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Summary

Metabolites are the essential substrates for epigenetic modification

enzymes to write or erase the epigenetic blueprint in cells. Hence, the

availability of nutrients and activity of metabolic pathways strongly influ-

ence the enzymatic function. Recent studies have shed light on the chore-

ography between metabolome and epigenome in the control of immune

cell differentiation and function, with a major focus on histone modifica-

tions. Yet, despite its importance in gene regulation, DNA methylation

and its relationship with metabolism is relatively unclear. In this review,

we will describe how the metabolic flux can influence epigenetic networks

in innate and adaptive immune cells, with a focus on the DNA methyla-

tion cycle and the metabolites S-adenosylmethionine and a-ketoglutarate.

Future directions will be discussed for this rapidly emerging field.

Keywords: 5-hydroxymethylcytosine; B cells; DNA methylation; DNA

methyltransferases; epigenetics; immunometabolism; Krebs cycle; macro-

phages; mitochondria; one-carbon metabolism; T cells; ten–eleven translo-

cation.

Introduction

Metabolism is the constellation of chemical reactions in cells.

These reactions are catalyzed by specific metabolic enzymes

to support and maintain cellular and tissue homeostasis. In

immune cells, cell differentiation, effector function, and cell

proliferation are accompanied by a meticulous metabolic

reprogramming. Therefore, the imbalance of intrinsic and/

or extrinsic metabolites can strongly influence the differenti-

ation and function of immune cells and could attribute to

immune-related diseases.1,2

Epigenetics describes the inheritable traits without

changes in the DNA sequence. In 1957, Conrad Wadding-

ton introduced the concept of the ‘Epigenetics Landscape’

to describe the decision-making process during cellular

development.3 In the model, developing cells are marbles

on top of a hill among the landscape of choices. Despite

having the same genetic material, each cell can ‘roll down’

and adopt one of the genetically pre-defined paths and dif-

ferentiate into various cell lineages. Many factors can influ-

ence the decision-making and impact the outcome of cells,

and studies have implicated cell-intrinsic metabolic activity

Abbreviations: 2-HG, 2-hydroxyglutarate; 2OGDD, 2OG-dependent dioxygenases; 5hmC, 5-hydroxymethylcytosine; 5mC, 5-
methylcytosine; aKG, a-ketoglutarate; aKGDH, a-ketoglutarate dehydrogenase; CoA, coenzyme A; DNMT, DNA methyltrans-
ferases; EAE, experimental autoimmune encephalomyelitis; IDH, isocitrate dehydrogenase; IFN, interferon; IL-1b, interleukin-1b;
ImmGen, Immunological Genome Project; JmjC, Jumonji C; JMJD, lysine (and/or arginine) demethylases; LCMV, lymphocytic
choriomeningitis virus; NADH, nicotinamide adenine dinucleotide; oxi-MC, oxidized methylcytosine; PD-1, programmed cell
death protein 1; PHD, prolyl-hydroxylase domain; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; TET, Ten-Ele-

ven Translocation; Th1, T helper type 1; Treg, regulatory T
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and cell-extrinsic nutrient availability. Epigenetic processes

are known to contribute significantly to immune cell devel-

opment, activation, and function.4-6 Increasing evidence

has suggested that epigenetic modification enzymes can

modulate the epigenetic patterns by integrating metabolic

cues from metabolic pathways, including one-carbon meta-

bolism and the Krebs cycle. More specifically, the level of

intermediary metabolites strongly affects the activity of

most epigenetic enzymes,7 which ultimately influences gene

expression in immune cells in response to tissue homeosta-

sis and inflammation.

In this review article, we first introduce the metabolism

of S-adenosylmethionine (SAM) and a-ketoglutarate
(aKG), followed by the roles of the DNA-modifying

enzymes DNA methyltransferases (DNMT) and Ten–Ele-
ven Translocation (TET) in controlling immune cell fate.

We will discuss the interconnection between metabolism,

epigenome, and immunity.

One-carbon metabolism and SAM

One-carbon metabolism provides one-carbon units

required for the synthesis of essential metabolites, includ-

ing amino acids, nucleotides, nicotinamide adenine dinu-

cleotide (NADH), and SAM.8 It is a crucial and complex

metabolic network involving the folate and methionine

cycles (Fig. 1). Notably, the one-carbon metabolic process

is largely derived from the non-essential amino acids ser-

ine and glycine, which can be acquired from the extracel-

lular environment or by de novo synthesis. The de novo

serine biosynthesis starts from the 3-phosphoglycerate of

glycolysis, followed by serial conversions through phos-

phoglycerate dehydrogenase, phosphoserine aminotrans-

ferase 1, and phosphoserine phosphatase (Fig. 1).

