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We test for the existence of volatility spillovers and co-movements among energy-focused corporations during
the outbreak of the COVID-19 pandemic, inclusive of the April 2020 events where West Texas Intermediate
(WTI) oil future prices became negative. Employing the spillover index approach of Diebold and Yilmaz
(2012); as well as developing a DCC-FIGARCH conditional correlation framework and using estimated spillover
indices built on a generalised vector autoregressive framework in which forecast-error variance decompositions
are invariant to the variable ordering, we examine the sectoral transmissionmechanisms of volatility shocks and
contagion throughout the energy sector. Among several results, we find positive and economically meaningful
spillovers from falling oil prices to both renewable energy and coal markets. However, this result is only found
for the narrowportion of our sample surrounding the negativeWTI event.We interpret our results being directly
attributed to a sharp drop in global oil, gas and coal demand, rather than because of a sudden increase in oil sup-
ply. While investors observed the US fracking industry losing market share to coal, they also viewed renewables
as more reliable mechanism to generate long-term, stable and low-cost supply.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction and motivations

We examine volatility spillovers and co-movements among energy-
focused corporations during the COVID-19 pandemic. Our particular
focus is on the extraordinary event in April 2020 where West Texas
Intermediate (WTI) oil future prices became negative. Developing a
DCC-FIGARCH conditional correlation framework and using estimated
spillover indices built on a generalised vector autoregressive framework
in which forecast-error variance decompositions are invariant to the
variable ordering, we examine the sectoral transmission mechanisms
of volatility shocks and contagion throughout the energy sector.

1.1. Context

This investigation has considerable contextual background. We are
focused on directional spillovers, and co-movements of energy-related
companies during both the COVID-19 pandemic and during a time
when WTI oil fell dramatically to negative prices. The context of
COVID-19, and the concomitant economic, social, and market turmoil
is of course relevant in a broad set of potential ways. For instance,
blin City University, Dublin 9,

. This is an open access article under
Goodell (2020) notes a number of possible long-term adjustments to fi-
nancial systems stemming fromCOVID-19, includingpossibly less use of
leverage by firms and households and a greater pricing of equity risk.
But the period of our study overlaps the extraordinary fall ofWTI prices,
which though related to the economic fallout from COVID-19, had its
own mechanisms.

However, there are other contextual aspects that need to be de-
scribed. As the unprecedented fall in WTI oil prices in April 2020 oc-
curred during the economic turmoil ensuing from the COVID-19
pandemic, during this time oil traders were contending with broadly
attempting to quantify the severity of the COVID-19 and its influence
onworldwide demand for oil; aswell as assessing broad oil-related geo-
political issues related to the relationship between Saudi Arabia and
Russia. In early March 2020, Saudi Arabia sharply cut the price of the
oil it supplied to Asia, Europe, and theUS, which led to a subsequent col-
lapse in worldwide oil prices, stock markets, and the Russia Rouble. In
the following days, Saudi Arabia then proceeded to announce an in-
crease in production. This was widely seen as an attempt by Saudi
Arabia to increase world supply by approximately 25%, for competitive
reasons. However, this action by Saudi Arabia was met by a challenging
response fromRussia inwhich they increased their production and sup-
ply in a similar manner. Considering the sharp fall in demand sourced
within the continuous escalation of the COVID-19 pandemic, this in-
creased supply caused a fall in oil prices to a 17-year low of almost
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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$20 per barrel. After broad international political intervention in April
2020, a cut in production was agreed. However, even considering this
agreement, world stockpiles were estimated by the International En-
ergy Agency to have increased by approximately 15 million barrels
per day. Such broad geopolitical tensions, concomitant with COVID-19,
rapidly produced sector-disrupting reverberations. What followed was
the incredible situation where the WTI delivery price difference be-
tween months resulted in unusually high contango, and subsequent
negative pricing due to depressed demand and insufficient storage
capacity.1

Fig. 1 illustrates both the short-term and long-term WTI prices and
volatility against time over the important period of gradually increasing
global acknowledgement of the COVID-19 threat. Trading in a range be-
tween $50–$60 during October through December 2019, the price of
WTI did not initially present evidence of substantial variability. Looking
at the long-term price trend, we clearly observe the scale of the recent
price collapse, which extended close to $184 below the price of WTI
that occurred during the subprime crisis of 2008. Starting from a price
of around $60 when the COVID-19 pandemic was first identified by
the World Health Organisation (WHO) in late-December 2019, it was
not until early-March 2020 before WTI fell below $30. In mid-April, it
sharply fell below $20 before proceeding to rapidly fall below zero. Be-
tween 17 April and 20 April, the price of WTI fell from $18 to –$37.

In Fig. 2 we observe the hourly nominal price change along with
the difference between hourly high and low prices. Examining
Fig. 2, the magnitude of the hourly changes in WTI prices is evident.
While the largest hourly trading volume of WTI futures contracts oc-
curs on 20 April, pronounced elevated levels of liquidity are evident
throughout 2020.

Wemust remember that negative oil prices suggest oil producers are
paying buyers to take their production, largely due to fears that storage
capacity could run out in the short-term. Negative oil prices reflect a sit-
uation where oil firms must resort to renting tankers to store surplus
supply. This negative pricing is driven in part by a technicality of the
global oil market: oil is traded on its future price and traders do not
want to take delivery of the oil and incur storage costs. While interna-
tional oil prices did not decline as much as WTI, depressed WTI prices
also affected firms operating in the North Sea and Middle East. Similar
duration contracts for Brent crude, the benchmark for global oil prices,
were down approximately 25% during the same time period as WTI
prices went negative. The reason for the difference between the Brent
and WTI benchmarks can be explained by differential storage costs.
Brent crude is priced in the middle of the North Sea, where tanker stor-
age is ample and accessible, while WTI oil storage in the US is limited.
WTI is also landlocked, while North Sea isolation allows Brent more
shielding and flexibility to respond to shifting coronavirus demand
shocks.

Our research analyses and examines volatility spillovers and volatility
co-movements among energy-producing, extracting, and transporting
corporations' stock prices over the period May 2019 through May
2020, incorporating both the period inclusive of the outbreak of the
COVID-19 pandemic, and the exceptionally rare period when WTI oil
prices turned negative.
1 Signals of forthcoming issues had been evident in Canada on 19 April 2020, when
steam-assisted gravity drainage projects, that heat seams of bitumen and account for
nearly half of Canadian-oil sands production were cut by ConocoPhillips, as a signal that
Canada's oil economy was bearing the brunt of output cuts in the midst of low prices,
and deeper reductions in production caused substantial restructure as Canadian oil prices
went negative. A similar, regional issue occurred with natural gas prices in Western
Canada that turned negative in 2017, due to a number of pipeline maintenance issues
due to storage options that then created a rapid accumulation of supply. The influence
of these broad risks upon the US oil & gas sector is a centrally positioned question within
current literature, particularlywith the substantial risks of repeated pandemics remaining
in a state of elevation and associated risks for both traders and regulators when consider-
ing the sector's transition to a state of improved long-term environmental sustainability
(CBC News, Canada, 26 October 2017).
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1.2. Background literature

During the period of our study, we investigate co-movements and
spillovers across significant firms in eight energy-related Thomson
Reuters Business Classifications. The spillover index approach of
Diebold and Yilmaz (2009); as well as the DCC-FIGARCH procedure
(an extension of thework of Engle, 2002) are used to identify the trans-
mission mechanism of volatility shocks and the contagion of volatility.
Therefore, it is relevant to review important and recent literature re-
garding the interaction of oil and stock prices.

A number of studies focus on the effects and influence of WTI and
other similar oil markets on a variety of international stock markets,
while developing on a number of differing volatility methodologies.
For instance, Du and He (2015) find that, prior to the 2008 financial cri-
sis, there were positive risk spillovers from stock market to crude oil
market, and negative spillovers from crude oil market to stock market.
However, they also find, post 2008, a strengthening of bidirectional pos-
itive risk spillovers with asymmetric correlations. Analysing data back
to 1859, Balcilar et al. (2017) finds that both oil and S&P 500 prices
share a common stochastic trend. Other studies have examined the im-
pact of oil on the stock market of China (Kang et al., 2010; Yang et al.,
2015); Japan and Korea (Kang et al., 2009); the US (Ho et al., 2013);
and broad G7 indices (Beine et al., 2008; Bentes, 2014). Zhang (2017)
analyses the relationship between oil shocks and returns at six major
stock markets around the world to find evidence that the contribution
of oil shocks to the world financial system is quite limited, while
Maghyereh et al. (2016) finds evidence of connectedness between oil
and equity is established by the bi-directional information spillovers be-
tween the markets. Arouri et al. (2012) and Antonakakis et al. (2018)
also examine the interaction of oil prices and stock markets. Chaining
together oil, economic policy uncertainty and equity prices, Antonakakis
et al. (2014) find that economic policy uncertainty responds negatively
to aggregate demand oil price shocks, while GMM examine EPU on US
equities (see also Xu et al., 2019; Yang, 2019).

