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Abstract

This work presents a novel deep learning method to combine segmentation and motion tracking in 

4D echocardiography. The network iteratively trains a motion branch and a segmentation branch. 

The motion branch is initially trained entirely unsupervised and learns to roughly map the 

displacements between a source and a target frame. The estimated displacement maps are then 

used to generate pseudo-ground truth labels to train the segmentation branch. The labels predicted 

by the trained segmentation branch are fed back into the motion branch and act as landmarks to 

help retrain the branch to produce smoother displacement estimations. These smoothed out 

displacements are then used to obtain smoother pseudo-labels to retrain the segmentation branch. 

Additionally, a biomechanically-inspired incompressibility constraint is implemented in order to 

encourage more realistic cardiac motion. The proposed method is evaluated against other 

approaches using synthetic and in-vivo canine studies. Both the segmentation and motion tracking 

results of our model perform favorably against competing methods.
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1 Introduction

Echocardiography is a non-invasive and cost-efficient tool that allows clinicians to visually 

evaluate the left ventricular (LV) wall and detect any motion or structural abnormalities in 

order to evaluate cardiovascular health and diagnose cardiovascular diseases (CVD). 

However, qualitative assessment is prone to inter-observer variability and cannot completely 

characterize the severity of the abnormality. As a result, many efforts have been made to 

kevinminh.ta@yale.edu. 

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 
October 21.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2020 October ; 12266: 468–477. 
doi:10.1007/978-3-030-59725-2_45.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



develop objective, quantitative methods for assessing cardiovascular health through the use 

of echocardiography.

Motion tracking and segmentation both play crucial roles in the detection and quantification 

of myocardial dysfunction and can help in the diagnosis of CVD. Traditionally, however, 

these tasks are treated uniquely and solved as separate steps. Often times, motion tracking 

algorithms will use segmentations as an anatomical guide to sample points and regions of 

interest used to generate displacement fields [8,11,12,17]. If initial segmentations are poorly 

done, errors in the segmentation will propagate and lead to inaccurate displacement fields, 

which can further propagate to inaccurate clinical measurements. This is problematic as the 

task of segmentation is nontrivial, especially in echocardiography where the low signal-to-

noise ratio (SNR) inherent in ultrasound results in poorly delineated LV borders. 

Additionally, there is limited ground truth segmentations available for clinical images due to 

the impracticality of having an expert manually annotate complete volumetric 

echocardiographic sequences. Often, only the end-diastolic or end-systolic frames are 

segmented. This makes it difficult to train and implement automatic segmentation models 

that rely on supervised learning techniques [15,23].

Recent works in the computer vision and magnetic resonance (MR) image processing fields 

suggests that the tasks of motion tracking and segmentation are closely related and 

information used to complete one task may complement and improve the overall 

performance of the other. In particular, Tsai et al. proposed ObjectFlow, an algorithm that 

iteratively optimizes segmentation and optical flow in a multi-scale framework until both 

tasks reach convergence [21]. Building on this, Chen et al. proposed SegFlow, a deep 

learning approach that combines segmentation and optical flow in an end-to-end unified 

network that simultaneously trains both tasks. The net exploits the commonality of these two 

tasks through bi-directional feature sharing [4]. However, these approaches have practical 

limitations. ObjectFlow is optimized online and, therefore, is computationally intensive and 

time-consuming [21]. SegFlow is trained in a supervised manner and requires ground truth 

segmentation and flow fields [4]. Qin et al. successfully implements the idea of combining 

motion and segmentation on 2D cardiac MR sequences by developing a dual Siamese style 

recurrent spatial transformer network and fully convolutional segmentation network to 

simultaneously estimate motion and generate segmentation masks. Features are shared 

between both branches [13,14]. However, this work is limited to MR images, which have 

higher SNR than echocardiographic images and, therefore, more clearly delineated LV walls 

which makes it challenging to directly apply to echocardiography. Furthermore, similar 

works in echocardiography are limited to 2D images [1,20]. Because of this, out of plane 

motion cannot be accurately captured, which provides valuable clinical information for 

cardiac deformation analysis.

