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a b s t r a c t 

How effective are restrictions on mobility in limiting COVID-19 spread? Using zip code data across five U.S. cities, 

we estimate that total cases per capita decrease by 19% for every ten percentage point fall in mobility. Addressing 

endogeneity concerns, we instrument for travel by residential teleworkable and essential shares and find a 25% 

decline in cases per capita. Using panel data for NYC with week and zip code fixed effects, we estimate a decline 

of 30%. We find substantial spatial and temporal heterogeneity; east coast cities have stronger effects, with the 

largest for NYC in the pandemic’s early stages. 
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. Introduction 

A central challenge in evaluating lock-downs and other restrictions

n mobility in response to COVID-19 is estimating their effectiveness in

imiting the disease’s spread. This estimation is challenging for several

easons. Mobility restrictions are introduced as a response to disease

utbreaks, individuals make mobility decisions based on the threat of

nfection, and the relationship between transmission and mobility de-

ends on the composition of susceptible, infected and recovered agents.

To address these challenges, we combine weekly data on COVID-19

ases by zip code in New York City (NYC) and cross-sectional data for

our other U.S. cities, information on mobility from SafeGraph cellular

hone data and subway turnstile data for NYC, and exogenous varia-

ion in mobility from the ability to work remotely and designation as

n essential worker in state shutdown orders. We interpret “mobility ”

roadly, in the sense of workers leaving home, or passing through a

ubway turnstile, which exposes them to contact while travelling and

t their destination. 1 In our preferred instrumental variables specifica-

ion, we estimate that a ten percentage point decrease in mobility leads

o a 30% fall in COVID-19 cases per capita. We find substantial hetero-
∗ Corresponding author. 

E-mail addresses: eglaeser@harvard.edu (E.L. Glaeser), gorback@nber.org (C. Gor
1 For the SafeGraph data, “mobility ” is the number of trips outside of one’s 

esidential zip code. For the MTA data, “mobility ” is the number of turnstile 

ntries in each zip code. 
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eneity across both space and over time, with stronger effects for NYC,

oston and Philadelphia than for Atlanta and Chicago, and the largest

stimated coefficients for NYC in the early stages of the pandemic. 

The hypothesis that movement spreads COVID-19 inspired the stay-

t-home orders adopted across the world in 2020. While any contagious

isease can be propagated through human interaction, the actual link

etween mobility and contagion is mediated by the nature of the disease

nd traveler behavior. The social benefits of regulations limiting mobil-

ty depend on the empirical magnitude of the link between mobility and

isease. The link between mobility and contagion could be minimal if

nfections occurred mostly through intimate contact, as with sexually

ransmitted infections, or large if transit hubs enabled super-spreading

vents. 

We focus on the relationship between the logarithm of the

OVID-19 cases per capita, 𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) , and the decline in mobility,

Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 , relative to February 2020 or the same date one year ear-

ier. 2 We cannot determine if the disease spread through travel itself or

hrough interactions at a final destination. We lack individual-specific
back), reddings@princeton.edu (S.J. Redding). 

2 The relationship is governed by a quasi-elasticity, 𝛽, which is in log points. 

 1 percentage point increase in %Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 implies a (100 ×𝛽)% increase in cases 

er capita. 
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Fig. 1. Mobility Change and COVID-19 Cases per capita in NYC. Source: Cases 

per capita from NYC Health Department, available at https://www1.nyc.gov/ 

site/doh/covid/covid-19-data.page . % Change in trips from SafeGraph Weekly 

Patterns Data, using visitors traveling from home. % Change in trips calculated 

between May 13–19, 2019 and May 4–10, 2020. 
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OVID-19 tests, and consequently measure the number of cases by zip

ode. 

One potential concern is that neighborhood specific COVID-19 rate

ay not capture the true prevalence of the disease, because of differ-

nces in testing rates. To address this, we control for demographic vari-

bles that might predict testing rates, and for zip code fixed effects in

ur panel specifications. Although levels of testing in the United States

ere low throughout our time period, another concern is that testing

ould mechanically increase mobility, as people travel to get tested. We

ddress this concern using our instrumental variables for mobility. As

n additional specification check, we also replicate our cross-sectional

ase results with COVID-19 death rates in NYC. Unfortunately, the NYC

ip code death data begins the week of May 18–24, 2020, and so cannot

e used in our panel specifications. 

Our primary mobility data source is the SafeGraph cellphone loca-

ion data, which is available at the census blockgroup level nationwide.

e aggregate travel data to the zip code to conform with our COVID-19

ase data. For NYC, we supplement this data with public transit turnstile

ata provided by the Metropolitan Transit Authority (MTA). For panel

nalysis, we aggregate the daily case and turnstile data to the week level

o that it is compatible with the weekly Safegraph data. As the impact

f mobility on infection could change both with the level of infection in

he population of travelers and the level of precaution, we test whether

hat impact changes over time in NYC. We split our sample into an early

eriod that ends on April 26, and a later period, to test whether the im-

act of mobility on contagion was higher when cases were increasing or

fter the wave of infection peaked. 

Fig. 1 shows two maps of NYC that illustrate our core findings.

he upper map shows the change in cell phone-measured mobility. The

ower map shows the total COVID-19 cases per capita as of June 1, 2020.

n the parts of NYC where mobility fell, case rates have been low. In the

reas of New York where mobility remained higher, COVID-19 cases per

apita are higher. Appendix Fig. A1 shows the correlation of 0.41 be-

ween change in the number of trips and the number of COVID-19 cases

er capita. 

Exploring the cross-sectional relationship across five major U.S.

ities, we estimate a quasi-elasticity of cases with respect to mobility

f approximately two, with a 10 percentage point decline in travel lead-

ng to a 10 ×(0.019 × 100) = 19% decline in total cases per capita. We

stimate a similar elasticity of deaths with respect to mobility. 3 Yet there

re many reasons to be skeptical about this estimate. First, zip codes dif-

er along many dimensions, such as income and race, which may influ-

nce the spread and measurement of COVID-19. Second, mobility may

ecline with the level of infection, which could bias downwards the es-

imated link between cases and mobility. Third, the connection between

obility and disease can differ across cities, both due to different ini-

ial infection rates and because travel may take different forms. Finally,

mprovements in testing might lead to higher case counts, and mobility

ould respond to testing improvements. 

We take two strategies to address omitted neighborhood character-

stics. First, we control for racial composition, income and age, which

educe the measured connection between mobility and disease preva-

ence, so that a 10 percentage point decline in trips is associated with a

% decline in case rates across the five cities. In NYC, the coefficient is

omewhat larger, such that a 10 percentage point decline in trips implies

 10% decline in cases per capita. 

Second, we look at results over time within NYC zip codes control-

ing for neighborhood fixed effects. We follow the medical literature

 Lauer et al. 2020 ) and estimate a model with a two-week gap between

ew cases and mobility. The average onset time is closer to 1 week, but

his two-week gap should capture over 97.5% of cases. Controlling for

eek and zip code fixed effects, the link between COVID-19 prevalence

nd mobility disappears when using our SafeGraph mobility measure,
3 All analysis of COVID-19 deaths is limited to NYC. 

a  

i  

w  
nd falls by 79% relative to the cross-sectional results when using the

urnstile measure. 