Similarmethodologies have been used to investigate for the presence
of volatility spillovers in stockmarkets (Awartani andMaghyereh, 2013;
Bekiros et al., 2018; Liow, 2015; Shahzad et al., 2017).2 Alternatively,
Salisu and Oloko (2015) identify results somewhat contrasting to other
literature, identifying a significant positive return spillovers from the
US stock market to oil markets.

While there has beenmuch examination of the interaction between
oil prices and stockmarkets and a small number of papers analysing the
effects of oil volatility on the returns of oil and gas corporations, there
has been little or no investigations of these topic with regard to the con-
ditioning role of pandemics, or negative oil price effects.3

1.3. Oil and renewables

In this paper, our primary focus is on co-movement and spillovers
from oil to renewables under extreme oil price movements. And so it
is particularly relevant to consider recent work that examine the inter-
actions between oil and renewable energy. A large number of recent pa-
pers find that renewables and oil co-move in the same direction. These
papers include Apergis and Payne (2014); Ferrer et al. (2018); Khan
et al. (2017); Reboredo (2015); Reboredo et al. (2017); Sadorsky
(2009); Sadorsky (2012a) and Sadorsky (2012b).4 Someof these papers
suggest reasons for a positive co-movement between oil and
2 See also Krause and Tse (2013) for exchange traded funds and Antonakakis and
Vergos (2013); Claeys and Vašíček (2014) for bond markets.

3 Research relating to interactions with negative pricing behaviour is generally quite
limited. Fanone et al. (2013) investigate the case of negative day-ahead electricity prices,
presenting a non-Gaussian process that is found to be able to generate extreme positive
and negative spikes. Valitov (2019) find such events of negative electricity prices lead to
a decrease in risk premia when compared to the period of a positive price regime.

4 He et al. (2010) find that daily WTI highs and lows are cointegrated, with the error
correction term being closely approximated by the daily price range.



Fig. 1. West Texas intermediate high-frequency price and volatility, 1-min data. Note: The above data represents hourly WTI price and volume behaviour for the period March 2019
through May 2020. Data was obtained from Thomson Reuters Eikon.
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renewables, while others simply observe findings. It is reasonable to
suppose that all forms of energymightmove together with levels of en-
ergy demand. Maghyereh et al. (2019) suggest that stability of oil is im-
portant for renewables.

On the other hand, the enormous economic impact of COVID-19 and
the concomitant shock to the oil industry of negative WTI prices, pre-
sents a need for a revisiting of the interaction of oil and renewables, es-
pecially during extreme conditions. While not yet covered in academic
literature, a number of recent trade articles have suggested COVID-19
specifically will be a boom for renewals. The reasoning of these trade ar-
ticles is generally that COVID-19 will in many regions revise downward
expectations of future energy needs. Consequently, renewables will be
more seen as a reasonable alternative to meet energy needs.

In this paper we exploit the unprecedented global economic
downturn conditions of COVID-19 to test two alternative hypotheses re-
garding the co-movement of oil and renewables. We consider a price-
competition hypothesis in which, as oil prices sharply fall, there will
be a replacement of renewables with less expensive oil.

H1. An extreme fall in oil prices will lead to a fall in the price of renewables.

Alternativelywe consider a global demandhypothesis inwhich a se-
vere fall in oil prices stemming from a sharp decline in global demand
3

for energy will engender energy planners to regard renewables as a
more reliable long-term first-choice for energy needs, as it will be
more likely for renewables to meet energy needs.

H1a. : An extreme fall in oil prices will lead to a rise in the price of
renewables.

In considering our hypotheses, we note that Kumar et al. (2012)
frame the issue of how renewables will react to changes in oil prices.
Kumar et al. (2012) suggest on the one hand that an increase in oil
prices will impact stocks, including renewables, negatively. This is be-
cause of the direct and indirect role of oil prices in production costs. A
negative and significant relationship between oil prices and equities
has been demonstrated by previous research (e.g., Cong et al., 2008;
Henriques and Sadorsky, 2008; Huang et al., 1996; Jones and Kaul,
1996; Miller and Ratti, 2009; Park and Ratti, 2008; Sadorsky, 2009). In
this vein,wemight expect a fall in oil prices to favourably impact stocks,
including renewables. However, with particular regard to renewables,
this has been found not to be strongly the case (Henriques and
Sadorsky, 2008). Further, this was clearly not the case for equity mar-
kets in general for the period of our study, with the downturn in global
demand and disruptions in supply chains during this time additional
factors.



Fig. 2.West Texas intermediate high-frequency price and volume behaviour (1-h data). Note: The above data represents hourly WTI price and volume behaviour for the period March
2019 through May 2020. Data was obtained from Thomson Reuters Eikon.
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5 For brevity, only hourly analyses are presented in this version. Variation of frequency
presented little differential in results. The results of additional analyses are available from
the authors upon request. The starting point of our data is dictated by availability from
data suppliers. Daily price data presents the largest time-span, however, 1-min data pre-
sents the largest number of observations.

6 We further experimented with alternative measures of volatility, such as conditional
volatility. Further, we proceeded to prepared our analysis based on the elimination of pub-
lic holidays and further windsorisation at the 1% level of illiquid trading conditions. How-
ever, our results remained qualitatively similar to those presented.
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Kumar et al. (2012) also suggest, alternatively, a substitution theory
which posits renewables will gain when oil prices are higher as the cost
of renewables is concomitantly more affordable. However, as oil prices
fell, we observe a gain for renewables. Considering the context of our in-
vestigation, what previous important theory does not consider, under-
standably, is the conditioning role of a shock to global demand and
supply chains of the impact of COVID-19. Consequently, our study is dif-
ficult to frame in comparison to previous investigations. Overall, there
are a number of contextual factors for our study that have been insuf-
ficiently investigated. First, is there is a previously unidentified re-
lationship between specifically oil storage costs and the economic
attractiveness of renewables? Second, does an enormous downward
shock to global demand prospects lead to equity and venture capital in-
vestments in renewables beingmore attractive? The notion here is that
therewill be greater confidence that renewableswill be enough tomeet
needs. This is the argument put forth in recent trade articles. However,
we are not aware of previous academic literature addressing this rather
vital issue. Third, as global supply chains are disrupted, in this case to an
extent without recent precedent, and countries overall stepped back
from participation in the global economy, were renewables seen as
more favourable local sourcing of energy? Fourth, an argument we par-
ticularly highlight in the paper, renewablesmay have gained in the con-
text of negative WTI prices particularly on the collapse of optimism in
the fracking industry. We draw indirect inferences from results for the
coal industry gaining, in addition to renewables, asWTI oil fell. We con-
sider this explanation as well in the context of the current geopolitical
issues related to the fracking industry. Coal can also be seen, particularly
for the US as having a similar supply-chain advantage to renewables.
These four reasons, not exclusive to each other, are all plausible expla-
nations for our results. We acknowledge our results raise important
questions and might challenge existing theoretical underpinnings. Ad-
ditionally, our results may be highly context-driven. But the context of
negative oil prices during a pandemic is too important for research to
ignore.

Overall, our results, when collectively examined, suggest the ex-
traordinary fall in WTI to negative prices was seen by energy investors
as due to a sharp drop in global demand rather than due to a sharp in-
crease in oil supply by Saudi Arabia as part of a situational challenge
to the USA fracking industry.

In this paper, we employ the spillover index approach of Diebold and
Yilmaz (2009); as well as the DCC-FIGARCH procedure (an extension of
thework of Engle, 2002) to identify the transmissionmechanismof vol-
atility shocks and the contagion of volatility across firms in eight Thom-
son Reuters Business Classifications. Our analysis incorporates both
high-frequency and daily time series data of stock prices of the largest
oil and gas companies for the period October 2019 through May 2020.
Our period of study allows us to compare and contrast volatility and vol-
atility spillovers among four different sub-periods: i) pre-pandemic; ii)
during the Chinese denoted outbreak of ‘mystery pneumonia’; iii) the
official World Health Organisation (WHO) announcement of COVID-
19; and iv) the effects of negative oil prices during the period both inclu-
sive of 20 April 2020 and the period thereafter.