This paper proposes a 4D (3D+t) semi-supervised joint network to simultaneously track LV 

motion while segmenting the LV wall. The network is trained in an iterative manner where 

results from one branch influences and regularizes the other. Displacement fields are further 

regularized by a biomechanically-inspired incompressibility constraint that enforces realistic 

cardiac motion behavior. The proposed model is different from other models in that it 

expands the network to 4D in order to capture out of plane motion. Furthermore, it addresses 
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the issue of limited ground truth in clinical datasets by employing a training framework that 

only requires a single segmented frame per sequence and no ground truth displacement 

fields. To the knowledge of the authors, this work is the first to successfully combine 

segmentation and motion tracking simultaneously on volumetric echocardiographic 

sequences.

2 Method

The architecture of the proposed model is illustrated in Fig. 1. The objective is to 

simultaneously generate displacement fields and LV masks in 4D echocardiography by 

taking advantage of the complementary nature between the tasks of segmentation and 

motion tracking with the assistance of a biomechanical incompressibility constraint.

2.1 Motion Network (Unsupervised)

Large amounts of ground truth clinical data is often difficult to obtain. A 3D U-Net inspired 

architecture is designed to input an image pair. This pair is comprised of two volumetric 

images (a source frame and a target frame, stacked as a 2 channel single input) from a single 

sequence. The network consists of a downsampling analysis path followed by an upsampling 

synthesis path with skip connections that concatenate features learned in the analysis path 

with features learned in the synthesis path [23]. The output of the network is a 3 channel 

volumetric displacement map, corresponding to displacements in the x-y-z directions. In 

order for the network to train without the usage of ground truth, a VoxelMorph inspired 

training framework is implemented [3]. The output x-y-z displacement field is used to 

transform the input source frame via trilinear interpolation. Network weights are trained by 

minimizing the mean square difference between the transformed source frame and the target 

frame, effectively encoding the displacement field between the two frames. The loss 

function can be described as follows:

Lmotion = λmotion
1
N ∑

i = 1

N
Ii, t − F Ii, s, Ui

2
(1)

where Ii,s and Ii,t are the source and target images, respectively of the i-th image pair, Ui is 

the predicted displacement field that maps the source and target images, F = (Ii,s, Ui)) is a 

spatial transforming operator that morphs Ii,s to Ii,t using Ui, and λmotion is a weighting term.

2.2 Segmentation Network (Weakly-supervised)

The segmentation branch of the proposed model follows generally the same 3D U-Net 

inspired architecture as the motion branch [23]. The primary difference being that the input 

of the segmentation branch is a single volumetric image (the same target frame used to 

generate the displacement field of the motion network), and the output is a single volmetric 

segmented LV mask. The displacement field generated by the motion network is used to 

transform a manually segmented source frame (corresponding to the inputted target frame) 

in a similar Voxelmorph-inspired framework as the motion branch [6]. This transformed 

segmentation acts as a pseudo-ground truth label for training the segmentation branch. The 

network seeks to optimize a combined binary cross entropy and dice score between the 
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propagated source segmentation and the predicted target segmentation. The loss function can 

be described as follows:

Ldice = 1
N ∑

i = 1

N
1 − Mi, t ∩ F Y i, s, Ui

Mi, t + F Y i, s, Ui
(2)

Lbce = 1
N ∑

i = 1

N
−yi log pi + 1 − yi log 1 − pi (3)

Lseg = λdiceLdice + λbceLbce (4)

where Yi,s is the manually segmented mask of the source image, Mi,t is the predicted mask 

of the target image, y is a binary indicator for if a voxel is correctly labeled, and p is the 

predicted probability a voxel is part of the LV segmentation, and λdice and λbce are 

weighting terms. All other terms are as previously defined.

2.3 Combining Networks (Joint Learning)

Each network is optimized separately with their respective loss functions. An iterative 

training framework is designed such that the results and training of one network can 

positively influence the other in order to create a connection between the two branches. 

Initially, the motion tracking network is trained in a completely unsupervised manner, as 

described in Sect. 2.1. This generates a rough 3D displacement field that effectively maps 

the source frame to the target frame. Using this displacement field, the corresponding source 

frame segmentation is propagated to obtain a rough target frame segmentation. These rough 

target frame segmentations are used to retrain the motion tracking branch and act as an 

additional shape regularization term to guide the network to produce smoother displacement 

estimations. This regularization term is added to Lmotion and can be described as follows:

Lsℎape = λsℎape
1
N ∑

i = 1

N
Gi, t − F Y i, s, Ui

2
(5)

where Gi,t is the pseudo-ground truth label and λshape is a weighting term. All other terms 

are as previously defined.