If movement falls more in places with more disease, then these fixed

ffect estimates underestimate the true link between contagion and mo-

ility. Consequently, our preferred specifications follow an instrumen-

al variables strategy that uses employment by industry in a given zip

ode to predict changes in mobility. We consider two instruments. First,

ollowing Bartik et al. (2020) ), we focus on the share of residents work-

ng in essential industries, according to state shutdown essential worker

esignations. As this first instrument could be be sensitive to work-

rs in especially risky occupations, such as health care and police of-

cers, we exclude workers in the NAICS sector 62 ( “Health Care and

ocial Assistance ”) and in NAICS sector 92 ( “Public Administation ”)

n constructing this instrument. Second, we use the share of residents

mployed in industries where they can work remotely, according to

ingel and Neiman (2020) , also excluding NAICS sectors 62 and 92.

artik et al. (2020) confirm that Dingel and Neiman (2020) ’s predictions

bout remote work during the pandemic have largely born out across

ndustries. Locations with more essential workers have more travel,

hereas locations with more teleworkable residents have less travel. In

https://www1.nyc.gov/site/doh/covid/covid-19-data.page
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ur NYC panel specifications, we allow the instruments to have different

mpacts week-by-week. 

Across almost every specification, the measured link between mo-

ility and disease is larger in these instrumental variable specifications,

uggesting reverse causality biased the ordinary least squares estimates

ownwards. In our multi-city IV specification with demographic con-

rols, we estimate that a 10 percentage point drop in travel implies a

.25 log point (25%) drop in per capita COVID-19 prevalence. This rep-

esents 4.25 fewer cases per 1000 inhabitants, from a sample mean of

7 per 1000. 

City-specific estimates produce higher coefficients in New York,

oston and Philadelphia and lower coefficients in Atlanta and Chicago.

obility seems to spread COVID-19 in the northeastern cities, but not

he others. This difference likely reflects the initial infection rate rather

han the nature of mobility, since public transportation is also used in

hicago. 

Zip codes across cities may still have significant unobserved hetero-

eneity driving disease spread, motivating our preferred panel research

esign, which can compare zip codes with large changes in exogenous

obility against those with small changes over the evolution of the pan-

emic. Moving from the cross-sectional analysis to our NYC-Safegraph

ata panel, we estimate an instrumental variables coefficient of 0.03

ith zip code fixed effects. This translates to our headline finding that

 10 percentage point decline in mobility implies a 30% decline in new

ases per capita two weeks later (10( 100×0.03 log points)). Using turn-

tile data, we estimate a larger coefficient of 0.049 with zip code fixed

ffects. While the turnstile results support the view that cases rise with

obility, at least over this period in NYC, it does not provide a clean

stimate of the impact of public transportation use on the spread of

OVID-19 hypothesized by Harris (2020) , because our instruments are

ot public transit specific. 

Our paper is related to the broader emerging body of research

n COVID-19 in economics. First, a macroeconomics literature has

sed Susceptible-Infected-Recovered (SIR) models to simulate the im-

act of policies such as lock-downs on disease burden and economic

utcomes, including Acemoglu et al. (2020) , Alvarez et al. (2020) ,

tkeson (2020) and Fernández-Villaverde and Jones (2020) . Sec-

nd, others have analyzed the spatial diffusion of COVID-19, includ-

ng Antràs et al. (2020) , Argente et al. (2020) , Birge et al. (2020) ,

ajgelbaum et al. (2020) , Bisin and Moro (2020) and Cuñat and

ymek (2020) . A third line of work has examined how agents’ be-

avioral responses (e.g. social distancing) likely effect the dynamics

f COVID-19, including Fenichel et al. (2011) , Alfaro et al. (2020) ,

arboodi et al. (2020) , and Toxveard (2020) . Fourth, a more mi-

roeconometric literature has examined locations’ observable char-

cteristics within cities and across U.S. counties that correlate with

OVID-19 incidence, including Almagro and Orane-Hutchinson (2020) ,

outure et al. (2020) and Desmet and Wacziarg (2020) . Finally, other

esearch has compared the spatial diffusion and economic impact of

OVID-19 to previous pandemics such as the 1918 influenza, as in

arro et al. (2020) and Correia et al. (2020) . 

Section 2 discusses our data sources and Section 3 introduces our

mpirical strategies. Section 4 discusses the results found using the

ross-section of zip codes in five cities. Section 5 discusses our panel

esults. Both Sections 4 and 5 include results using instrumental vari-

bles. Section 6 concludes. 

. Data 

We build a weekly panel of zip codes for NYC, and take a cross-

ectional snapshot of four other US cities: Atlanta, GA, Boston, MA,

hicago, IL and Philadelphia, PA. All of these cities provide new case

ounts by zip code . Counts of daily new cases and cumulative cases

ome from each city’s (or county’s) department of public health. We

ave daily case data for NYC from April 4, 2020 through June 7, 2020.

ecause this misses much of the run-up in cases, we set cumulative
nd new cases to 0 in 2020w11, and assume cases double weekly until

020w14, for which we have data. We use snapshots of cumulative cases

or the remaining cities. Atlanta has data as of June 2, 2020; Boston as

f May 24, 2020; Chicago and Philadelphia as of June 6, 2020. 

SafeGraph released publicly available data for cell phone trips be-

ween December 31st, 2018 – present. We pull weekly data for our

ve cities. The data tracks the number of visitors to a point of inter-

st (POI) in a given week. Every POI observation contains informa-

ion on its census blockgroup, as well as the number of visitors by

heir home blockgroup. We construct an origin-destination (OD) ma-

rix from these observed trips, assuming travel from home, by counting

ow many visitors travel from each origin blockgroup to each POI block-

roup. The data only shows OD pairs with at least 4 visitors, so it under-

ounts pairs with low travel volume. Finally, we aggregate the block-

roup level OD matrices to zip codes in line with our COVID-19 case

ata. When using SafeGraph data, our measure of mobility, %Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 , is
he percent change in the number of trips away from one’s home

ip code. 

Our second mobility datasource comes from the Metropolitan Tran-

it Authority’s turnstile data . Turnstile entries are recorded every few

ours, for each unique turnstile. We map each subway turnstile to a zip

ode, and count the entries each week by zip code. When using MTA

ata, our measure of mobility, %Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 , is the percent change in the

umber of subway entries in zip code 𝑖 . 

Our instruments use Dingel and Neiman (2020) ’s teleworkability

hares by 2-digit NAICS and definitions of essential industries (4-digit

AICS) from Delaware and Minnesota, in combination with zip code

evel employment data from the American Community Survey (ACS).

etails for instrument construction follow in Section 3.1 . 

To analyse how mobility interacts with demographics, we collect de-

ographic data at the zip level on share African American, median age,

nd median income from the American Community Survey. To identify

ip code level shares of teleworkable and essential workers, we use zip

ode level employment by industry from the ACS, which identifies

he industries in which residents work, the details of which are listed in

able A2 . 