Most importantly, we find positive and economically meaningful
spillovers from falling oil to renewables. However this result is only
found for the narrow portion of our period of study around the negative
WTI event. This finding differs from most previous research that finds
that renewables and oil positively co-move, and differs from what we
find in other sub periods of our sample. However, previous research
has not been able to assess the co-movements of oil and renewables
under such an extreme economic downturn as during the COVID-19
pandemic. Although not the primary focus of our study, we also find a
negative co-movement of oil and coal. While oil fell to unprecedented
lows, there was a directional spillover that elevated coal industries.
We exploit this finding of a co-movement of oil and coal to conclude
that our result of renewables gaining as oil fell was due to investors see-
ing the extraordinary fall in WTI as stemming from a sharp drop in
5

global demand, rather than because of a sudden increase in oil supply.
If, alternatively, the latter explanation was true we would have seen
coal also fall for competitive price reasons. In a state of starkly declining
global growth prospects, investors saw the US fracking industry losing
to coal, they also viewed renewables as more reliable to generate
long-term supply.

The remained of the paper is structured as follows: in Section 2 we
describe thedata and in Section 3 themethodology used to analyse; em-
pirical results are provided in Section 4, while both discussion and con-
cluding comments are provided in Section 5.

2. Data

The sample period for data collection is chosen from 1 May 2019
through 12 May 2020, inclusive of one-year of hourly price
observations,5 a total of 6293 hourly observations. We develop on
high-frequency trading data obtained from Thomson Reuters Eikon for
both West Texas Intermediate Oil (WTI) and the sixty-nine energy
stocks with associated summary statistics presented in Table 1 and an
outline of each stock presented in Table A1 of the attached appendices.
Aswith Antonakakis et al. (2018), we define the stock (i) price volatility
as the absolute return6 Vit = ∣ lnPit − lnPit−1∣, where Pit is the hourly
closing price of the stock on day t. The price ofWTI throughout this anal-
ysis is represented as variable j. Eight sectors are defined based on their
related TRBC Sector Code.We analyse the effects ofWTI price behaviour
on that of: a) Oil & Gas Exploration & Production; b) Oil & Gas Refining&
Marketing; c) Integrated Oil &Gas; d)Oil-related Services & Equipment;
e) Oil & Gas Transportation Services; f) Oil & Gas Drilling; g) Coal; and
h) Renewable Energy. As noted by Antonakakis et al. (2018), while
the use of firm level data to analyse relationships between sectors is rel-
atively new (e.g., Aggarwal et al., 2012; Boyer and Filion, 2007; Phan
et al., 2016), investigations at the firm level of interactions of both
returns and volatilities (e.g., Antonakakis et al., 2018) are much less
common.

Due to issues with market liquidity, only companies with market
capitalisation above $50 million as of January 2020 are included in this
analysis. The scale and direction of both volatility spillovers and direc-
tional volatility spillovers will provide substantial information with
regards to broad energy market dynamics during immense periods of
economic turmoil, but also potential channels through which diversifi-
cation opportunities exist. There is also particular interest of the latter
included sectors representing both coal and renewable energy, and as
to whether their price behaviour and interaction varies with that of tra-
ditional Oil & Gas-related companies.

In Table 2, we observe the hourly price-related summary statistics of
WTI during the four denoted periods of analysis, relating to the pre-
COVID-19 periods and those relating to the China-specific outbreak of
COVID-19, the contagion of COVID-19 throughout the world as identi-
fied by the official WHO announcement, and finally, when the price of
WTI turned negative, inclusive of the period thereafter. Such results
offer substantial information with regards to hourly nominal price vol-
atility and recorded trading volumes as representative of market liquid-
ity. It becomes quickly apparent that there is little differentials between
that of the period prior to COVID-19 and the period denoted to surround
the announcement of a ‘mystery pneumonia’ in China. Such a results
supports the findings of (Conlon et al. (2020) and Corbet et al. (2020a,
2020b)), that there exist little evidence of worldwide contagion or



Table 1
Summary statistics based on sectoral price volatility (by denoted period).

O&G explor. O&G refin. Integ. O&G O&G S&Eq. O&G trans. O&G drill. Coal R.Energy

Before COVID-19
Mean −0.0002 0.0001 −0.0002 −0.0002 0.0000 −0.0004 −0.0004 0.0001
Variance 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000
Skewness −0.4643 −0.5429 −0.1366 −0.6277 −0.1018 0.3888 −1.0055 −0.7548
Kurtosis 6.0903 7.4979 12.4128 7.0368 10.9248 15.6173 15.6995 12.8746
Minimum −0.0406 −0.0282 −0.0891 −0.0379 −0.0257 −0.0996 −0.0609 −0.0509
Maximum 0.0268 0.0167 0.0623 0.0315 0.0340 0.1247 0.0347 0.0474

Chinese-confirmed pneumonia
Mean 0.0003 −0.0001 0.0004 0.0005 0.0004 0.0005 −0.0004 0.0005
Variance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000
Skewness 0.8712 0.1362 0.4342 0.4358 0.4823 0.9230 −11.0622 −0.1196
Kurtosis 6.7401 6.7153 6.2633 8.1000 3.5857 5.6805 177.1660 3.6085
Minimum −0.0227 −0.0143 −0.0274 −0.0260 −0.0124 −0.0340 −0.2015 −0.0218
Maximum 0.0238 0.0139 0.0355 0.0258 0.0141 0.0619 0.0364 0.0207

WHO-confirmed COVID-19
Mean −0.0004 −0.0004 −0.0016 −0.0008 −0.0004 −0.0001 −0.0005 0.0002
Variance 0.0002 0.0002 0.0008 0.0002 0.0002 0.0010 0.0004 0.0002
Skewness 0.4975 0.8250 2.5959 −0.7128 −0.0421 2.3340 1.1882 −0.2600
Kurtosis 11.8352 14.4664 30.5347 7.3994 12.5880 23.9301 12.4862 10.0720
Minimum −0.0887 −0.0578 −0.1354 −0.0728 −0.1031 −0.1560 −0.0887 −0.1004
Maximum 0.1152 0.1148 0.3107 0.0722 0.0949 0.3432 0.1598 0.1023

Negative WTI prices and after
Mean 0.0015 0.0010 0.0017 0.0012 0.0010 0.0038 0.0006 0.0007
Variance 0.0003 0.0002 0.0012 0.0003 0.0002 0.0016 0.0005 0.0002
Skewness 0.1352 0.6487 0.9085 −0.5200 −0.2916 2.9514 0.1474 0.0168
Kurtosis 3.8145 9.4841 5.7264 3.5844 3.2466 19.7679 4.1260 3.6318
Minimum −0.0651 −0.0578 −0.1262 −0.0717 −0.0597 −0.1238 −0.0887 −0.0755
Maximum 0.0924 0.1148 0.1973 0.0722 0.0514 0.3432 0.1135 0.0665

Note: The above data represents hourly sectoral price volatility for the period March 2019 through May 2020. Data was obtained from Thomson Reuters Eikon.

Table 2
West Texas intermediate price and volume summary statistics (1-h frequency).

Open - close High - low Trade volume

Before COVID-19
Mean 0.0026 0.3246 24,005
Variance 0.0585 0.0635 8.813E+08
Skewness 0.6720 2.9730 1.9951
Kurtosis 10.1406 18.7728 4.3390
Minimum −1.8500 0.0000 1.0000
Maximum 2.3200 3.2400 205,945
Observations 2741 2741 2741

Chinese-confirmed pneumonia
Mean −0.0044 0.2206 16,884
Variance 0.0295 0.0375 6.027E+08
Skewness −0.2584 3.0262 2.4793
Kurtosis 20.1092 16.7649 6.9683
Minimum −1.5800 0.0000 2.0000
Maximum 1.4400 1.9900 155,770
Observations 680 680 680

WHO-confirmed COVID-19
Mean 0.0197 0.4813 27,813
Variance 0.1454 0.1828 9.716E+08
Skewness 0.5768 3.6543 1.9283
Kurtosis 22.1409 24.6966 4.7993
Minimum −3.9900 0.0000 1.0000
Maximum 4.1000 5.6400 252,564
Observations 1759 1759 1759

Negative oil and the period thereafter
Mean −0.0282 0.8009 15,209
Variance 2.1322 3.7028 3.786E+08
Skewness 5.8884 15.1472 2.5739
Kurtosis 217.7028 288.9440 8.6227
Minimum −19.1600 0.0000 1.0000
Maxumum 27.1900 41.0200 144,700
Observations 697 697 697

Note: The above data represents hourly WTI price and volume behaviour for the period
March 2019 through May 2020. Data was obtained from Thomson Reuters Eikon.