Deprivation of serine was showed to induce cell cycle

arrest in proliferating lymphocytes9,10 and tumor cells.11

One-carbon metabolism is essential for immune function.

For instance, T-cell expansion requires serine to fuel the de

novo nucleotide biosynthesis.10,12 Whereas most serine is

acquired extracellularly,10 cell-intrinsic serine synthesis is

also required as effector T-cell proliferation was impaired

when the rate-limiting enzyme phosphoglycerate dehydroge-

nase was inhibited.13 In addition, compared with young

mice, naive CD4 T cells from aged mice were decreased in

percentage and showed a proliferation defect that was linked

to impaired mitochondrial respiration and one-carbon

metabolism.14 In myeloid cells, lipopolysaccharide stimula-

tion enhanced serine one-carbon metabolism to support the

production of interleukin-1b (IL-1b) in inflammatory

macrophages.15,16 Concordantly, inhibition of de novo serine

synthesis protected mice from endotoxemia.15 However, in a

mouse model of Pasteurella multocida infection, exogenous

administration of serine abated macrophage pro-inflamma-

tory response, decreased bacterial colonization, and

increased animal survival.17 While serine one-carbon

metabolism is clearly essential for T cells, its role in regulat-

ing myeloid function remains to be determined.

Methionine is an intermediate of the methionine cycle

in one-carbon metabolism (Fig. 1) and can be adenylated

by methionine adenosyltransferase to serve as the sub-

strate for the production of SAM, the primary methyl

donor in cellular methylation.18 It has been shown that

the activity of methionine adenosyltransferase for SAM

synthesis is essential for the function of T cells19 and

macrophages.16 During methyl transfer, SAM is catalyzed

by cytosolic or nuclear methyltransferases to form the

methylated substrate and S-adenosylhomocysteine (SAH).

SAH is hydrolyzed back to homocysteine and adenosine

through a reversible reaction catalyzed by S-adenosylho-

mocysteine hydrolase to complete the methionine cycle

(Fig. 1). As the increased level of homocysteine can have

a negative effect on the activity of methyltransferases, it is

efficiently remethylated back to methionine.18

Methionine metabolic regulation is crucial for the dif-

ferentiation and function of CD4 T cells and B cells.20-22

Restriction of methionine availability in activated T cells

decreased the intracellular levels of SAM and histone

methylation (active histone mark H3K4me3), impaired

cell proliferation and cytokine production, and reduced

the severity of experimental autoimmune encephalomyeli-

tis (EAE) in mice.21 In human B cells, extracellular

methionine is required for BLIMP1-dependent plas-

mablast differentiation.22 BACH2 represses the expression

of PRDM1, which encodes BLIMP1. Methionine induced

the H3K27 methyltransferase EZH2, which catalyzed the

repressive mark H3K27me3 at the BACH2 locus and

decreased the gene expression.22 Whether methionine

affects SAM level was not addressed. In myeloid cells,

Toll-like-receptor-4-stimulated macrophages require both

exogenous serine and methionine to sustain the methion-

ine cycle for generating SAM, which supports methylation

reactions including the H3K36 trimethylation at the gene

body of Il1b.16. However, oral SAM supplementation

inhibited inflammatory response and fibrosis in a chronic

asthma model.23 As in the case of dietary serine supple-

mentation, the discrepancy between in vitro and in vivo

data is likely due to the pleiotropic effect of amino acids

on whole animals.

Krebs cycle and aKG

Krebs cycle, also known as the tricarboxylic acid cycle, is

the central hub of the metabolic network and provides

essential metabolites and substrates in the mitochondrial

matrix to maintain cellular homeostasis and function

(Fig. 1).24 This cycle contains a series of reactions to con-

vert intermediates such as citrate, isocitrate, aKG, succi-
nate, fumarate, malate, and oxaloacetate. Primarily, the

Krebs cycle is supplied with new substrate in the form of

acetyl-CoA, which is generated from glucose-derived
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pyruvate, fatty acid oxidation, or amino acid catabolism.