These shape regularized displacement estimations are used to generate new, smoother 

pseudo-ground truth labels, which are then used to retrain the segmentation network to 

produce more accurate segmentations.

2.4 Incompressibility Constraint

To ensure spatial smoothness and encourage more realistic cardiac motion patterns, flow 

incompressibility is enforced by penalizing divergence as seen in [9,12,18]. In real cardiac 

motion, tissue trajectories cannot collapse to a single point nor can a single point generate 

multiple tissue trajectories. To discourage this unrealistic behavior, sources or sinks in the 

motion field are penalized. This term is added to Lmotion can be described as follows:
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Linc = λinc
1
N ∑

i = 1

N
∇Ui (6)

where λinc is a weighting term. All other terms are as previously defined.

3 Experiments and Results

The general framework is qualitatively evaluated on a synthetic dataset with ground truth 

displacement fields and segmentations and the joint model is quantitatively evaluated on an 

in-vivo canine dataset with implanted sonomicrometer crystals for motion detection [19] and 

manual segmentations. Images are resampled and resized to [64 × 64 × 64] for 

computational purposes. Experiments and processing were performed using MATLAB and 

Python. The network was built using PyTorch and trained on a GTX 1080 Ti GPU in batch 

sizes of 1 for 200 epochs with a learning rate of 1e-4 using Adam optimizer. Online data 

augmentation included random rotations, flips, and shears. Model hyperparameters were 

fine-tuned to each dataset.

3.1 Evaluation Using Synthetic Data

An open access dataset, 3D Strain Assessment in Ultrasound (STRAUS) [2], was used. The 

dataset contained 8 different volumetric sequences with different physiological conditions: 2 

left anterior descending artery (LAD) occlusions in the proximal and distal arteries, 1 left 

circumflex artery occlusion, 1 right circumflex artery occlusion, 2 left bundle branch blocks, 

a sychronous sequence, and a normal (healthy) sequence. 1 sequence is left out for each 

testing and validation and 6 sequences are used for training. In total, the model is trained on 

204 pairs, validated on 32 pairs, and tested on 32 pairs.

As a proof-of-concept, the effect of a shape regularization term on unsupervised motion 

tracking and the feasibility of training a segmentation network in a weakly-supervised 

manner using propagated pseudo-ground truth labels is qualitatively evaluated. For the 

motion tracking branch, the performance of the network after implementing the shape 

regularization term using ground truth segmentations is compared to the network trained in a 

completely unsupervised manner. For the segmentation branch, the network is trained on 

weak labels generated by propagating an initial manual label using motion fields generated 

via a shape-tracking algorithm (which originally tracked ground truth labels) and an 

unsupervised motion network. Figures 2, 3 show improved results after including the shape 

regularization term and feasible segmentation predictions when trained in a weakly-

supervised manner.

3.2 Evaluation Using Animal Study

In vivo animal studies were done on 8 anesthetized open-chest canines, and images were 

captured using a Philips iE33 scanner and a X7–2 probe. Each study was conducted under 

five physiological conditions: baseline, mild LAD stenosis, moderate LAD stenosis, mild 

LAD stenosis with low-dose dobutamine (5μg/kg/min), and moderate LAD stenosis with 

low-dose dobumatine. 1 full study is used each for testing and validation and 6 studies are 
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used for training. In total, the model is trained on 745 pairs, validated on 133 pairs, and 

tested on 126 pairs. All procedures were approved under Institutional Animal Care and Use 

Committee policies.

Each task of the joint model is evaluated separately. The displacement predictions are 

compared against displacements derived from an implanted array of sonomicrometers as 

previously reported [19]. It is important to note that dense displacement fields from the 

sonomicrometer crystals are generated through RBF based interpolation [5] and cannot be 

considered absolute ground truth, but act as a useful validation metric. The root mean 

squared error (RMSE) of the displacement fields generated by the joint model are compared 

against a non-rigid registration algorithm with b-spline parameterization (NRR) [16], and 

Lucas-Kanade optical flow (LK) algorithm [10], a shape-tracking algorithm (ST) [12], and 

the unsupervised single motion tracking branch without (Usup) and with (Usup+Shape) 

manually segmented shape regularization. According to Table 1 and Fig. 4, the joint model 

performs comparably to Unsup+Shape and favorably against all other methods in all metrics. 