S. Corbet, J.W. Goodell and S. Günay Energy Economics 92 (2020) 104978

6

information flows due to available Chinese news.While Chinese-traded
oil did show contagion effects through apparent flight-to-safety behav-
iour, there is little to suggest that WTI exhibits similar characteristics.
However, theperiod after the official identification of the COVID-19 out-
break by the WHO is very different. Hourly volatility levels increase
sharply during this period, with differentials in hourly high and low
pricing presenting evidence of two and three times the scale of prior av-
erages. Trading volumes differ substantially, with average hourly levels
initially increasing after theWHO announcement, however, they fall by
almost 50% in the period after the negative price event inWTI. There are
sharp increases in both the skew and kurtosis of these price and liquid-
ity dynamics during the COVID-19 outbreak, which is further exhibited
in the incredibly large one-hour changes in prices during this time. Spe-
cifically, in the period after 20 April, there exists a single hour when the
differential between high and low pricingwas $41.02 and the difference
between open and closing price was $27.19.

In Fig. 3, we observe for the same time period the hourly price vola-
tility of each of the included sectors analysed in comparison to price
movements within the market for WTI. It is noticeable that there exist
awide-variety of response to the selectedwindows of investigation sur-
rounding COVID-19. Associated summary statistics are presented in
Table 1. Sectors representing both Oil & Gas Drilling and Integrated Oil
& Gas are found to be the most volatile throughout all of the analysed
periods, and particularly so in the period after the outbreak of COVID-
19. While coal markets, which could be argued to be relatively isolated
to shocks within WTI present evidence of simultaneously elevated vol-
atility, estimates within companies denoted to be working in the re-
newable energy sector appear to to behave in quite a moderated
manner, similar to companiesworking in the sectors for oil & gas servic-
ing, equipment development and broad transportation.

To analyse the differential behaviour and influence of WTI upon en-
ergy stocks in the US through this period of immense economic disrup-
tion, we separate our analysis into a number of pre-determined and
robust sub-periods. The first sub-period runs from 1May 2019 through



Fig. 3. Energy sector price volatility, 1-h data (1 January 2019 through1May 2020). Note: The above data represents hourly sectoral price volatility for the periodMarch 2019 throughMay
2020. Data was obtained from Thomson Reuters Eikon.
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16 November 2019. This selection is made due to the media identifica-
tion on the 17 November 2019 of the first case of COVID-19 detected
in mainland China, as reported by the South China Morning Post (as
per (Conlon et al. (2020), Corbet et al. (2020b) and Corbet et al.
(2020a)). Hence, the sub-period is the first stage without the latent im-
pacts of COVID-19. The second sub-period is from 17 November 2019
through 30 December 2019. On the 30 December 2019, as reported by
World Health Organisation (WHO), Wuhan Municipal Health Commis-
sion in China reported a cluster of cases of pneumonia inWuhan, Hubei
Province. The novel coronavirus, in its current form was subsequently
identified and announced to the world as a global pandemic. After this
date, the COVID-19 was gradually acknowledged by the globe and its
impacts became internationally contagious. And a third sub-period
which is from 31 December 2019 through 19 April 2020, defining a
stage where the COVID-19 pandemic subsequently spreads out of
China and begins a widespread contagious period to the rest of the
world. The final sub-period is of particular interest, as it is inclusive of
the sharp negative fall of WTI prices and that of 20 April when the
price of the forthcoming May expiring futures contracts sold on ex-
change at a price of -$37.63. Such negative prices had not been observed
in the largest oilmarkets at any point in recordedhistory, presenting ev-
idence of the broad rarity of such an event, to which the confusion and
panic observed on 20 April 2020 manifested.

3. Empirical methodology

3.1. DCC-FIGARCH volatility estimates

In the first stage of our analysis, we focus on the estimation of the
traditional dynamic conditional correlations of the energy sector with
that of WTI. To do so, we build on the dynamic conditional correlation
methodology (DCC-GARCH) of Engle (2002), whodecomposed the con-
ditional covariance matrix as:

Ht ¼ DtRtDt ð1Þ

Rt ¼ diag Qtð Þ−
1
2:Qt :diag Qtð Þ−

1
2 ð2Þ

Qt ¼ Ωþ αεt−1ε0t−1 þ βQt−1 ð3Þ

where Rt is defined as the conditional correlation matrix and Dt is a di-
agonal matrix with time-varying standard deviations

ffiffiffiffiffiffiffi
hi,t

p
on themain

diagonal. Further, Qt is identified as the approximation of the condi-
tional correlation matrix, defined above in Eqs. (1) & (2) as Rt, where
the positive semi-definiteness of Qt is guaranteed if both α and β are
both positive, while the sum of both α and β is less than one while the
initial matrix (Q1) being positive. Ω ¼ 1−α−βð ÞR, where R repre-
senting the unconditional average correlation. We next estimate Dt,
which is defined as the conditional volatility through the use of a uni-
variate long-memory methodology, where we divide the returns by
their conditional volatility and use the εt = Dt

−1rt to estimate the
quasi-conditional correlation matrix Qt. Qt is re-scaled to obtain the
conditional correlation matrix described in Eq. (2) (Harris and
Nguyen, 2013). Further, the conditional volatility Dt and the condi-
tional correlations Rt are then utilised to develop the conditional cor-
relation matrix Ht.

The h-step-ahead conditional covariance matrix is presented as:

Htþh ¼ DtþhRtþhDtþh ð4Þ

Wemust note that the forecast of each volatility in Dt+h can be esti-
mated for the univariate case using the function Ht+1:t+h = h∑i=

0
Tλ(h, i)rt−irt−i

' . Since Rt is described as a non-linear process, the
8

h-step-ahead forecast of Rt cannot be computed using the recursive pro-
cedure, however, the forecasts of Qt+h and Rt+h are calculated as:

Qtþh ¼ ∑
h−2

j¼0
1−α−βð ÞQ α þ βð Þj þ α þ βð Þh−1Qtþ1 ð5Þ

Rtþh ¼ diag Qtð Þ−
1
2:Qtþh:diag Qtþhð Þ−1

2 ð6Þ

We develop on this structure through the use of the fractionally-
integrated GARCH methodology (FIGARCH). As noted by Davidson
(2004), the FIGARCH approach because of its inherentflexibility, can ex-
plain observed temporal dependencies related to financial market vola-
tility much better than other GARCHmodels. Particularly for this paper,
the FIGARCH model is found to provide improved flexibility for model-
ling the conditional variance, because it accommodates the covariance
stationary GARCH model when d = 0, and the IGARCH model when
d = 1. Regarding the choice of FIGARCH, as documented by Cont
(2001) long memory is one of the stylised facts of financial time series
and a hyperbolic decay in autocorrelation function of absolute returns
may indicate the presence of the persistence in return volatilities. Ding
et al. (1993) also state that absolute returns display higher autocorrela-
tions than the log returns. As we model the volatility through absolute
returns, first we tested the presence of long memory in those return se-
ries through various Hurst exponent tests. As the results indicate the ex-
istence of persistency of the volatility, we prefer to use FIGARCHmodel
which incorporate the fractional differencing parameter to account for
long memory. Meanwhile the evidence presented by Diebold and
Inoue (2001) shows that in some certain cases regime switching and
long memory may be different statements of the same phenomenon.
Considering these facts, we believe that FIGARCH model is suitable in
this study to model volatility.