Finally, for NYC, we have data on where police officers lived as of

016, via a Freedom of Information Law request by Bell (2020) . We use

his data to control for the police employment in our panel analysis. 

Appendix Table A1 lists the summary statistics for each of our re-

earch designs. The first panel lists statistics for zip codes in all 5 cities

n our cross-sectional analysis; the middle panel lists statistics for the

ip codes in our NYC SafeGraph panel; the bottom panel lists statistics

or the zip codes in our NYC turnstile panel. Notably, all three panels

how large drops in mobility, between 63% and 71% for the average zip

ode. 

. Research design 

In order to estimate the relationship between mobility the spread of

OVID-19, we implement the following: 

 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 𝑃𝐶 𝑖 ) = 𝛼 + 𝛽%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + 𝐶𝑖𝑡𝑦 𝑐 + 𝜀 𝑖 (1)

𝑛 ( 𝑁𝑒𝑤𝐶𝑎𝑠𝑒𝑠 𝑃𝐶 𝑖𝑡 ) = 𝛽%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 + 𝑧𝑖𝑝 𝑖 + 𝑤𝑒𝑒𝑘 𝑡 + 𝜀 𝑖𝑡 (2)

q. (1) regresses log total cases per capita in zip code 𝑖 on the %Δin

obility, measured by SafeGraph trips leaving residential zip code 𝑖 .

q. (2) regresses log daily new cases in zip code 𝑖 in week 𝑡 on %Δ in

obility, measured by SafeGraph trips leaving residential zip code 𝑖 or

y the number of turnstile turns in residential zip code 𝑖 two weeks prior.

q. (1) includes city fixed effects, and Eq. (2) includes zip and week fixed

ffects to capture persistent differences across zip codes and city-level

ariation in response to COVID-19. In all cross-sectional analysis, we

ontrol for the log of healthcare employment, adding the log of police

mployment in panel analysis, as we only have police data for NYC.
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4 We use the approximation of ln(x+1) when cases or new cases equals 0. 

Results are robust to using inverse hyperbolic sine. 
ealthcare workers and police officers were disproportionately exposed

o COVID-19 during this time period, and were more likely to continue

oing to work. These controls ensure that our estimate of the impact

f mobility is less likely to reflect the impact of working in a hospital,

r responding to an emergency. Even with these controls, our estimates

hould always be interpreted as the combined impact of exposure during

ravel and exposure at destination. 

While 𝑇 𝑜𝑡𝑎𝑙𝐶𝑎𝑠𝑒𝑠 𝑃𝐶 𝑖 can be interpreted as the change in total cases,

ince there were no COVID-19 cases before our sample, the same cannot

e said for mobility. Because we are limited to a cross-sectional panel,

he only way to capture time-varying mobility is to take the difference

re- and post-COVID-19. We use a specification in which we regress

he log of our cases variable on the left-hand side on the percentage

oint reduction in trips on the right-hand side, which implies that the

oefficient 𝛽 has an interpretation as a quasi-elasticity: 100 × 𝛽is the %

ecrease in total (new) cases per capita for each percentage point drop

n trips. 

Because residents are likely to reduce trips in response to increases

n cases of COVID-19, 𝛽 in both equations is likely biased down-

ards. Additionally, trips and cases may be measured with error, fur-

her attenuating 𝛽. To address these concerns, we build instruments

sing pre-period information on one’s proclivity to travel during the

andemic. 

.1. Building the instrument 

We construct two instruments to address these concerns of bias and

easurement error. Both instruments use the American Community Sur-

ey’s zip code level data on residents’ employment by industry. We know

he share of private-sector employment in the industry classifications

isted in Appendix Table A2 . 

For our first instrument, we use data on essential industries from

innesota and Delaware. These states designated a subset of the 4-

igit NAICS codes as essential, allowing these industries to remain open.

ithin each 2-digit NAICS grouping in Appendix Table A2 , we calculate

he national share of employment designated as essential. Using the ACS

ip level data, we know employment by 2-digit NAICS grouping. Using

he national essential share in combination with the zip code employ-

ent composition, we construct 𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑖 for a zip code 𝑖 as the

mployment-weighted average essential share. For example, consider a

ip code 𝑖 with 100 residents working in two industries: 40 in NAICS 42,

nd 60 in NAICS 31–33. If 50% of the national employment in NAICS

2 is designated as essential, and 30% of NAICS 31–33 is designated

ssential, we construct 𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑖 = 

0 . 5∗40+0 . 3∗60 
100 = 0 . 38 . 

Because this first instrument could be be sensitive to workers in es-

ecially risky occupations such as health care and police officers, we

xclude workers in the NAICS sectors 62 ( “Healthcare and Social As-

istance ”) and 92 ( “Public Administration ”) in constructing this instru-

ent. 

For our second instrument, we use Dingel and Neiman (2020) ’s def-

nition of teleworkable industries. They provide a list of 2-digit NAICS

ndustry codes, along with the share of that industry that can reliably

elecommute. Since the ACS data combines many of Dingel & Neiman’s

AICS codes, we take simple averages across the sub-categories that we

ombine. As with 𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑖 , we take the employment-weighted

verage telecommuting share across industries within a zip to construct

ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒𝑤𝑜𝑟𝑘 𝑖 . The second instrument also excludes NAICS sectors 62

nd 92. 

The relevance criterion requires that the share of teleworking or es-

ential workers is correlated with the change in travel within a given

ip code. Appendix Fig. A2 shows that trips dropped more in zip codes

ith lower shares of essential workers or in those with higher shares

f workers who could reliably telecommute. The exclusion restriction

equires that the share of essential workers or telecommuters in 2018

oes not impact COVID-19 cases except through taking trips from home.
.2. Multicity IV 

For the cross-sectional, multiple city specification, we track the log

f cumulative COVID-19 cases per capita by zip code as of the dates in

ection 2 and regress it on the %Δ in travel, in percentage points, be-

ween May 2019 and May 2020. We instrument for mobility with both

nstruments, in the first stage shown in Eq. (1.1) . This provides varia-

ion in %Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 using the pre-COVID-19 employment mix, allowing us

o estimate the second stage, Eq. (1.2) , without concern of behavioral

esponses such as staying home. We also include city fixed effects and

ontrol for the log of employment in healthcare. 

Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 = 𝛿 + 𝛾𝐼𝑉 𝑖 + 𝐶𝑖𝑡𝑦 𝑐 + 𝜂𝑡 (1.1)

 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 𝑃𝐶 𝑖 ) = 𝛼 + 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + 𝐶𝑖𝑡𝑦 𝑐 + 𝜀 𝑖 (1.2)

.3. Panel design 

To use the panel data in NYC, we begin by considering Eq. (2) . 100 ×
can be interpreted as the % increase in new cases per capita in one’s

ome zip code associated with an additional 1 percentage point increase

n trips originating in the same zip code two weeks prior. 4 Once we

nstrument for trips, the design changes to Eqs. (2.1) and (2.2) : 

Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 = 𝛾𝐼𝑉 𝑖 ×𝑤𝑒𝑒𝑘 𝑡 + 𝑧𝑖𝑝 𝑖 + 𝑤𝑒𝑒𝑘 𝑡 + 𝜂𝑖𝑡 (2.1)

𝑛 ( 𝑁𝑒𝑤𝐶𝑎𝑠𝑒𝑠 𝑃𝐶 𝑖𝑡 ) = 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 + 𝑧𝑖𝑝 𝑖 + 𝑤𝑒𝑒𝑘 𝑡 + 𝜀 𝑖𝑡 (2.2)

The first stage regresses trip change (relative to travel in 2020w9)

wo weeks ago on the instrument, which we interact with a week dummy

o introduce temporal variation. We include zip code fixed effects to

ontrol for time-invariant characteristics. Week fixed effects control for

ity-level changes in virus awareness, shut-down, orders, etc. that would

mpact all locations. Finally, we control for the log of residents working

n healthcare or as police officers. 

. Cross-sectional results 

Table 1 shows our results using a cross-section of zip codes in Atlanta,

oston, Chicago, New York, and Philadelphia. Our core specification re-

resses the logarithm of cases per capita identified as of our city-specific

napshot dates in Section 2 , on the percent change in trips between the

eek of May 13–19, 2019 and May 4–10, 2020. Table 2 shows the city-

pecifc results. 

Table 1 column (1) shows the ordinary least squares coefficient is

.019, implying that for every ten percentage points that travel fell be-

ween May of 2019 and 2020, the number of cases per capita fell by 0.19

og points (19%). This specification includes metropolitan area fixed ef-

ects and controls for the number of residents employed in the health

are sector. The average zip code reported 17 cases per 1000 people, so

 10 percentage point reduction in travel would lower this to 13.8 per

,000. 

In regressions (2)–(4) we include our three primary controls sepa-

ately, and in the fifth regression, we include all three together. These

ontrols will be used in other specifications throughout this paper, but

e only directly report the coefficients here. In the specifications in-

luding the controls separately, each control is significant. Column (2)

hows that a 1 percentage point increase in percent African-American is

ssociated with a 0.57 log point increase in the COVID-19 case rate; this

ap between African-American and white case rates is a widely known

act ( Yancy 2020 ). 
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Table 1 

Multiple city demographics. 

(1) (2) (3) (4) (5) (6) (7) 

𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) OLS 𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) OLS 𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) OLS 𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) OLS 𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) OLS 𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) IV 𝑙𝑛 ( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) IV 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.019 ∗∗∗ 0.015 ∗∗∗ 0.019 ∗∗∗ 0.008 ∗∗∗ 0.007 ∗∗∗ 0.051 ∗∗∗ 0.025 ∗∗∗ 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.005) (0.009) 

% 𝐴𝑓𝐴𝑚 𝑖 0.573 ∗∗∗ 0.142 ∗ 0.134 

(0.073) (0.081) (0.086) 

𝑙𝑛 ( 𝐴𝑔𝑒 𝑖 ) 0.780 ∗∗∗ 0.289 0.131 

(0.215) (0.232) (0.302) 

𝑙𝑛 ( 𝐼𝑛𝑐 𝑖 ) 0.623 ∗∗∗ 0.627 ∗∗∗ 0.378 ∗∗∗ 

(0.053) (0.072) (0.137) 

R-Sq. 0.531 0.571 0.549 0.648 0.652 

Root MSE 0.626 0.469 

Obs. 448 448 448 448 448 448 448 

F-Stat. 83.82 81.12 

Fixed Effects 

CBSA X X X X X X X 

Notes: The dependent variable is total cases per capita in zip code 𝑖 . All columns control for log of healthcare employment. 

Columns (1)–(5) implement versions of Eq. (1) , 𝑙 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 𝑖 ) = 𝛼 + 𝛽%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + 𝐶𝑖𝑡𝑦 𝑐 + 𝜀 𝑖 , each column adding additional 

demographics. Columns (6)–(7) implement versions of Eq. (1.2) , 𝑙 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 𝑖 ) = 𝛼 + 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + 𝐶𝑖𝑡𝑦 𝑐 + 𝜀 𝑖 . Eq. (1.1) 

available upon request. Specifications (6) and (7) include both the teleworking and essential share instruments. Robust 

standard errors included in parentheses. Significance: ∗ 𝑝 < 0 . 10 , ∗∗ 𝑝 < 0 . 05 , ∗∗∗ 𝑝 < 0 . 01 . 

Table 2 

Multiple city results. 

(1) (2) (3) (4) (5) (6) 

ln( 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) NYC ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) NYC ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Atlanta ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Boston ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Chicago ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Philadelphia 

Panel A: OLS 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.019 ∗∗∗ 0.023 ∗∗∗ 0.003 0.051 ∗∗∗ 0.019 ∗∗∗ 0.012 ∗∗∗ 

(0.006) (0.004) (0.019) (0.011) (0.003) (0.003) 

r-sq. 0.125 0.224 0.018 0.521 0.171 0.251 

obs. 159 159 22 19 206 42 

Panel B: OLS With Demographics 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.004 0.010 ∗∗∗ 0.001 0.034 ∗ 0.005 0.008 

(0.005) (0.003) (0.013) (0.016) (0.003) (0.005) 

R-Sq. 0.484 0.437 0.567 0.569 0.514 0.465 

Obs. 159 159 22 19 206 42 

Panel C: IV With Demographics 
̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.029 ∗∗ 0.068 ∗∗∗ 0.010 0.066 ∗ 0.010 0.016 ∗ 

(0.015) (0.020) (0.029) (0.034) (0.012) (0.009) 

Root MSE 0.420 0.487 0.537 0.422 0.482 0.222 

Obs. 159 159 22 19 206 42 

F-Stat. 32.170 22.199 4.040 5.648 38.891 5.091 

Controls for Panels B & C 

% 𝐴𝑓𝐴𝑚 𝑖 X X X X X X 

𝑙𝑛 ( 𝐴𝑔𝑒 𝑖 ) X X X X X X 

𝑙𝑛 ( 𝐼𝑛𝑐 𝑖 ) X X X X X X 

Notes: The dependent variable is total cases, or total deaths, per capita in zip code 𝑖 . All columns control for log of healthcare 

employment. Panels A and B show versions of OLS Eqs. (1) for separate cities’ cases, as well as NYC’s deaths. Panel C shows results from 

Eq. (1.2) , adding additional demographic controls, 𝑋 𝑖 : 𝑙 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 𝑖 ) = 𝛼 + 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + Γ𝑋 𝑖 + 𝜀 𝑖 . Panel C uses both the telework 

and essential share instuments. Robust standard errors in parentheses. Significance: ∗ 𝑝 < 0 . 10 , ∗∗ 𝑝 < 0 . 05 , ∗∗∗ 𝑝 < 0 . 01 . 
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5 See for example the American Time Use Survey, as discussed in 

https://siepr.stanford.edu/research/publications/how-working-home-works- 
The coefficient on age in column (3) is strongly negative. This is

n line with older people taking protective steps to avoid contagion

uch as staying home, because they face higher mortality risk. Col-

mn (4) documents the stark relationship between income and COVID-

9 cases; we estimate an elasticity of the case rate with respect to

ncome of 0.62. This coefficient is stable when we include all three

ariables together, but the other variables either flip sign or lose sig-

ificance and magnitude. In this cross-sectional specification income,

ather than race or age, is the larger determinant of COVID-19 case

ates. 