Additionally, glutamine-derived glutamate can be catabo-

lized by glutamate dehydrogenase to generate aKG, send-
ing the carbon backbone towards the cycle anaplerosis.

The completion of the Krebs cycle produces NADH and

flavin adenine dinucleotide that fuel into the complex I

and complex II of the electron transport chain to generate

electrons to support oxidative phosphorylation for cellu-

lar energy production in the mitochondria.

a-Ketoglutarate dehydrogenase (aKGDH) is a rate-lim-

iting metabolic enzyme in the flux of the Krebs cycle.25

aKGDH is a multiprotein complex that reacts with acetyl-

coenzyme A (CoA) and NAD+ to decarboxylate aKG to

succinyl-CoA, which is further metabolized to become suc-

cinate. An increase of cytosolic calcium leads to rapid

mitochondrial acidification and promotes aKGDH activ-

ity, thereby boosting NADH production and oxidative

metabolism.26,27 In addition, aKGDH is responsive and

sensitive to the levels of reactive oxygen species, and oxida-

tive stress-induced reactive oxygen species impair aKGDH
function.28 It has been reported that aKGDH reaction is

essential for neuronal viability, and deficiency in the

aKGDH activity appears to be associated with the chronic

aberrant inflammation of neurodegenerative disorders,

including Alzheimer’s disease.29,30 Moreover, Toll-like

receptor 4 stimulation in pro-inflammatory macrophages,

but not in the alternatively activated macrophage, mark-

edly induced the expression of aKGDH, which promotes

the conversion of aKG to succinate and limits the produc-

tion of anti-inflammatory cytokine IL-10.31

Chemical modifications of nucleosome and DNA play

a central role in the development and effector function of

immune cells.4-6 The epigenetic enzymes responsible for

these modifications often require the intermediary

metabolites from the Krebs cycle. Among metabolites,

aKG (also known as 2-oxoglutarate or 2OG), is a crucial

molecule involved in multiple metabolic and cellular

pathways. aKG is the essential co-factor for the reaction

of 2OG-dependent dioxygenases (2OGDD), a diverse

superfamily of Fe(II)-dependent, oxygen-consuming

enzymes that are crucial for cell development and dis-

eases.32 The 2OGDD family includes the prolyl-hydroxy-

lase domain (PHD) -containing proteins, Jumonji C

(JmjC) domain-containing proteins, and TET proteins.
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Figure 1. Metabolic pathways that provide metabolic substrates for epigenetic cycle. Glycolysis (orange), involves the enzymatic catabolism of

glucose to pyruvate and lactate in the cytoplasm. Pyruvate can be converted to acetyl-CoA in mitochondria and shuttled through several enzy-

matic reactions of the Krebs cycle (gray) to generate metabolic intermediates. Glutamine through glutaminolysis (purple) can be metabolized to

a-ketoglutarate in the Krebs cycle. Intermediates from glucose catabolism during glycolysis can branch out through the serine one-carbon meta-

bolism (blue) to generate amino acids of serine and glycine fueling into the folate and methionine cycle to generate S-adenosyl-methionine. 3PG,

3-phosphoglycerate; 3PHP, 3-phosphohydroxypyruvate; 3PS, 3-phosphoserine; PHGDH, phosphoglycerate dehydrogenase; PSAT1, phosphoserine

aminotransferase 1; PSPH, phosphoserine phosphatase; MAT, methionine adenosyltransferase; SAM, S-adenosyl-methionine; MT, methyltrans-

ferase; SAH, S-adenosylhomocysteine; HCY, homocysteine; AHCY, S-adenosylhomocysteine hydrolase; aKG, a-ketoglutarate; KGDH, a-ketoglu-
tarate dehydrogenase
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These enzymes use aKG and O2 to hydroxylate various