For the FIGARCHmodel, the persistence of shocks to the conditional
variance, or the degree of long-memory, is measured by the fractional
differencing parameter d, which represents a long-memory process
added through a fractional-difference operator. Therefore, for
0 < d < 1, the FIGARCH methodology is sufficiently flexible to allow
for an intermediate range of persistence (Baillie et al., 1996). A slow hy-
perbolic decay is incorporated through lagged squared innovations in
the conditional variance, while the cumulative impulse response func-
tion weights continue to tend to zero which provides a strictly station-
ary process. Therefore, the conditional volatility of the FIGARCH(1,d,1)
model can be presented as:

ht ¼ ω þ 1−βL− 1−ϕLð Þ 1−Lð Þd
h i

r2t þ βht−1 ð7Þ

where L is a lag operator. The FIGARCHprocess then reduces to a GARCH
process when d= 0. Further, the h-step ahead forecast of the FIGARCH
(1,d,1) model is given by:

htþh ¼ ω 1−βð Þ−1 þ 1− 1−βLð Þ−1 1−ϕLð Þ 1−Lð Þd
h i

r2tþh−1 ð8Þ

where, if being used in themultivariate context, the sameDCC approach
is re-usedwith the same forecast functions forQt+h and Rt+h. Themulti-
variate Student distribution is applied as the normality assumption of
the innovations is rejected for each volatility series.

3.2. Volatility spillover indices

As our purpose in this study to investigate andmeasure the direction
and intensity of the volatility transmissions, we prefer to use the meth-
odology first proposed byDiebold and Yilmaz (2012). Themodel allows
bilateral spillovers in the volatility unlike the SAMEMmodel of Otranto
(2015) that requires the pre-determined directions in volatility.
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Secondly, DB-2012 allows us to display the strength of spillovers as the
model create an index for volatility transmissions and enable us tomake
proper comparisons among the alternative model configurations and
variable sets. Finally, Diebold and Yilmaz (2009) employs a generalised
vector autoregressive framework that does not depend on variable
ordering.
Fig. 4. Selected FIGARCH-calculated dynamic correlations between WTI volatility and the selec
correlation results based on hourly sectoral price volatility for the period March 2019 through

9

To examine spillovers in the volatility of WTI during the outbreak of
the COVID-19 pandemic and the subsequent effects of negative oil
prices, and the effects of each event on energy-companies in the US,
we apply the generalised version of the spillover index proposed by
Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012), which
builds on the vector autoregressive (VAR) models developed by Sims
ted sectors as reported. Note: The above data represents FIGARCH-calculated conditional
May 2020. Data was obtained from Thomson Reuters Eikon.
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(1980). In execution of Diebold-Yılmaz volatility spillover analysis we
employ two different window sizes, 50 days and 200 days, with four
lags in each VAR model. The forecast horizon is selected as ten days.
As discussed by Xiarchos and Burnett (2018), since we utilise daily ab-
solute and squared returns (Appendix), employment of 50-daywindow
size allows us to execute a separate VAR analysis for each pre-specified
50-day windows. Similar to the study of Diebold and Yilmaz (2009) we
also use a second windowwidth (200 days) to examine the robustness
of results. Increasing width in window size smooths the relatively low
volatility spillovers and bring out the severe transmissions (COVID-19
and negative oil shock) in the volatility that are thoroughly discussed
in this study.

As Antonakakis et al. (2018) describe, the generalised version allows
for correlated shocks but uses historically observed distribution of er-
rors to account for them appropriately, where the shocks to each vari-
able are not orthogonalised as the sum of the contributions to the
variance of the forecast error is not necessarily equal to one. Similar to
Antonakakis et al. (2018), we aim to examine the magnitude of volatil-
ity spillovers rather than identifying the causal effects of structural
shocks, therefore the following methodology proved to be the most ef-
fective. Further, we did test the robustness of our results, which
remained stable even after using variant Cholesky factorisation with al-
ternative orderings of the variables. We first define own variance shares
Fig. 4 (cont

10
as the fraction of the H-step ahead error variance forecasts xi that are
due to shocks xi, for i = 1, 2, . …, N, and the cross-variance shares, or
as we seek to identify, the spillovers, are best described as fractions of
N-step-ahead error variances in forecasting xi, that are due to shocks
to xj for i, j = 1, 2, . …, N, such that i ≠ j. In the generalised VAR frame-
work that we develop on, the H-step ahead forecast error variance de-
composition is best described as:

ϕij Hð Þ ¼
σ−1

jj ∑H−1
h¼0 e0iAhΣej

� �2
∑H−1

h¼0 e0iAhΣA
0
hei

� � ð9Þ

Within this structure, Σ is best described as the estimated variance
matrix of the error vector ε, while σjj is the standard deviation of the
error term of the jth equation, and ei is the selection vector. Further,
we must ensure that the sum of the elements in each row of the vari-
ance decomposition table is not equal to unity. We then normalise
each specific entry of the variance decomposition matrix by the row
sum which is presented as:

eϕij Hð Þ ¼
ϕij Hð Þ

∑N
j¼1ϕij Hð Þ

ð10Þ
inued).



Fig. 5. FIGARCH-calculated conditional correlation by sector, daily data (1 January 2019 through 1May 2020). Note: The above data represents FIGARCH-calculated conditional correlation
results based on hourly sectoral price volatility for the period March 2019 through May 2020. Data was obtained from Thomson Reuters Eikon.
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Table 3
Average FIGARCH calculated conditional correlation by analysed sector.

O&G
explor.

O&G
refin.

Integ.
O&G

O&G S&Eq. O&G
trans.

O&G
drill.

Coal R.
Energy

Before COVID-19
Mean 0.4094 0.2646 0.1112 0.2919 0.1856 0.3105 0.1386 0.1300
Min 0.2188 0.1527 0.0001 0.1605 0.1052 0.1191 0.0283 0.0483
Max 0.6986 0.4347 0.4986 0.5331 0.2742 0.7774 0.3064 0.2288

Chinese-confirmed pneumonia
Mean 0.4045 0.2606 0.1792 0.2734 0.1601 0.2606 0.1245 0.1167
Min 0.3391 0.1851 0.0295 0.1896 0.0631 0.0615 0.0711 0.0852
Max 0.4638 0.3092 0.2706 0.3285 0.2111 0.3774 0.1499 0.1365

WHO-confirmed COVID-19
Mean 0.4375 0.2951 0.2763 0.3676 0.2736 0.3396 0.1628 0.1785
Min 0.3603 0.2104 0.1008 0.2428 0.1502 0.1053 0.0960 0.1148
Max 0.7740 0.4965 0.5989 0.7211 0.5542 0.7571 0.2603 0.2917

Negative WTI prices and after
Mean 0.4416 0.3212 0.4526 0.3508 0.2901 0.2936 0.1733 0.2080
Min 0.3641 0.2783 0.3487 0.2956 0.2558 0.0574 0.1041 0.1761
Max 0.5107 0.3904 0.5580 0.4385 0.3330 0.5089 0.2494 0.2373

Note: The above data represents FIGARCH-calculated conditional correlation results based
on hourly sectoral price volatility for the period March 2019 throughMay 2020. Data was
obtained from Thomson Reuters Eikon. The conditional volatility of the above FIGARCH
(1,d,1) model can be presented as: ht = ω + [1 − βL − (1 − ϕL)(1 − L)d]rt2 + βht−1

where L is a lag operator. The FIGARCH process then reduces to a GARCH process when
d = 0. Further, the h-step ahead forecast of the FIGARCH(1,d,1) model is given by:
ht+h = ω(1 − β)−1 + [1 − (1 − βL)−1(1 − ϕL)(1 − L)d]rt+h−1

2 where, if being used in
the multivariate context, the same DCC approach is re-used with the same forecast func-
tions for Qt+h and Rt+h. The multi-variate Student distribution is applied as the normality
assumption of the innovations is rejected for each volatility series.
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Further, we can also normalise the elements of the variance decom-
position matrix with the column sum of these elements. Then we can
compare the resulting total spillover index with the one obtained

from the normalisation with the row sum. Therefore ∑N
j¼1eϕij Hð Þ ¼ 1

and ∑N
ij¼1eϕij Hð Þ ¼ N by construction. We can therefore define a total

spillover index, which is calculated using:

TS Hð Þ ¼
∑N

ij¼1,i≠j
eϕij Hð Þ

∑N
ij¼1eϕij Hð Þ

x100 ¼
∑N

ij¼1,i≠j
eϕij Hð Þ

N
x100 ð11Þ

Aspresented in both theDiebold and Yilmaz (2009) andDiebold and
Yilmaz (2012) methodologies, this is the KPPS analog of the Cholesky
factor-based measure, where the total spillover index measures the
contribution of spillovers of volatility shocks from WTI to our selected
energy stocks. Overall, Eq. (11) measures (on the average over all in-
cluded variables) the contribution of volatility spillovers from shocks
to all (other) variables to the total forecast error variance. We can fur-
ther develop this methodology as it is found to be quite flexible and al-
lows to obtain a more differentiated picture by considering directional
volatility spillovers, which are best described as the directional volatility
spillovers received by variable i from all other variables j. Such a process
is defined as:

DSi j Hð Þ ¼
∑N

j¼1, j≠i
eϕij Hð Þ

∑N
ij¼1eϕij Hð Þ

x100 ¼
∑N

j¼1, j≠i
eϕij Hð Þ

N
x100 ð12Þ

and the directional volatility spillovers transmitted by variable i to all
other variables j as follows:

DSi!j Hð Þ ¼
∑N

j¼1, j≠i
eϕij Hð Þ

∑N
ij¼1eϕij Hð Þ

x100 ¼
∑N

j¼1, j≠i
eϕij Hð Þ

N
x100 ð13Þ

The set of directional volatility spillovers provides a decomposition
of total volatility spillovers into those coming from (or to) a particular
variable. Therefore, by subtracting Eq. (12) from Eq. (13), the net vola-
tility spillovers from variable i to all other variables j are obtained as fol-
lows:

NSi Hð Þ ¼ DSi!j Hð Þ−DSi j Hð Þ ð14Þ

where this equation provided information as to whether a market is a
receiver, or indeed, a transmitter of volatility shocks in net terms,
thereby provides summary information about how much each
variable's volatility contributes to the volatility in the other variables,
in net terms, where the net pairwise volatility spillover can therefore
be presented as:

NPSij Hð Þ ¼
eϕji Hð Þ

∑N
i,m¼1eϕi,m Hð Þ

−
eϕij Hð Þ

∑N
j,m¼1eϕ j,m Hð Þ

0@ 1Ax100

¼
eϕji Hð Þ−eϕij Hð Þ

N

 !
x100 ð15Þ

The net pairwise volatility spillovers between markets i and j is
therefore calculated using Eq. (15), defined simply as the difference be-
tween the gross volatility shocks transmitted from variable i to j while
considering the shocks transmitted from j to i.

In summary, in our analysis, we employ DCC-FIGARCH modelling,
along with the procedure of Diebold and Yilmaz (2012) to consider
both return and volatility correlations combined into one spillover
index. TheDiebold and Yilmaz (2012) procedure especially allows iden-
tification of directional spillovers stemming from shocks.
12
4. Empirical results

4.1. DCC-FIGARCH-calculated volatility co-movements

Before proceeding with DCC-FIGARCH analysis we conduct ADF and
PP unit root tests. Results are presented in the Appendix. According to
PP test, all forms of series, that is log returns, absolute returns and
squared returns, are stationary at 95% confidence level. The second
method, ADF test, demonstrated thatwhile all log returns are stationary,
some of the variables in absolute and squared returns were non-
stationary at the same confidence level. Considering the impact of po-
tential structural breaks (COVID19 pandemic and negative oil shock),
we utilise Kapetanios (2005) m-break unit root test for non-stationary
variables. Results are presented in the Appendix. This test is consider-
ably robust against the presence of structural breaks in a time series.
Test results demonstrate that the model successfully captured the
break dates and displayed that when the structural breaks are taken
into account all return and volatility series were stationary.

Fig. 4 illustrates our DCC-FIGARCHmapping of the dynamic correla-
tions betweenWTI volatility and the volatility of a number of significant
energy-related firms over our time period of 1 May 2019 and 12 May
2020. Firm-level illustrations are grouped by Thomson Reuters Business
Classification (TRBC): oil and gas exploration, oil and gas refining and
marketing, oil-related service and equipment, oil and gas transportation
services, integrated oil and gas exploration and drilling, coal, and re-
newable energy. Examining Fig. 4, we see for many of the energy-
related firms, spiking of dynamic correlation with WTI at differing
points in our time period. However, for almost all the firms displayed
there is a prominent spiking of dynamic correlation around 20 April
2020. This is particularly prominent for firms in Oil & Gas Exploration.
For Renewable Energy, the focus of our study, we see a sharp rise on,
or near 20 April 2020. However the spike in dynamic correlation is not
nearly as narrow as for Oil & Gas Exploration.

Examining more closely the relationships between WTI volatility
and sectors, Fig. 5 illustrates our DCC-FIGARCHmapping of the dynamic



Fig. 6. Total directional volatility spillovers fromWTI onto each analysed sector, absolute returns, 50-daywindow. Note: The above table represents the total directional volatility spillovers
fromWTI upon each stated energy sector. To examine spillovers in the volatility ofWTI during theoutbreak of theCOVID-19pandemic and the subsequent effects of negative oil prices, and
the effects of each event on energy-companies in the US, we apply the generalised version of the spillover index proposed by Diebold and Yilmaz (2009), and which builds on the vector
autoregressive (VAR) models developed by Sims (1980).
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correlations betweenWTI volatility and the aggregated volatility of rel-
evant TRBC sectors over daily data. Examining Fig. 5, we see, for most
sectors, a sharp spike in FIGARCH-calculated conditional correlation
close to the time of negative WTI oil. Interestingly, we seen somewhat
less of a spike for Coal and for Renewable Energy. This is one of the
first signals of a clear behavioural separation between our selected
TRBC sectors.7 One significant explanation for the behavioural differen-
tials sourced within the renewable energy market surrounds the sharp,
and unexpected drop in energy demand during the COVID-19 crisis,
while renewables during the same period actually increased output. Ac-
7 For more detail, appendix Table A2, lists Hurst exponents by company and sector.
Figs. A1 and A2 show sensitivities to respectively VAR lag structure and forecast horizon

13
cording to the International Energy Agency (IEA), global carbon dioxide
emissions fell 8%during the initial stages of the pandemic, largely driven
by an estimated reduction of 1.5% in annual energy demand per month
of lock-down.

Observing the FIGARCH-calculated conditional correlation results in
Table 3, presenting time-varying evidence of interactions betweenmar-
kets during the denoted stages of the COVID-19 pandemic and the pe-
riods both before and after. Focusing on the mean values, in the period
prior to COVID-19, there is a clear differential in the conditional correla-
tions betweenWTI and energy related companies. For example, we ob-
serve that exploration companies present the largest estimated average
correlation (+0.409), along with both the largest maximum and mini-
mum estimates (+0.698 and +0.219 respectively). Behavioural



Fig. 6 (continued).
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differentials with respect to inter-sector correlations do not appear to
vary substantially during the period surrounding the initial outbreak
of a ‘mystery pneumonia’ in China during the period surrounding No-
vember and December 2019. However, we observe a broad increase in
conditional correlations between each individual sector and the market
for WTI in the period surrounding the official announcement by the
WHO of the existence of an international pandemic. The largest in-
creases in average values are identified in the sectors for integrated oil
and gas, services and equipment, and transportation when compared
to the pre-COVID-19 period. However, in the the aftermath of negative
WTI prices, while further increases in conditional correlations are evi-
dent throughout our sample of energy sectors, integrated oil and gas
companies experience the largest market interactions, where condi-
tional correlations are estimated to have increased from an average of
+0.111 in the period prior to the outbreak of COVID-19, to +0.453 in
the period after the occurrence of negative oil. When focusing specifi-
cally on the markets for coal and renewable energy, we can observe a
clear and significant increase in conditional correlations between the
period beforeWHO confirmation of a pandemic and the period thereaf-
ter, however, these estimated values remain substantially below the
other compared sectors. This evidence suggests, that while financial
market panic ensued following the identification of COVID-19 increased
14
market correlations, which has been previously identified as a signal of
market stress (Hamao et al., 1990; Baig and Goldfajn, 1999; Forbes and
Rigobon, 2002; Bae et al., 2003; Bekaert and Harvey, 2003), there re-
mains clear separation in the behaviour of both the sectors for coal
and renewable energy.