One natural explanation for why income reduces COVID-19 rates is

hat richer people are better able to adjust their lives to avoid contagion.

educed mobility is one margin of that adjustment, and richer areas

ave dramatically less mobility as of May 2020 in these cities. A 0.1

og point increase in the median income of the zip code is associated

ith a 1.2 percent drop in trips relative to May of last year. Yet despite

ontrolling for the fall in trips, income remains an important explanatory
 o
ariable, suggesting our trips variable captures only one dimension of

rotective behavior. 

The coefficient on mobility remains stable when controlling for race

r age, but the estimate halves when we include income, either on its

wn or as one of three control variables. In column (5), a 10 percentage

oint reduction in mobility is associated with a 0.07 log point reduction

n cases per capita. 

Because this coefficient may be biased downwards as mobility falls

ore where COVID-19 cases spike, we now use our two instruments for

obility, as in Eqs. (1.1) and (1.2) . The coefficient on mobility becomes

uch larger, both with and without controls, in regressions (6) and (7).

he coefficient on income shrinks accordingly, as workers in telework-

ble industries have on average higher incomes. 5 
ut . 

https://siepr.stanford.edu/research/publications/how-working-home-works-out
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6 In the conventional SIR model, the rate of new infections depends on the 

product of the fractions of infected and susceptibles ( Kermack and McKendrick 

1927 ). 
The coefficient in regression (7) implies that as mobility drops by

0 percentage points, cases per capita drop by 0.25 log points (25%).

he average zip code saw 17 cases per 1000 people, so a 10 percentage

oint drop in mobility would drop the case rate to 12.8 per 1000. This

ields 1 fewer case per 1000 than implied by the OLS analysis, for the

ame drop in travel. We take this as evidence supporting the view that

ases have been much lower in places where workers could switch to

emote working, but we are cautious about interpreting the coefficient

s a causal estimate on trips alone. Workers in essential industries or

ndustries that cannot be done remotely face risks from many places,

specially infections in the workplaces. We therefore interpret this as

uggestive evidence that remaining at home reduces COVID-19 expo-

ure, but not that we can identify COVID-19 infection rates from an act

f mobility. 

In Table 2 , we report results for all five cities in our sample. We also

nclude the results for NYC death rates in the first column. Panel A shows

he ordinary least squares coefficient with no controls. Panel B shows

he ordinary least squares coefficient with demographcis controls. Panel

 shows the instrumental variables coefficient with controls. 

In Panel A column (1), we show the 0.019 coefficient when the log-

rithm of death rates are regressed on mobility across NYC zip codes.

his coefficient becomes insignificant and negative in the first column

f Panel B, which adds controls. Death rates are strongly associated with

ge at the zip code level and with the share of the population that

s African-American. In Panel C, we find that after instrumenting for

obility, the coefficient rises to 0.029, a 53% increase from Panel A.

hile the ordinary least squares coefficient on mobility does not sur-

ive controls, the instrumental variables coefficient is robust, reflecting

he fact that deaths were much higher in those parts of New York where

esidents could not switch to remote work, or where essential workers

ive. 

In the second column, we show our results for COVID-19 cases in

YC. The estimate in Panel A is 0.023, which is close to the deaths co-

fficient in the first column and the coefficient for all cities together in

able 1 . When we control for demographics in Panel B, the coefficient

alls considerably but remains significant. In contrast, the instrumental

ariables coefficient in panel C is three times the size of the OLS coeffi-

ient from panel A. This may be due to downward bias in the ordinary

east squares coefficients as mobility shrank in response to local out-

reaks of COVID-19, the reason we seek an instrument, or because the

nstrument is correlated with the error term. 

Column (5) shows results for Chicago, the other city in our sample

ith more than 50 zip codes. The Chicago coefficient is comparable

o the coefficient in NYC when we have no other controls. With con-

rols, the coefficient for Chicago becomes small and statistically insignif-

cant. The instrumental variables strategy does not change that fact for

hicago. These results suggest that mobility was less harmful in Chicago

han it was in New York. 

The other three cities have small samples of zip codes and we are

ary of inferring much from their results. Philadelphia shows a co-

fficient of 0.012 with uncontrolled ordinary least squares and 0.016

ith the instrumental variables results with controls. The ordinary least

quares results with controls produce a considerably smaller coeffi-

ient. The Boston mobility coefficients are large and significant in all

hree specification. The Atlanta results are small and insignificant in all

hree specifications, possibly suggesting that mobility was not strongly

ssociated with the spread of COVID-19 in Atlanta during this time

eriod. 

We believe that the results for the east coast cities tell a consistent

tory. In Boston, New York and Philadelphia, the coefficients in Panels

 and C are statistically significant and sizable in magnitude. Mobility

ppears to have been reliably correlated with the spread of the pan-

emic in those cities. In Atlanta and Chicago, the correlation between

OVID-19 and mobility is weak or non-existent. This pattern of results

s consistent with the idea that the impact of mobility is related to the

nitial infection rate, which is likely to have been higher on the east
oast. 6 It could also be that the east coast is more connected or shared

ransport is more prevalent there. 

. NYC panel results 

We now turn to our panel results looking within NYC over time. We

atch the number of new COVID cases with mobility using the Safe-

raph data in Table 3 . In Table 4 , we repeat those specifications using

he MTA turnstile data. In both tables, the Panel A shows results for the

ntire sample. Panel B shows results splitting the sample in two halves:

he first half of the sample as new cases were growing, and the second

alf of the sample, when new cases were falling. 

Table 3 column (1) shows our ordinary least squares coefficient, with

ip code and week fixed effects. Panel A shows that over the entire time

eriod, there is no correlation between mobility and COVID-19 cases

ithin zip code. This reflects the fact that the zip codes with the large

rops in mobility did not necessarily experience fewer cases. Panel B

hows that there is next to no relationship during the first period. This

oefficient drops during the second period, showing a significant neg-

tive coefficient on mobility. As we find it difficult to imagine how re-

uced mobility could have increased the spread of COVID-19, we inter-

ret this to mean that mobility shut down in places where COVID-19

ases were errupting. 

Those fears of reverse causality inspire the remaining regressions.

able 3 column (2) shows results with our two instruments and no other

ontrols. The effect is striking. If this coefficient were correct, then a

0 percentage point drop in trips implies a 0.61 log point decrease in

OVID-19 cases per capita. Panel B shows that the effect is stronger in

he first half of the sample than in the second half of the sample. This

pecification is comparable to the cross-sectional results above with no

ther controls. In both cases, the correlation between our instruments

nd the demographic variables seems to be biasing the coefficient up-

ards. 