types of substrates (including proteins, nucleic acids, and

lipids) and produce succinate and CO2. Therefore, the

activities of 2OGDD positively correlate with the intracel-

lular ratio of aKG to succinate and fumarate, another

Krebs cycle downstream metabolite; elevated levels of suc-

cinate or fumarate will therefore inhibit 2OGDD func-

tion. In addition, 2OGDD can be inhibited by 2-

hydroxyglutarate (2-HG), a metabolite structurally similar

to aKG (discussed below).33

One branch of the 2OGDD family, the PHD proteins,

is critical for hypoxia response. In normoxia (sufficient

oxygen level), PHDs hydroxylate the prolines of the tran-

scription factor hypoxia inducible factor-1a (HIF) that

becomes the target for proteasome degradation. Under

hypoxia, or reduced aKG level, the activity of PHDs is

abolished, resulting in the stabilization and activation of

hypoxia inducible factor-1a, which in turn induces gene

expression related to metabolism and modulates immune

cell function.24,34 The other two branches of the 2OGDD

family, JmjC and TET proteins, are essential epigenetic

erasers, the activity of which is similarly regulated by

aKG/succinate/fumarate.35 Most JmjC proteins are lysine

(and/or arginine) demethylases (JMJD) that target his-

tones and other proteins. In macrophages, the increased

aKG from glutaminolysis contributed the alternative acti-

vation of macrophages upon IL-4 stimulation. aKG sup-

presses IjB kinase/nuclear factor-jB-dependent pro-

inflammatory effects, and modulates the activity of the

histone demethylase JMJD3, thus favoring the acquisition

of an anti-inflammatory phenotype.31

DNA methyltransferases

DNA methylation is the earliest known epigenetic modi-

fication.36 Although DNA methylation was once thought

to be a static repressive mark, recent studies have shown

that DNA methylation is a dynamically regulated process

and could have various functions depending on the pro-

tein binders and genomic locations.37 In mammals, most

DNA methylation occurs at the cytosines of CG motifs

and is catalyzed by one of the DNA methyltransferases:

DNMT1, DNMT3A, and DNMT3B. DNMT transfers the

methyl group from SAM to the fifth carbon of cytosine

on DNA, producing 5-methylcytosine and SAH (Figs 2,

3). The de novo methyltransferases DNMT3A and

DNMT3B methylate the unmodified cytosine to establish

the methylation pattern. During DNA replication, methy-

lation patterns at CG motifs are replicated onto the

newly synthesized DNA by the maintenance methyltrans-

ferase DNMT1 complex. Since the discovery of TET

enzymes, it is now known that cytosine can go through

the methylation cycle, which describes the intermediates

between methylation and demethylation (see below and

Fig. 2).

Maintenance methyltransferase DNMT1

In the immune system, DNMT1 is highly expressed in

CD4– CD8– double-negative and Pro-B cell stages in

developing T and B cells, respectively (Immunological

Genome Project; ImmGen). Consistently, conditional

deletions of Dnmt1 using Lck-Cre in early T cells38 and

Mb1-Cre in early B cells39 resulted in the corresponding

developmental blockades. Whereas T cells were able to

develop when Dnmt1 was deleted at the CD4+ CD8+ dou-

ble-positive stage using Cd4-Cre,38 studies have shown

that DNMT1 is required to repress the ectopic expression

of IL-440 and Foxp341 in CD4 and CD8 T cells.

Foxp3 is the essential transcription factor for regulatory

T (Treg) cells.83 Although loss of DNMT1 de-represses

Foxp3, DNMT1 is required to maintain the lineage

DNMT 5mC
TET

TET

TET

5hmCC

TDG/BER

5caC 5fC

Figure 2. The DNA methylation cycle. In the mammalian genome,

the majority of the cytosines at CG motifs are methylated. DNA

methyltransferases (DNMTs) catalyze the addition of a methyl group

to the fifth carbon of cytosine (C), generating 5-methylcytosine

(5mC). TETs then convert 5mC into oxidized methylcytosines (oxi-

mCs): 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),

and 5-carboxylcytosine (5caC). While TETs are capable of the com-

plete oxidization of 5mC to 5caC in vitro, the majority of oxi-mCs

in the cells are 5hmC. 5hmC is stable and a potential epigenetic

mark. 5fC and 5caC are unstable and are removed by TDG (thymine

DNA glycosylase) with the base-excision repair. The base removal

process (red arrows) constitutes ‘active DNA demethylation’. During

DNA replication, the pairing between newly synthesized DNA with

the original modified CpG motif creates the hemi-modified CpG.