These initial results provide a number of interesting inter-sectoral
behavioural differentials, some of which are largely of interest for
those with commitment to broad portfolio diversification. The initiation
of COVID-19, a largely unexpected black-swan event, has provided a
broad example of the global fragility of our energy structures to eco-
nomic and geopolitical shocks. The very fact that the COVID-19 pan-
demic has generated such widespread disruption generates rational
fears with regards to the potential for further waves of the same pan-
demic, or perhaps fear of future pandemics from other sources. With
regards to energy markets, a number of economic estimates have
alarmed investors, with energy demand estimated to fall in excess of
6% for the full year of 2020, which is further estimated to be in excess
of seven times the fall observed during the aftermath of the subprime
collapse. However, renewable energy is now within the spectrum of
government policy as many lobbyists have identified the COVID-19
pandemic as an opportunity to introduce a green-based recovery.
Some of the key driving forces of such opportunistic policy have
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surrounded the sustained reduction in demand for oil, driven by a sharp
fall in demand for manufacturing (down over 50% in some cases), avia-
tion (estimated to have fallen over 90%worldwide) and a range of other
energy-intensive processes. Demand for coal has fallen approximately
8%, while its usage to generate electricity in India, China, the EU and
US has fallen substantially as gas prices have fallen and provided a
cheap substitute, while the burning of coal has become socially untena-
ble. Gas consumption fell for the first time since 2009 presenting an un-
expected reversal, driven for the most-part by a sharp reduction in
reduced power generation. Such positive effects from renewable energy
could have potentially being more influential through broad
Fig. 7. Total directional volatility spillovers to WTI from each analysed sector, absolute returns,
fromWTI upon each stated energy sector. To examine spillovers in the volatility ofWTI during th
the effects of each event on energy-companies in the US, we apply the generalised version of th
autoregressive (VAR) models developed by Sims (1980).

16
improvements in the re-supply of power into electricity grids, to im-
prove upon the estimated 40% of global electricity production from re-
newable sources. These factors will be central to maintain a pathway
towards achieving the ambitious targets in the Paris climate agreement.

4.2. Directional volatility spillovers

Fig. 6 illustrates our investigation of Diebold and Yilmaz (2009) spill-
over from WTI oil to a number of significant energy-related firms over
our time period of 1 May 2019 and 12 May 2020.As in previous figures,
firm-level illustrations are grouped by Thomson Reuters Business
50-day window. Note: The above table represents the total directional volatility spillovers
eoutbreak of theCOVID-19pandemic and the subsequent effects of negative oil prices, and
e spillover index proposed by Diebold and Yilmaz (2009), and which builds on the vector
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Table 4
Net directional connectedness, by stock.

Ticker CLc1 Stock Conn#. Stock CLc1

a) Oil & gas exploration
CLR 24.96 75.04 +2.95 77.99 22.01
APA 21.35 78.65 +2.36 81.01 18.99
MRO 25.18 74.82 +1.77 76.59 23.41
TPL 28.27 71.73 +10.12 81.86 18.14
EQT 15.28 84.72 +2.89 87.61 12.39
WPX 21.32 78.68 +12.37 66.31 33.69
EOG 21.65 78.35 −1.93 76.42 23.58
OXY 20.96 79.04 −2.07 76.97 23.03
CXO 14.38 85.62 −1.00 75.78 24.22
CNX 17.65 82.35 +4.66 87.02 12.98

b) Oil & gas refining & marketing
PSX 30.36 69.64 +15.06 84.70 15.30
VLO 26.06 73.94 +9.12 83.07 16.93
HES 23.03 76.97 +0.46 77.44 22.56
MUSA 14.33 85.67 +9.46 95.13 4.87
DK 20.60 79.40 +2.98 82.38 17.62
INT 7.82 92.18 +14.72 77.46 22.54
PARR 9.21 90.79 +19.47 71.32 28.68

c) Oil & gas services & equipment
QEP 23.09 76.91 +11.44 65.47 34.53
MG 16.31 83.69 +16.56 67.14 32.86

d) Oil & gas transportation services
SLB 22.70 77.30 −2.52 74.77 25.23
BKR 12.58 87.42 −1.74 85.67 14.33
WHD 30.46 69.54 +1.94 71.49 28.51
DRQ 17.23 82.77 +1.38 84.15 15.85
AROC 27.02 72.98 +3.48 76.46 23.54
RES 25.34 74.66 +10.80 85.46 14.54
APY 26.39 73.61 +1.13 74.74 25.26
LBRT 29.97 70.03 +5.02 75.05 24.95
WTTR 26.23 73.77 +1.10 74.87 25.13
NEX 24.39 75.61 +3.54 79.16 20.84

e) Integrated oil & gas
WMB 8.32 91.68 +15.16 76.52 23.48
OKE 18.17 81.83 +15.11 66.71 33.29
ETRN 9.73 90.27 −5.01 85.27 14.73
LPG 13.57 86.43 −3.58 82.86 17.14

f) Oil & gas drilling
HP 20.78 79.22 −6.03 73.18 26.82
ICD 22.46 77.54 +12.23 89.78 10.22

g) Coal
NC 16.60 83.40 +1.00 84.39 15.61
CEIX 19.99 80.01 +1.70 81.71 18.29
CTRA 19.83 80.17 +2.16 82.34 17.66

h) Renewable energy
AMRC 3.45 96.55 −11.63 84.92 15.08
FF 4.81 95.19 −9.40 85.79 14.21

Note: # represents the estimate of net directional connectedness. For brevity and presentation purposes, only significant results at the 1% level that are not equal to zero are presented
Further results at varying time-frequencies and variation of methodological structure are available from the authors on request. The above analysis is conducted using the net pairwise
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Classification. Fig. 7 shows, alternatively, the total directional spillover
of WTI to energy firms and the directional spillover of firms to WTI.
We see for both Figs. 6 and 7 a dramatic spike on 20 April 2020, as
WTI went negative. This suggests that the time of WTI negative pricing
was a time of extraordinary bi-directional spillovers between WTI and
energy-related companies of all types. It is not surprising that there
would be extremely heightened bi-directional interactions with oil by
18
.

-

energy companies of all types during a time of an extraordinary fall in
WTI prices.

In Table 4, we identify the net directional connectedness by selected
stocks andWTI. Relationships are presented for the periods both before
and after the occurence of negative WTI prices. Further evidence of ele-
vatedmarket correlations during the COVID-19 period is identified. This
signals the presence of broad contagion of investor fears within the oil



Table 5
Net directional connectedness, by sector.

Sector Net directional connectedness Directional flow from CLC1 market

Average Minimum Maximum Average Minimum Maximum

a) Oil & gas exploration 1.39 −3.94 12.37 79.83 71.73 88.90
b) Oil & gas refining & marketing 3.59 −7.74 19.47 81.52 69.64 92.18
c) Oil & gas services & equipment 1.40 −1.14 16.56 80.30 76.91 83.69
d) Oil & gas transportation services 2.08 −2.52 10.80 76.54 69.54 87.42
e) Integrated oil & gas 1.85 −5.01 15.16 83.45 74.98 91.68
f) Oil & gas drilling 3.10 −6.03 12.23 78.38 77.54 79.22
g) Coal −1.19 −7.95 12.16 82.54 80.01 86.97
h) Renewable energy −5.51 −9.40 6.63 91.89 83.94 96.55

Note: The above table represents the net directional connectedness by stated energy sector. To examine spillovers in the volatility ofWTI during the outbreak of the COVID-19 pandemic
and the subsequent effects of negative oil prices, and the effects of each event on energy-companies in the US, we apply the generalised version of the spillover index proposed by Diebold
and Yilmaz (2009), andwhich builds on the vector autoregressive (VAR)models developed by Sims (1980). The above analysis is conducted using the net pairwise volatility spillover can
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and gas industries. Some of the largest increases are found to have oc-
curred in the oil and gas refining and marketing sector and the oil and
gas services and equipment sector. One of the most interesting results
occurs for the market for renewable energies, where we evidence the
decoupling of stocks related to green energy.

Further evidence of a sectoral basis is illustrated in Table 5, where
broad differentials are shown in the behaviour of the sectors for coal
and renewable energy (−1.19 and −5.51 respectively) in the period
after the outbreak of the COVID-19 pandemic and subsequent negative
oil pricing event. Individual net pairwise directional volatility spillovers
are presented in Fig. 8. Our results are consistent with international
lock-downs leading to a sharp drop in demand for electricity, concomi-
tant with, however, a sharp increase in demand for renewable energy.
In contrast, demand for coal fell quite acutely. The COVID-19 pandemic
created a number of substantial queries with regards to how long ex-
actly lock-downs would be imposed and how long and deep a subse-
quent COVID-19 induced recession would hinder electricity demand?

Differentials in effects experienced within coal and renewable en-
ergy sectors during COVID-19 are likely signals of pronounced changes
in forecasted energy needs. As the effects of the coronavirus spread,
electricity demand fell8 by approximately 2.5%. Some might have
expected to have been reflected in an even distribution of energy reduc-
tion, both by type and by sector. However, demand for coal fell in excess
of 10%, while demand for renewable energy actually increased by 3%.
This latter result is consistent with signalling a substantial shift towards
low-carbon energy sources. These effects were likely driven by the price
of fuel. However, are these price-driven results due to Saudi Arabia
opening oil supplies? Or, alternatively, are these results caused by a
strong downward turn in world expectations for energy use? These
two interpretations are reflected in our two alternative hypotheses pre-
sented earlier.