Column (3) includes our three demographic controls. As expected,

he coefficient drops and is in line with our previous results, and is sig-

ificant at the 1% level. A ten percentage point fall in trips is associated

ith a 0.44 log point decline in cases per capita. The estimated coeffi-

ient is again higher in the first half of the sample. 

Column (4) includes fixed effects for the five boroughs of NYC. The

oefficient are slightly larger than in column (3) which does not include

hese borough controls. Controlling for borough causes the (unreported)

oint estimate for income to fall, because boroughs are strongly corre-

ated with income and appear to have an independent impact on cases.

s the estimate for income falls, the estimate for mobility rises. 

The fifth column shows our preffered results including zip code fixed

ffects. These effects absorb all of the unobserved variation across the

ity, and causes the coefficient to drop by a third, with a 10 percentage

oint decline in travel implying a 0.3 log point (30%) decline in new

ases per capita two weeks later. 

Breaking the sample into halves, the coefficients are significant and

ositive across both the rise in daily new cases, as well as when daily new

ases declined; however, they are uniformly higher as new cases rose.

ne interpretation of these results is that the mobility drove COVID-19

ontagion through the end of April. After residents spent significant time

raveling only for absolute necessity, mobility’s impact on contagion

eclined. 

In Table 4 , we turn to our results using NYC turnstile data. It is tempt-

ng to view this as providing an independent measure of the impact of

ublic transportation trips, as opposed to all types of mobility. That view

s tenable with the ordinary least squares results, if those results are not

iased by reverse causality. It is not tenable with our instrumental vari-

ble results, because we use the same instruments used for Safegraph
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Table 3 

NYC panel results: safegraph trips. 

(1) (2) (3) (4) (5) 

ln( 𝑁𝑒𝑤 𝑖𝑡 ) OLS ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV 

Panel A: Full Sample 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 0.002 0.061 ∗∗∗ 0.044 ∗∗∗ 0.046 ∗∗∗ 0.030 ∗∗∗ 

(0.002) (0.004) (0.007) (0.006) (0.007) 

Root MSE 0.382 0.625 0.554 0.525 0.413 

Observations 2045 2045 2045 2045 2045 

First Stage F-Stat. 156.820 100.222 66.096 17.374 

Panel B: Split Sample (2020w11 – 2020w17 vs. 2020w18 – 2020w23) 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 × 1 st 𝐻𝑎𝑙𝑓 0.000 0.066 ∗∗∗ 0.047 ∗∗∗ 0.050 ∗∗∗ 0.034 ∗∗∗ 

(0.002) (0.006) (0.007) (0.007) (0.007) 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 × 2 nd 𝐻𝑎𝑙𝑓 0.004 ∗ 0.059 ∗∗∗ 0.042 ∗∗∗ 0.043 ∗∗∗ 0.026 ∗∗∗ 

(0.002) (0.005) (0.007) (0.007) (0.008) 

Root MSE 0.381 0.636 0.555 0.527 0.415 

Observations 2045 2045 2045 2045 2045 

First Stage F-Stat. 149.913 85.900 55.961 10.712 

Controls 

% 𝐴𝑓𝑟𝑖𝑐 𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐 𝑎𝑛 𝑖 X X 

𝑙𝑛 ( 𝐴𝑔𝑒 𝑖 ) X X 

𝑙𝑛 ( 𝐼𝑛𝑐 𝑖 ) X X 

Fixed Effects 

𝑍𝑖𝑝 𝑖 X X 

𝐵 𝑜𝑟𝑜𝑢𝑔 ℎ 𝑖 X 

𝑊 𝑒𝑒𝑘 𝑡 X X X X X 

Notes: NYC panel results using SafeGraph trips from home. Dependent variable is log of new cases per capita in zip code 𝑖 in week 𝑡 . All columns control for log of 

healthcare employment and the log of police employment. Panels A shows results for the full panel, reporting 𝛽 from Eq. (1) in the first column, with versions of 

Eq. (2.2) in columns (2)–(6): 𝑙𝑛 ( 𝑁𝑒𝑤𝐶𝑎𝑠𝑒𝑠 𝑖𝑡 ) = 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + 𝑧𝑖𝑝 𝑖 + 𝑤𝑒𝑒𝑘 𝑡 + 𝜀 𝑖𝑡 . Panel B splits the time period in half, and interacts the coefficient of interest with the 

two time periods, decomposing 𝛽into 𝛽1 st 𝐻𝑎𝑙𝑓 ,𝛽2 nd 𝐻𝑎𝑙𝑓 . Columns (2)–(5) use both the telework and essential share instuments. Robust standard errors in parentheses. 

Significance: ∗ 𝑝 < 0 . 10 , ∗∗ 𝑝 < 0 . 05 , ∗∗∗ 𝑝 < 0 . 01 . 

Table 4 

NYC panel results: MTA turnstile trips. 

(1) (2) (3) (4) (5) 

ln( 𝑁𝑒𝑤 𝑖𝑡 ) OLS ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV ln( 𝑁𝑒𝑤 𝑖𝑡 ) IV 

Panel A: Full Sample 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 0.004 ∗∗ 0.061 ∗∗∗ 0.060 ∗∗∗ 0.053 ∗∗∗ 0.049 ∗∗∗ 

(0.002) (0.006) (0.009) (0.009) (0.012) 

Root MSE 0.412 0.811 0.795 0.713 0.527 

Observations 1399 1399 1399 1399 1399 

First Stage F-Stat. 67.193 42.098 20.108 15.208 

Panel B: Split Sample (2020w11 – 2020w17 vs. 2020w18 – 2020w23) 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 × 1 st 𝐻𝑎𝑙𝑓 0.005 ∗∗ 0.052 ∗∗∗ 0.065 ∗∗∗ 0.057 ∗∗∗ 0.055 ∗∗∗ 

(0.002) (0.006) (0.010) (0.010) (0.014) 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 × 2 nd 𝐻𝑎𝑙𝑓 0.004 ∗ 0.101 ∗∗∗ 0.120 ∗∗∗ 0.108 ∗∗∗ 0.094 ∗∗∗ 

(0.002) (0.019) (0.025) (0.024) (0.022) 