For segmentation results, label predictions are evaluated against manually traced 

segmentations [22]. The Dice score and Hausdorff distance (HD) of the predicted 

endocardium and epicardium borders of the joint model are compared to a dictionary 

learning-based dynamic appearance model (DAM) [7], and weakly supervised versions of 

the joint model using crystal derived displacements (Seg-CD), nonrigid registration (Seg-

NRR), optical flow (Seg-LK), and unsupervised motion (Seg-Unsup) to generate pseudo-

ground truth labels. According to Table 2 and Fig. 5, the joint model performs comparably to 

Seg-CD and favorably against all other methods in all metrics.

4 Conclusions

This paper proposes a novel joint learning network for simultaneous LV segmentation and 

motion tracking in 4D echocardiography. Motion tracking and segmentation branches are 

trained iteratively such that the results of one branch positively influences the other. Motion 

is trained in an unsupervised manner and the resulting displacement fields are used to create 

pseudo-ground truth labels by propagating a single manually segmented time frame. 

Predicted labels are then used as landmarks to smooth the displacement fields. An 

incompressibility constraint is added to enforce spatially realistic LV motion patterns. 

Experimental results show our proposed model performs favorably against competing 

methods. Future work includes further validation on larger datasets and exploring temporal 

regularization.
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Fig. 1. 
Architecture of our proposed joint network: The motion branch (top) and the segmentation 

branch (bottom).
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Fig. 2. 
A short-axis view of the displacement vectors for a normal (healthy) synthetic sequence 

using different methods
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Fig. 3. 
Epicardium (green) and endocardium (red) segmentations for a normal (healthy) synthetic 

sequence using different methods
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Fig. 4. 
A short-axis view of the displacement vectors for a normal (healthy) in vivo sequence using 

different methods: A) crystal derived displacement, B) nonrigid registration (NRR), C) 

Lucas-Kanade Optical Flow (LK), D) Shape Tracking (ST), E) Unsupervised w/ shape 

regularizer (Unsup+Shape), F) Unsupervised G) Proposed Model
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Fig. 5. 
Epicardium (green) and endocardium (red) segmentations for a normal (healthy) in vivo 

sequence using different methods: A) manual, B) dynamic appearance model (DAM), C) 

trained with crystal-generated labels (Seg-CD) (LK), D) nonrigid registration-generated 

labels (Seg-NRR), E) Lucas-Kanade generated labels (Seg-LK), F) Unsupervised motion 

generated labels (Seg-Unsup) G) Proposed Model
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Table 1.

Root mean squared error (RMSE) in the x-y-z direction. Lower RMSE means better performance

Method Ux (mm) Uy (mm) Uz (mm)

NRR 0.95± 0.38 1.06± 0.34 0.62±0.17

LK 0.85 ± 0.37 0.91 ± 0.38 0.58 ± 0.17

ST 0.81 ± 0.32 0.72 ± 0.40 0.63 ± 0.21

Unsup+Shape 0.80 ± 0.33 0.70 ± 0.33 0.60 ± 0.18

Unsup 1.07 ± 0.42 1.31 ± 0.41 0.74 ± 0.17

Proposed model 0.79 ± 0.33 0.70 ± 0.36 0.62 ± 0.20
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Table 2.

Dice and Hausdorff Distance (HD) for the endo- and epi- cardium. Higher Dice score and lower HD means 

better performance

Methods Endocardium Epicardium

Dice HD (mm) Dice HD (mm)

DAM 0.81±0.05 3.02±0.29 0.92±0.04 3.12±0.24

Seg-CD 0.84±0.07 2.63±0.20 0.96±0.01 2.75±0.08

Seg-NRR 0.80±0.08 2.80±0.28 0.88±0.06 3.22±0.43

Seg-LK 0.83±0.05 2.79±0.24 0.93±0.03 3.16±0.31

Seg-Unsup 0.84±0.06 2.91±0.26 0.94±0.02 3.11±0.16

Proposed model 0.88±0.04 2.70±0.17 0.95±0.02 2.97±0.19
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