In later sections of this paper we investigate these alternatives more
closely by examining directional spillovers fromWTI oil to both coal and
renewables separately for our three sample periods: Chinese COVID,
WHO COVID, and Negative Oil. Both explanations are consistent with
renewables gaining in general, and gaining differentially on coal during
8 The associated IEA electricity Flagship report, released in April 2020, is available here.

19
declining global energy demand forecasts. Coal might gain from nega-
tive oil as lower oil prices are known to be an existential threat to the
US fracking industry. But coal also loses generally to lower energy
prices.9

But there is another question: How did, and how does, coal react to
sharply downward re-estimation of future global energy needs? Will
the composition of global energy be fundamentally altered by events
so extreme to bring about negative oil prices? We expect coal and re-
newable to negatively co-move in “normal times”, as confirmed in pre-
vious literature and as consistent with the periods of our study that are
not negativeWTI. However, during our negativeWTI period, did coal fall
as much as would be expected from simply a sharp reduction in energy
prices? Or was there a mitigating effect of due to changing investor ex-
pectations for global energy use and concomitant reshaping ofwhich in-
dustries would be best positioned to supply a downward forecast of
future needs?We next examine directional spillovers in an effort to an-
swer these important questions.

Table 6 perhaps showsmost clearly the crux of our results. Exam-
ining Table 6, we see an extraordinary change during the time of
negative WTI event with respect to the reaction of industries in
coal and renewables to WTI. As seen in Table 6, we divide our results
regarding directional spillovers into three time categories: 1) an
early time in the evolution of COVID-19, when it was largely limited
to China (Chinese COVID); the time when COVID-19 had broadened
to affect most of the globe, but preceding the period just before 20
April 2020, the time of negative WTI prices (WHO COVID); and the
time surrounding the negative oil event (Negative WTI). With the
exception of firms in the Integrated Oil & Gas sector, other sectors re-
ceived generally negatively correlated spillovers from WTI during
the Chinese COVID and WHO COVID periods. These spillovers were
generally quite moderate in magnitude, the largest in absolute
terms being a− 2.19 value for Oil & Gas Refining &Marketing during
the time of Chinese COVID.
9 Throughout April and May 2020, renewable energy out-generated coal, with IHS
Markit stating that for producers such as PJM Interconnection LLC, the volume of coal gen-
erated energy fell by 40%, while the generation of solar energy increased by 45%. It should
be noted that the use of coal has been in steady decline since 2010 In late 2019, the use of
coal for electricity production fell to its lowest level in over forty years.
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However, during theNegativeWTI period, Oil & Gas Exploration and
Oil & Gas Refining & Marketing jumped to values of +4.83 and + 3.91
respectively. However, the Coal sector and the Renewable Energy sector
both spiked in absolute terms to −4.96 and − 9.96 respectively. Only
21
the sectors Coal and Renewable Energy had positive values during the
time of negative WTI. The magnitude of the spillover to the renewable
sector of −9.96 is approximately double the magnitude of any other
spillovers in any of the three periods.
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Our results, specifically for the narrow period around negative WTI,
stand in a stark contrast to a number of articles of recent years that find
renewables falling and gaining with oil (such as the works of Apergis
and Payne, 2014; Ferrer et al., 2018; Khan et al., 2017; Reboredo,
2015, Reboredo et al., 2017; and Sadorsky, 2009, 2012a, 2012b). How-
ever, unlike these papers, we test this interaction under the condition
of an unprecedented global downturn. Of additional interest is the ex-
treme suddenness of the bi-directional spillovers of the firms in our
22
sample. Our figures consistently illustrate levels of spillover having an
extreme and narrow spiking of spillovers centred around April 20,
2020. These results will be of interest to those interested in contagion
in general beyond the interactions of energy firms. As Yarovaya et al.
(2020) suggest, during and post COVID-19 we may see a quickening
of co-movements brought about by heightened public andmedia atten-
tion based on the perception of economic frailty and widespread
vulnerability.



Fig. 8. Net pairwise directional volatility spillovers, absolute returns, 50-day window. Note: The above table represents the net pairwise directional volatility spillovers by stated energy
sector. To examine spillovers in the volatility of WTI during the outbreak of the COVID-19 pandemic and the subsequent effects of negative oil prices, and the effects of each event on
energy-companies in the US, we apply the generalised version of the spillover index proposed by Diebold and Yilmaz (2009), and which builds on the vector autoregressive (VAR)
models developed by Sims (1980).

Table 6
Average directional spillover, by sector.

Sector Chinese COVID WHO COVID Negative WTI

a) Oil & gas exploration −1.76 −2.10 +4.83
b) Oil & gas refining & marketing −2.19 −1.83 +3.91
c) Oil & gas services & equipment −0.59 −0.14 +1.75
d) Oil & gas transportation services −0.72 −0.18 +1.30
e) Integrated oil & gas +1.48 +1.26 −0.25
f) Oil & gas drilling −1.63 −1.49 +5.71
g) Coal −0.95 −0.40 −4.96
h) Renewable energy −0.38 −0.17 −9.96

Note: The above table represents the average directional connectedness by stated en-
ergy sector. To examine spillovers in the volatility of WTI during the outbreak of the
COVID-19 pandemic and the subsequent effects of negative oil prices, and the effects
of each event on energy-companies in the US, we apply the generalised version of
the spillover index proposed by Diebold and Yilmaz (2009), and which builds on the
vector autoregressive (VAR) models developed by Sims (1980). The above analysis is
conducted using the net pairwise volatility spillover can therefore be presented as:

NPSij Hð Þ ¼
eϕji Hð Þ

∑N
i,m¼1eϕi,m Hð Þ

−
eϕij Hð Þ

∑N
j,m¼1eϕ j,m Hð Þ

 !
x100 ¼

eϕji Hð Þ−eϕij Hð Þ
N

 !
x100. The net

pairwise volatility spillovers between markets i and j is therefore calculated using
Eq. (15), defined simply as the difference between the gross volatility shocks transmitted
from variable i to j while considering the shocks transmitted from j to i.
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5. Conclusions

The unprecedented fall to negative values of WTI oil prices in April
2020, occurring during the unprecedented economic turmoil surround-
ing the COVID-19 pandemic, compels examination of the co-
movements and spillovers among energy-related companies during
23
this time. Indeed, some are even suggesting a reassessment of all
forms of market contagion for a COVID-19 and post-COVID-19 world.

The COVID-19 pandemic by itself provides an unprecedented back-
ground to re-examine spillovers between energy firms during a very
sharp downturn in short-term and long-term expectations of global en-
ergy use. Concomitantly, on April 20, 2020 was the extraordinary, sud-
den, and brief occurrence of negative oil prices on one of the world's
primary markets. During the first portion of April 2020, oil traders
were contending with broadly attempting to quantify the severity of
COVID-19 and its influence on worldwide demand for oil; as well as
assessing broad oil-related geopolitical issues related to the relationship
between Saudi Arabia and Russia. One result of the confluence of
COVID-19's impact on global energy demand and geopolitical tensions
between oil producers was the dramatic fall of WTI oil to negative
values. Certainly, there is a pressing need of a thorough investigation
of the co-movements in returns, and volatility among energy-related
firmsofmany energy industries during surrounding this unprecedented
set of circumstances in the energy markets.

We test for the existence of volatility spillovers and co-movements
among energy-focused corporations during the outbreak of the
COVID-19 pandemic, inclusive of the April 2020 events where West
Texas Intermediate (WTI) oil future prices became negative. Employing
the spillover index of Diebold and Yilmaz (2009); as well as developing
a DCC-FIGARCH conditional correlation framework and using estimated
spillover indices built on a generalised vector autoregressive framework
in which forecast-error variance decompositions are invariant to the
variable ordering, we examine the sectoral transmission mechanisms
of volatility shocks and contagion throughout the energy sector.
Among several results, we find positive and economically meaningful
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spillovers from falling oil to both renewables and coal for the very spe-
cific period surrounding the time of WTI falling to negative values. We
interpret our results as investors seeing the extraordinary fall in WTI
as due to a sharp drop in global demand, rather than because of a sud-
den increase in oil supply. While investors saw the US fracking industry
losing to coal, they also viewed renewables asmore reliable to generate
long-term supply.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.eneco.2020.104978.
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