Root MSE 0.412 1.011 1.165 1.038 0.703 

Observations 1399 1399 1399 1399 1399 

First Stage F-Stat. 1452.498 42.318 22.966 10.243 9.535 

Controls 

% 𝐴𝑓𝑟𝑖𝑐 𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐 𝑎𝑛 𝑖 X X 

𝑙𝑛 ( 𝐴𝑔𝑒 𝑖 ) X X 

𝑙𝑛 ( 𝐼𝑛𝑐 𝑖 ) X X 

Fixed Effects 

𝑍𝑖𝑝 𝑖 X X 

𝐵 𝑜𝑟𝑜𝑢𝑔 ℎ 𝑖 X 

𝑊 𝑒𝑒𝑘 𝑡 X X X X X 

Notes: NYC panel results using MTA turnstile trips in a given residential zip code. Dependent variable is log of new cases per capita in zip code 𝑖 in week 𝑡 . All 

columns control for log of healthcare employment and the log of police employment. Panels A shows results for the full panel, reporting 𝛽 from Eq. (1) in the 

first column, with versions of Eq. (2.2) in columns (2)-(6): 𝑙𝑛 ( 𝑁𝑒𝑤𝐶𝑎𝑠𝑒𝑠 𝑖𝑡 ) = 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + 𝑧𝑖𝑝 𝑖 + 𝑤𝑒𝑒𝑘 𝑡 + 𝜀 𝑖𝑡 . Panel B splits the time period in half, and interacts the 

coefficient of interest with the two time periods, decomposing 𝛽into 𝛽1 st 𝐻𝑎𝑙𝑓 ,𝛽2 nd 𝐻𝑎𝑙𝑓 . Columns (2)–(5) use both the telework and essential share instuments.Robust 

standard errors in parentheses. Significance: ∗ 𝑝 < 0 . 10 , ∗∗ 𝑝 < 0 . 05 , ∗∗∗ 𝑝 < 0 . 01 . 
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obility. We believe that using the same instruments for different vari-

bles is reasonable, as both variables are imperfect attempts to measure

obility. 

Column (1) shows our ordinary least squares results with zip code

xed effects. The coefficient is positive and statistically significant, but
odest in magnitude over the entire sample, 1st and 2nd halves. A ten

ercentage point fall in public transit trips is associated with 0.04 log

oints fewer (4%) COVID-19 cases per capita. 

Columns (2)–(4) show instrumental variables results without zip

ode fixed effects that closely parallel those found in columns (2)–(4)
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Fig. A1. Correlation between Travel Change and COVID-19 Cases per Capita 

in NYC. Source: Cases per capita from NYC Health Department, available at 

https://www1.nyc.gov/site/doh/covid/covid-19-data.page . % Change in trips 

from SafeGraph Weekly Patterns Data, using visitors traveling from home. % 

Change in trips calculated between May 13–19, 2019 and May 4–10, 2020. 

Table A1 

Summary statistics. 

Variable Mean St.Dev. 

Panel A: All 5 Cities 

𝑇 𝑜𝑡𝑎𝑙𝐶𝑎𝑠𝑒𝑠 𝑖 758 710 

𝑇 𝑟𝑖𝑝𝑠 𝑝𝑟𝑒𝐶𝑂𝑉 𝐼𝐷 𝑖 2682 3110 

𝑇 𝑟𝑖𝑝𝑠 𝐶𝑂𝑉 𝐼𝐷 𝑖 803 1119 

% Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 -70 13 

𝑆ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒 𝐼 0.49 0.05 

𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠 𝑖 0.49 0.05 

𝑃𝑜𝑝 𝑖 41,387 22,083 

𝐴𝑔𝑒 𝑖 37 5 

𝐼𝑛𝑐 𝑖 87,026 43,312 

% 𝐴𝑓𝑟𝑖𝑐 𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐 𝑎𝑛 𝑖 24 28 

Observations 448 

Panel B: NYC SafeGraph Panel 

𝑁𝑒𝑤𝐶𝑎𝑠𝑒𝑠 𝑖𝑡 69 108 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 63 26 

𝑆ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒 𝑖 0.42 0.04 

𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠 𝑖 0.72 0.02 

𝑃𝑜𝑝 𝑖 51,887 24,919 

𝐴𝑔𝑒 𝑖 38 5 

𝐼𝑛𝑐 𝑖 82,318 46,052 

% 𝐴𝑓𝑟𝑖𝑐 𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐 𝑎𝑛 𝑖 24 25 

Observations 2045 

Panel C: NYC Turnstile Panel 

𝑁𝑒𝑤𝐶𝑎𝑠𝑒𝑠 𝑖𝑡 74 113 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖,𝑡 −2 71 26 

𝑆ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒 𝑖 0.51 0.05 

𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠 𝑖 0.50 0.05 

𝑃𝑜𝑝 𝑖 54,828 25,561 

𝐴𝑔𝑒 𝑖 36 4 

𝐼𝑛𝑐 𝑖 87,855 57,939 

% 𝐴𝑓𝐴𝑚 𝑖 21 22 

Observations 1399 

Notes: Case data from specific cities’ or counties’ health 

departments as in Section 2 . Trips pre- and during 

COVID-19 from SafeGraph. Share telecommute and 

share essential as in Sections 2 and 3.1 . Population, 

age, income and share African American from 2018 

ACS data. Panel A uses cross-sectional data for all zips 

in the 5 cities. Panel B uses all zip codes in NYC from 

2020w11 - 2020w23. Panel C uses all zip codes with 

subway turnstiles in NYC from 2020w11 - 2020w23. 
f Table 3 . Across the entire time period, the coefficient with no con-

rols in column (2) is about 0.06, and the coefficients in (3) and (4) are

imilar. In contrast to the SafeGraph analysis, the results are stronger

n the second half of our time period than in the first half of our time

eriod. Additionally, they are uniformly stronger than those using the

afegraph data. It could be that the turnstiles data captures a riskier

orm of mobility, perhaps due to trip duration or shared mode, or that

he zip codes with subway stations have more exposure to COVID-19 as

ore people pass through them. 

In column (5) we show results with zip code fixed effects. The coeffi-

ient for the overall period is 0.049 and significant at the 1% level. This

mplies a quite large impact of reducing trips. A 10 percentage point re-

uction in trips is associated with a 0.49 log point fall in new COVID-19

ases per capita two weeks later. 

. Conclusion 

Research is at an early stage on the progress of COVID-19 across

merica. Yet we already have plausible sources of variation in the be-

avior of different parts of the population. Some industries comfort-

bly worked from home. Others could not and have braved exposure to

OVID-19 to earn a living. In this paper, we used variation in that in-

ustrial mix to estimate the impact that mobility had on COVID-19 case

ates. 

Our estimates were not uniform. The measured effects of mobility

ere larger in New York, Boston and Philadelphia. They were smaller

n Atlanta and Chicago. Moving around New York appears to have been

iskier in March and early April than in May. Nonetheless, our estimates

aint a consistent picture that mobility led to more COVID-19 exposure.

oreover, almost all estimates imply an elasticity greater than two, so

hat a 10 percentage point drop in trips lead to a 0.2 log point or more

eduction in COVID-19 cases per capita. 

We do not claim these large effects would hold in different settings

r when people wear masks and gloves while traveling. We hope these

esults may help future cost-benefit analyses around lockdown policies,

ut no policy implications follow directly from them. They simply re-

ind us that people whose jobs required them to leave their homes were

ore likely to get COVID-19, and – at least in NYC – they were more

ikely to die. 
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Fig. A2. A visual first stage Travel Change and Instruments in NYC. Source: % Change in trips from SafeGraph Weekly Patterns Data, using visitors traveling from 

home. % Change in trips calculated between May 13–19, 2019 and May 4–10, 2020. Share Essential workers calculated from DE and MN 4-digit NAICS essential 

industries. Share Telework created at the zip level using data from Dingel and Neiman (2020) weighted by local neighborhood employment composition. 