The maintenance DNA methyltransferase complex DNMT1/UHRF1

recognizes the hemi-methylated CpG and methylates the unmodified

cytosine on the new DNA. However, DNMT1/UHRF1 cannot recog-

nize the hemi-methylated CpG containing oxi-mCs, preventing the

methylation of the newly synthesized DNA. Therefore, the methyla-

tion pattern will be erased after rounds of DNA replication
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stability of Treg cells and prevents autoimmune diseases

as shown by Foxp3-Cre Dnmt1-deficient mice.42 In CD8

T cells, when Dnmt1 is conditionally deleted with granzy-

meB (GzmB)-Cre, antigen-specific CD8 T cells failed to

differentiate into effector and memory cells.43 Similarly,

peripheral B cells from a mouse expressing a DNMT1

hypomorphic mutant failed to differentiate into germinal

center B cells in response to immunization.44 In myeloid

cells, the deletion of Dnmt1 in macrophage enhanced the

alternative polarization (M2) and increased M2 adipose

tissue macrophages.45. Similarly, treatment with the

DNMT inhibitor 5-Aza-20-deoxycytidine potentiated

macrophage M2 polarization in a dose-dependent man-

ner.45 As DNMT1 is essential for the maintenance of

DNA methylation during DNA replication, pharmacologi-

cal or metabolic inhibition (low SAM/SAH ratio) of

DNMT will likely result in a global loss of DNA methyla-

tion and lead to global ectopic gene expression and geno-

mic instability.46

De novo methyltransferases DNMT3A and
DNMT3B

During acute infection with lymphocytic choriomeningitis

virus (LCMV), antigen-specific CD8 T cells remodel their

methylome when differentiating from naive to effector or

memory cells.47 In the absence of DNMT3A, CD8 T cells

preferentially differentiate into memory cells.48,49 TCF-1

(encoded by Tcf7) is the transcription factor that is

important for CD8 memory cell differentiation. In early

effector cells, DNMT3A methylates the regulatory ele-

ments of Tcf7, repressing TCF-1 expression and memory

differentiation.48,49 Therefore, DNMT3A promotes termi-

nal effector differentiation and restricts memory precursor

in CD8 T cells. Besides effector differentiation, de novo

DNA methylation is required for terminal T-cell exhaus-

tion, a dysfunctional state describing the loss of T-cell

effector function.50 The inhibitory receptor programmed

cell death protein-1 (PD-1; encoded by Pdcd1) is essential

for T-cell exhaustion and antibody blockage of PD-1 has

been the key to recent success in cancer immunotherapy.

In CD8 T cells, inhibition of de novo DNA methylation,

either by deletion of Dnmt3a or by pharmacological inhi-

bition, potentiated the effect of anti-PD-1-mediated

reversal of exhaustion that is induced by chronic LCMV

infection and tumor.50 Consistent with the acute LCMV

infection models,48,49 DNMT3A methylates the elements

at Tcf7 and Ifng, both of which contribute to the tumor

clearance. Intriguingly, in mouse CD8 T cells, two con-

served regions of Pdcd1 are methylated in naive,

demethylated in effector, and remethylated in memory

CD8 T cells.51 In exhausted CD8 T cells, these regions

were fully demethylated and correlated with PD-1 expres-

sion. The role of DNMT3 and TET enzymes in PD-1 reg-

ulation remains to be established. In summary, dependent

on the context, de novo DNA methylation facilitates effec-

tor differentiation and exhaustion while limiting memory

formation in CD8 T cells.

De novo DNA methylation is important for lineage

restriction in CD4 T cells. Although only wild-type T

helper 1 (Th1) cells express Ifng, CD4 T cells from Cd4-

Cre Dnmt3afl/fl mice fail to silence Ifng after differentia-

tion into Th2, Th17, and induced Treg cells.52,53

Although DNMT1 is required for Treg lineage stability,

the deletion of Dnmt3a with Foxp3-Cre has no effect in

the steady state.42 Interestingly, in an EAE model, most

Treg cells express BLIMP1 at the sites of tissue inflamma-

tion. BLIMP1 protects the lineage stability by inhibiting

the expression of Dnmt3a, which would otherwise be

induced by IL-6. In the absence of BLIMP1, DNMT3A

Fe2+

CO2

αKG Succinate

TET

5hmC5mC5mC

SAHSAM

O2

Krebs
cycle

GlutaminolysisMethionine
cycle

DNMT

C

(b)(a)

Figure 3. The intersection between metabolic cycles and DNA methylation cycle. (a) DNMT and methionine cycle. To methylate cytosine,

