity of
nerve endings to bradykinin and histamine, leading to in-
flammatory pain [35].

.is study analyzes the six pathways that are highly
relevant to the pathogenesis of pharyngitis. Vasodilation and
serous exudation are important links in the pathological
process of pharyngitis. Vascular endothelial growth factor
(VEGF) is the most effective angiogenesis factor in the body,
which can bind to specific receptors of vascular endothelial
cells, promote the division and proliferation of vascular
endothelial cells, and promote the generation of new blood

vessels and increase vascular permeability [36]. VEGF-
mediated signaling pathways can regulate the proliferation,
migration, and survival of vascular endothelium cell, which
cause changes in vascular permeability, leading to vasodi-
lation, exudation, and inflammation. Study had shown that
serumVEGF in pharyngitis model rats is higher than normal
rats and decreases after treatment with TCM [37]. Serotonin,
also known as 5-HT, is a nerve-conducting substance.
Studies have demonstrated that 5-HT can increase the
permeability of submucosal blood vessels, promote plasma
extravasation, and increase congestion and edema, causing
sore throat [20]. Serotonergic synaptic pathways can regu-
late the binding of serotonin to mediated receptors and
alleviate pain symptoms. .e etiology of some chronic
pharyngitis is related to allergic reactions, and subjective
symptoms of patients include pharyngeal foreign body
sensation, itchy throat, pharynx swelling, and dry cough
symptoms [38]..e combination of immunoglobulin E(IgE)
with FcεRI and Fc epsilon RI signal transduction pathway
are the keys in causing allergic diseases [39]. .e Fc epsilon
RI signal transduction pathway can regulate the process of
allergy-associated pharyngitis. .e Ras signaling pathway is
mainly composed of signal pathways such as MAPK and
PI3K-AKt (phosphatidylinositol-3-kinase-protein kinase B),
which can regulate and direct the differentiation of
CD4+T lymphocytes, thereby reducing the inflammatory
response. .e MAPK pathway plays an important role in
regulating the inflammatory response, and its function
mainly includes three cascades mediated by ERK1/2, JNK,
and p38 MAPK. Inactivating this pathway can reduce in-
flammatory cytokine production and relieve the inflam-
matory response [40]. Last but not least, as previously
explained, influenza virus is an important factor in causing
pharyngitis, while SXZKF can play an antiviral role in the
treatment of pharyngitis by regulating the influenza A
signaling pathway.

5. Conclusion

In conclusion, this study identified the main bioactive in-
gredients, core target genes and molecular mechanisms of
SXZKF in the treatment of pharyngitis through network
pharmacology. A total of 102 bioactive compounds were
found, with arachidonic acid, quercetin, kaempferol, eico-
sapentaenoic acid, and luteolin identified as main active
compounds. Among them, 63 key target genes were iden-
tified, with ALB, PPARc, MAPK3, EGF, and PTGS2 rec-
ognized as core targets. .e main molecular mechanisms of
SXZKF for pharyngitis consisted of 28 signaling pathways,
and the key pathways that were closely related to pharyngitis
were found to be related to analgesia, inhibition of in-
flammation response, inhibition of viral replication, and
inhibition of anaphylactic reaction through inactivating
serotonergic synaptic, VEGF signaling pathway, Fc epsilon
RI signaling pathway, Ras signaling pathway, MAPK sig-
naling pathway, and influenza A. Taken together, this study
provides an insight on the cellular and pathway mechanism
of SXZKF in the treatment of pharyngitis. .is new tech-
nique could also be used to understand many other
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traditional or alternative medicine to provide a new horizon
for the development of personalized TCM in the near future.
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