Table A2 

Industries and codes available in zip level ACS employment data. 

ACS Indsutry Description Associated NAICS Codes 

Agriculture, forestry, fishing and hunting, and mining 11, 21 

Transportation and warehousing, and utilities 22, 48–49 

Construction 23 

Manufacturing 31–33 

Wholesale trade 42 

Retail trade 44–45 

Information 51 

Finance and insurance, 52, 53 

and real estate and rental and leasing 

Professional, scientific, and management 54, 55, 56 

and administrative and waste management services 

Educational services, and health care and social assistance 61, 62 ∗ 

Arts, entertainment, and recreation, 71, 72 

and accommodation and food services 

Other services (except public administration) 81 

Public Administration 92 ∗ 

Notes: This tables shows the mapping between industry titles available in the zip code 

level data from the ACS on residents’ employment by industry, and their asocciated 

NAICS codes. ∗ NAICS codes 62 and 92 not used in constructing zip code level instru- 

ments. 

Table A3 

NYC cases by borough. 

(1) (2) (3) (4) (5) (6) 

ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) NYC ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) The Bronx ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Brooklyn ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Manhattan ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Queens ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Staten Island 

Panel A: OLS 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.010 ∗∗∗ 0.001 0.015 ∗ 0.007 0.004 0.008 

(0.003) (0.005) (0.008) (0.010) (0.006) (0.004) 

R-Sq. 0.437 0.645 0.544 0.624 0.262 0.892 

Obs. 159 20 34 32 48 10 

Panel B: Reduced form IV 

𝑆ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒 𝑖 7.542 ∗∗∗ 0.711 2.125 3.075 7.132 ∗∗∗ 4.462 

(0.883) (1.968) (2.212) (2.054) (2.640) (5.153) 

𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠 𝑖 7.660 ∗∗∗ 1.024 9.305 ∗∗∗ 3.478 ∗ 5.345 ∗ 3.188 

(0.859) (2.813) (1.806) (2.021) (2.945) (5.446) 

( continued on next page ) 
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Table A3 ( continued ) 

(1) (2) (3) (4) (5) (6) 

ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) NYC ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) The Bronx ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Brooklyn ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Manhattan ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Queens ln( 𝐶𝑎𝑠𝑒𝑠 𝑖 ) Staten Island 

R-Sq. 0.629 0.704 0.770 0.673 0.370 0.826 

Obs. 159 20 34 32 48 10 

Panel C: IV 
̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.068 ∗∗∗ 0.007 0.058 ∗∗ 0.135 0.081 0.006 

(0.020) (0.008) (0.025) (0.156) (0.062) (0.011) 

Root MSE 0.487 0.079 0.288 0.577 0.551 0.088 

Obs. 159 20 34 32 48 10 

F-Stat. 22.199 10.058 4.028 2.613 1.607 1.754 

Controls 

% 𝐴𝑓𝐴𝑚 𝑖 X X X X X X 

𝑙𝑛 ( 𝐴𝑔𝑒 𝑖 ) X X X X X X 

𝑙𝑛 ( 𝐼𝑛𝑐 𝑖 ) X X X X X X 

Notes: This table is analogous to Table 2 in the main text, but compares cases across boroughs in NYC instead of different cities. All columns 

control for log of healthcare employment. Panels A shows results from Eq. (1) . Panel B shows the reduced form IV regression results from 

𝑙 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 𝑖 ) = 𝛼 + 𝛽1 𝑆ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒 𝑖 + 𝛽2 𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠 𝑖 + Γ𝑋 𝑖 + 𝜀 𝑖 . Panel C shows results from Eq. (1.2) , adding additional demographic controls, 

𝑋 𝑖 : 𝑙 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐶𝑎𝑠𝑒𝑠 𝑖 ) = 𝛼 + 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + Γ𝑋 𝑖 + 𝜀 𝑖 . Robust standard errors in parentheses. Significance: ∗ 𝑝 < 0 . 10 , ∗∗ 𝑝 < 0 . 05 , ∗∗∗ 𝑝 < 0 . 01 . 

Table A4 

NYC deaths by borough. 

(1) (2) (3) (4) (5) (6) 

ln( 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) NYC ln( 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) The Bronx ln( 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) Brooklyn ln( 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) Manhattan ln( 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) Queens ln( 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) Staten Island 

Panel A: OLS 

%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.004 0.012 0.002 0.001 0.001 0.023 

(0.005) (0.016) (0.010) (0.015) (0.010) (0.013) 

R-Sq. 0.484 0.416 0.700 0.648 0.271 0.845 

Obs. 159 20 34 32 48 10 

Panel B: Reduced form IV 

𝑆ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒 𝑖 2.741 ∗∗ 1.700 0.222 2.130 4.240 11.645 

(1.299) (6.164) (1.438) (2.816) (4.061) (21.270) 

𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠 𝑖 3.254 ∗∗ 6.217 6.798 ∗∗∗ 5.509 ∗ 4.303 18.423 

(1.249) (7.827) (2.122) (2.741) (4.838) (16.230) 

R-Sq. 0.504 0.456 0.795 0.706 0.291 0.850 

Obs. 159 20 34 32 48 10 

Panel C: IV 
̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 0.029 ∗∗ 0.030 0.039 ∗ 0.230 0.045 0.030 

(0.015) (0.030) (0.023) (0.242) (0.047) (0.044) 

Root MSE 0.420 0.254 0.303 0.933 0.453 0.334 

Obs. 159 20 34 32 48 10 

F-Stat. 32.170 2.332 6.696 2.941 2.377 1.310 

Controls 

% 𝐴𝑓𝐴𝑚 𝑖 X X X X X X 

𝑙𝑛 ( 𝐴𝑔𝑒 𝑖 ) X X X X X X 

𝑙𝑛 ( 𝐼𝑛𝑐 𝑖 ) X X X X X X 

Notes: This table is analogous to Table 2 in the main text, but compares deaths across boroughs in NYC instead of different cities. All columns control 

for log of healthcare employment. Panels A shows results from Eq. (1) . Panel B shows the reduced form IV regression results from 𝑙 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) = 
𝛼 + 𝛽1 𝑆ℎ𝑎𝑟𝑒𝑇 𝑒𝑙𝑒 𝑖 + 𝛽2 𝑆ℎ𝑎𝑟𝑒𝐸𝑠𝑠 𝑖 + Γ𝑋 𝑖 + 𝜀 𝑖 . Panel C shows results from Eq. (1.2) , adding additional demographic controls, 𝑋 𝑖 : 𝑙 𝑛 ( 𝑇 𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑡ℎ𝑠 𝑖 ) = 
𝛼 + 𝛽 ̂%Δ𝑇 𝑟𝑖𝑝𝑠 𝑖 + Γ𝑋 𝑖 + 𝜀 𝑖 . Robust standard errors in parentheses. Significance: ∗ 𝑝 < 0 . 10 , ∗∗ 𝑝 < 0 . 05 , ∗∗∗ 𝑝 < 0 . 01 . 
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