DNMT uses S-adenosyl methionine (SAM) as the methyl group donor, producing S-adenosylhomocysteine (SAH) as a result. SAH is then recy-

cled back to the methionine cycle (Fig. 1), regenerating SAM for additional methylation. (b) TET and Krebs cycle. With reduced iron (Fe2+) as a

co-factor, TET converts the substrates 5mC, a-ketoglutarate (aKG), and oxygen into the products 5hmC, succinate, and carbon dioxide. TET can

further oxidize 5hmC into 5fC and 5caC (not depicted). Succinate can be shuttled back to the Krebs cycle and regenerating aKG. Additional
aKG can be derived from glutamine via glutaminolysis (Fig. 1).
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methylates Foxp3 CNS2, decreasing Foxp3 expression and

compromising Treg cell identity.54

In B cells, DNMT3A and DNMT3B are required for

the B-lineage commitment from hematopoietic stem cells

in vitro.55 Once the B-cell progenitor has committed, de

novo DNA methylation is not required for the major

checkpoints during B-cell development as demonstrated

in the Mb1-Cre Dnmt3a/b-deficient mice.56,57 However,

the use of light-chain Vj genes was skewed,56 potentially

due to altered CTCF binding and long-range chromatin

interactions.58 In the periphery, antigen-stimulated B cells

remodel their methylome during differentiation into ger-

minal center B cells, plasma, and memory cells.59,60 Simi-

lar to the Mb1-Cre model, the deletion of Dnmt3a/b with

Cd19-Cre has no discernable phenotype in bone marrow

development. However, Dnmt3a/b deficiency in B cells

increased germinal center B cells and plasma cells in

response to immunization.57 Consistent with its opposite

role as an eraser for DNA methylation, Tet2 deficiency

inhibits plasma cell differentiation, potentially through a

lack of demethylation at Prdm1/BLIMP1, a transcription

factor essential for plasma cells.61 However, both TET2

and DNMT3A/B function to limit the expansion of ger-

minal center B cells, a similar overlapping function was

also observed in hematopoietic malignancies.62 How these

enzymes with seemingly opposite functions have a similar

role in repressing cell proliferation remains to be

addressed.

In macrophages, DNMT3B represses M2 differentia-

tion, and the deficiency of Dnmt3b increased the expres-

sion of IL-4-induced M2 genes in bone-marrow-derived

mouse macrophage.63 Mechanistically, DNMT3B methy-

lates the promoter of peroxisome proliferator-activated

receptor-c (PPAR), a key transcription factor for promot-

ing macrophage alternative M2 polarization.63 In addi-

tion, peritoneal macrophages from Lyz2-Cre Dnmt3a-

deficient mice were defective in the production of type I

interferon (IFN-I), and animals were more susceptible to

the infection of vesicular stomatitis virus.64 DNMT3A

regulates interferon induction indirectly by maintaining

the expression of HDAC9, which in turns deacetylates

TBK1, the key kinase for innate immune sensing.64

Therefore, in macrophages, both DNMT1 and DNMT3B

are required for the restricting alternative M2 activation,

while DNMT3A is important for IFN-I production.

TET methylcytosine oxidases

TET enzymes (TET1, TET2, TET3) are 2OGDD that are

essential for cell differentiation and functions.65,66 The

function of TET is to oxidize and demethylate cytosine

on DNA to regulate gene expression and other undefined

processes. Similar to other 2OGDD, TETs use aKG and

oxygen to hydroxylate 5-methylcytosine (5mC) into 5-hy-

droxymethylcytosine (5hmC), a stable epigenetic mark

and one of the oxidized methylcytosines (Fig. 2). Further

reaction can produce the other two oxidized methylcy-

tosines: 5-carboxylcytosine and 5-formylcytosine, both of

which are removed by base-excision DNA repair and are

about 10-fold and 100-fold lower in abundance compared

with 5hmC, respectively. These oxidized methylcytosines

serve as the key intermediates for passive (replication-de-

pendent) or active (replication-independent) DNA

demethylation.65 The three TET family members regulate

distinct regions in the genome: TET1 preferentially regu-

lates promoters, while TET2 and TET3 regulate enhan-

cers. Therefore, 5hmC is enriched at enhancers,

promoters, and gene bodies, with the level of enhancer

5hmC positively correlating with enhancer activity

(marked by H3K27Ac) and gene body 5hmC with tran-

scriptional activity. The current model suggests that TET

enzymes (especially TET2 and TET3) regulate the activity

of lineage-specific super-enhancers,67 in part by facilitat-

ing the enhancer accessibility.68-70 As 5hmC is stable on

the DNA, the pleiotropic phenotypes after TET deletion

are often observed at delayed times and are usually mani-

fested after rounds of cell proliferation. Mice with germ-

line deletion of Tet1 and Tet2 are largely viable,71-73 but

the Tet3 homozygous mutation results in embryonic or

perinatal lethality.73,74

In humans, TET2 is one of the most recurring loss-of-

function mutations in hematopoietic malignancies, imply-

ing a role of TET in immune cell differentiation and

function (TET in hematopoietic cancers was recently

reviewed75). In mouse blood cells, TET1 is preferentially

expressed in hematopoietic stem cells, developing B and

T lymphocytes, and naive T cells (data from ImmGen);

TET2 and TET3 are expressed ubiquitously. The genome-

wide 5hmC undergoes dynamic changes often around the

key lineage genes during T-cell and B-cell differentia-

tion.67,76-78 As TET2 and TET3 function redundantly, no

significant B-cell or T-cell developmental phenotype was

observed in either germline or conditional Tet2-single-de-

ficient models.68-71,79,80 However, when both Tet2 and

Tet3 (Tet2/3-double knockout) were both deleted in

developing B cells using Mb1-Cre, bone marrow B-cell

development was blocked at the pro-B to pre-B cell stage

transition due to a deficiency in the rearrangement of

immunoglobulin light chain.68,70 In T cells, while conven-

tional CD4 and CD8 T cells were able to develop, Cd4-

Cre Tet2/3-double knockout developed a massive lympho-

proliferation caused by the expansion of self-reactive

RORct+ IL-17+ natural killer T cells.69

TET enzymes regulate a diverse array of immune cell

functions. In CD4 T cells, TET2 is required for the pro-

duction of IFN-c and IL-17 by Th1 and Th17 in vitro,

respecitvely.79 However, Tet2 deficiency in T cells exacer-

bated the IL-17-dependent pathology in two EAE models,

potentially due to decreased IL-10 production.79 Unlike

CD4 T cells, CD8 T cells from the Cd4-Cre Tet2fl/fl mice
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produced more IFN-c in response to the acute LCMV

infection, with increased differentiation of memory pre-

cursor cells and decreased short-lived effector cells.81

Consistent with mouse CD8 T cells, TET2 deficiency in

human CD8 CAR-T cells resulted in the differentiation of

central memory cells with enhanced tumor clearance.82

Hence, although promoting pro-inflammatory cytokines

in vitro, TET enzymes function to suppress T cell

immune response in vivo.

TET2 and TET3 are required for the demethylation of

Foxp3 CNS2, an intronic enhancer known to be demethy-

lated in Treg cells. Deletion of Tet2 and Tet3 either using

Cd4-Cre or Foxp3-Cre increased the DNA methylation at

CNS2, resulting in decreased Foxp3 expression, lineage

instability, and the unleashing of the effector potentials of

these Treg cells.84-86 Interestingly, Treg-specific deletion

of Uqcrsf1, the gene encoding the essential mitochondrial

complex III protein Rieske iron-sulfur protein, resulted in

an autoimmune phenotype caused by impaired suppres-

sive function of Treg cells. Loss of complex III resulted in

increased levels of the 2-HG and succinate, both of which

are TET inhibitors, and so destabilized Treg cell lineage

identity.87 Therefore, existing data suggest that TET

enzymes are required for Treg cell function.

In B cells, loss of TET enzymes resulted in impaired

class switch recombination, a process by which antibody

switch from IgM to other isotypes.61,67,88 Mechanistically,

TET2 and TET3 cooperate with transcription factor Basic

leucine zipper transcription factor (BATF) to promote the

expression of activation-induced cytidine deaminase, the

key enzyme for antibody maturation.67 Tet2 deficiency

resulted in increased germinal center B cells and

decreased plasma cell differentiation after immuniza-

tion.61 Therefore, TET enzymes have both positive and

negative roles in B-cell responses.

In myeloid cells, one of the functions of TET2 is to repress

pro-inflammatory cytokines, including IL-1b89,90 and IL-

6.91,92 Consistent with the anti-inflammatory role of TET2,

loss of Tet2 facilitates atherosclerosis in mice,90 a phenotype

reminiscent of humans with clonal hematopoiesis caused by

TET2 mutation.93 Most importantly, Tet2-deficient macro-

phages (Lyz2-Cre) exhibited a pro-inflammatory phenotype

in the immunosuppressive tumor microenvironment and

delayed melanoma growth in vivo.94

Links between metabolism, epigenome, and
immune function

Epigenetic modifications are essentially biochemical reac-

tions catalyzed by enzymes. Therefore, the concentrations

of metabolic substrates, co-factors, and products would

dictate the reaction rate. For instance, 2OGDDs including

TET and JmjC histone demethylases require aKG, the

availability of which directly affects the epigenome.

Indeed, in activated T cells, the IL-2-sensitive

differentiation programs depend on the level of aKG and

glutamine.95 High levels of IL-2 favor effector differentia-

tion; whereas low levels of IL-2 favor memory or follicu-

lar T helper cells. High IL-2 induces the accumulation of

glycolysis and glutaminolysis metabolites including aKG.
The level of aKG appears to be instructive in gene expres-

sion: the addition of cell-permeable aKG can mimic a

high-IL-2-like gene expression profile even when cultured

in low IL-2. Mechanistically, aKG likely promotes the

enzymatic reactions by JmjC proteins and TETs to pro-

mote histone and DNA demethylation, respectively. DNA

demethylation at CG-containing CTCF motifs permits

CTCF binding, facilitating the genome reorganization and

gene expression.95 Another example of metabolism affect-

ing the epigenome is a study of methionine metabolism

in T cells (discussed above). In vitro activated T helper

cells actively uptake extracellular methionine, from which

the majority of the SAM pool is derived. Activated CD8

T cells cultured in methionine-restricted conditions had

dramatically decreased the SAM level and global

H3K4me3 level, whereas the global H3K4me3 level was

slightly decreased in Th1 and Th17 cells. Nonetheless,

Th17 cells cultured in low methionine had decreased

expression of Il17a, Batf, Cd5l, and cell cycle-related genes

accompanied by decreased H3K4me3 at the correspond-

ing promoters. A low-methionine diet also ameliorates

the severity of the Th17-driven disease EAE, at least in

part by limiting the proliferation of Th17 cells.

2-HG was first identified as the ‘oncometabolite’ pro-

duced by the isocitrate dehydrogenase 1 and 2 (IDH1/2)

mutant in glioma cells.33 Structurally similar to aKG, 2-
HG can inhibit the activity of 2OGDD enzymes. 2-HG

exists as two enantiomers that differ in their ability to

inhibit 2OGDD enzymes; with (S)-2HG (also known as

L-2HG) being the more potent inhibitor than (R)-2HG

(or known as D-2HG). Notably, it has been reported that

2-HG can be generated endogenously in normal cells. For

instance, in CD8 T cells, T-cell receptor stimulation

induces the generation of L-2HG as early as 2 days post-

activation.96 Similar to Tet2 deficiency, treatment with L-

2HG induced higher levels of Eomes and CD62L, resem-

bling central memory cells. Interestingly, OT-I T-cell-re-

ceptor-transgenic CD8 T cells treated with L-2HG in vitro

appear to have increased survival and tumor clearance

after in vivo transfer to recipients bearing tumors express-

ing ovalbumin,96 suggesting that the effect of L-2HG is

likely via epigenome. Therefore, these recent examples

showcased the link between metabolism and epigenome

and their effect on immune responses.

Concluding remarks

The DNA methylation program mediated by DNMT and

TET is essential for regulating cell homeostasis and effec-

tor function in immune cells. Most studies of the
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metabolome–epigenome focus on the global level of his-

tone modifications, but the effect of metabolites on the

DNA methylome should warrant more attention. The

perturbation of epigenetic enzymes may not affect the

abundance of a given epigenetic mark globally,21,67 thus

genome-wide epigenome profiling will likely be required

to pinpoint the local changes underlying the phenotype.

In addition, recent advances in single-cell technologies in

epigenome sequencing97 and mass spectrometry98 will

greatly improve the capacity of analysis in the often small

immune populations isolated in vivo, including tumor-in-

filtrating and tissue-resident immune cells.

The studies discussed above have demonstrated promis-

ing therapeutic interventions to achieve the desired

immune response by modulating the cellular metabolism

and/or epigenome. However, it has yet to explore the

broad effects of metabolite levels on global epigenetic

landscapes of immune cells. Similar to the ImmGen con-

sortium for genomics and epigenomics, it would be bene-

ficial to expand the scope to include metabolomic profiles

for individual immune cell types. Understanding the dif-

ferential metabolic circuits in each cell type may allow

cell-specific rewiring of the metabolome and potentially

the epigenome.
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