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ARTICLE INFO ABSTRACT
JEL classification: How effective are restrictions on mobility in limiting COVID-19 spread? Using zip code data across five U.S. cities,
H12 we estimate that total cases per capita decrease by 19% for every ten percentage point fall in mobility. Addressing
n2 endogeneity concerns, we instrument for travel by residential teleworkable and essential shares and find a 25%
J17 decline in cases per capita. Using panel data for NYC with week and zip code fixed effects, we estimate a decline
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of 30%. We find substantial spatial and temporal heterogeneity; east coast cities have stronger effects, with the
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1. Introduction

A central challenge in evaluating lock-downs and other restrictions
on mobility in response to COVID-19 is estimating their effectiveness in
limiting the disease’s spread. This estimation is challenging for several
reasons. Mobility restrictions are introduced as a response to disease
outbreaks, individuals make mobility decisions based on the threat of
infection, and the relationship between transmission and mobility de-
pends on the composition of susceptible, infected and recovered agents.

To address these challenges, we combine weekly data on COVID-19
cases by zip code in New York City (NYC) and cross-sectional data for
four other U.S. cities, information on mobility from SafeGraph cellular
phone data and subway turnstile data for NYC, and exogenous varia-
tion in mobility from the ability to work remotely and designation as
an essential worker in state shutdown orders. We interpret “mobility”
broadly, in the sense of workers leaving home, or passing through a
subway turnstile, which exposes them to contact while travelling and
at their destination.! In our preferred instrumental variables specifica-
tion, we estimate that a ten percentage point decrease in mobility leads
to a 30% fall in COVID-19 cases per capita. We find substantial hetero-

* Corresponding author.

geneity across both space and over time, with stronger effects for NYC,
Boston and Philadelphia than for Atlanta and Chicago, and the largest
estimated coefficients for NYC in the early stages of the pandemic.

The hypothesis that movement spreads COVID-19 inspired the stay-
at-home orders adopted across the world in 2020. While any contagious
disease can be propagated through human interaction, the actual link
between mobility and contagion is mediated by the nature of the disease
and traveler behavior. The social benefits of regulations limiting mobil-
ity depend on the empirical magnitude of the link between mobility and
disease. The link between mobility and contagion could be minimal if
infections occurred mostly through intimate contact, as with sexually
transmitted infections, or large if transit hubs enabled super-spreading
events.

We focus on the relationship between the logarithm of the
COVID-19 cases per capita, /n(Cases;),and the decline in mobility,
%ATrips;relative to February 2020 or the same date one year ear-
lier.?We cannot determine if the disease spread through travel itself or
through interactions at a final destination. We lack individual-specific

2 The relationship is governed by a quasi-elasticity, §,which is in log points.
A 1 percentage point increase in %AT'rips;implies a (100x#)% increase in cases
per capita.
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1 For the SafeGraph data, “mobility” is the number of trips outside of one’s
residential zip code. For the MTA data, “mobility” is the number of turnstile
entries in each zip code.
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COVID-19 tests, and consequently measure the number of cases by zip
code.

One potential concern is that neighborhood specific COVID-19 rate
may not capture the true prevalence of the disease, because of differ-
ences in testing rates. To address this, we control for demographic vari-
ables that might predict testing rates, and for zip code fixed effects in
our panel specifications. Although levels of testing in the United States
were low throughout our time period, another concern is that testing
could mechanically increase mobility, as people travel to get tested. We
address this concern using our instrumental variables for mobility. As
an additional specification check, we also replicate our cross-sectional
case results with COVID-19 death rates in NYC. Unfortunately, the NYC
zip code death data begins the week of May 18-24, 2020, and so cannot
be used in our panel specifications.

Our primary mobility data source is the SafeGraph cellphone loca-
tion data, which is available at the census blockgroup level nationwide.
We aggregate travel data to the zip code to conform with our COVID-19
case data. For NYC, we supplement this data with public transit turnstile
data provided by the Metropolitan Transit Authority (MTA). For panel
analysis, we aggregate the daily case and turnstile data to the week level
so that it is compatible with the weekly Safegraph data. As the impact
of mobility on infection could change both with the level of infection in
the population of travelers and the level of precaution, we test whether
that impact changes over time in NYC. We split our sample into an early
period that ends on April 26, and a later period, to test whether the im-
pact of mobility on contagion was higher when cases were increasing or
after the wave of infection peaked.

Fig. 1 shows two maps of NYC that illustrate our core findings.
The upper map shows the change in cell phone-measured mobility. The
lower map shows the total COVID-19 cases per capita as of June 1, 2020.
In the parts of NYC where mobility fell, case rates have been low. In the
areas of New York where mobility remained higher, COVID-19 cases per
capita are higher. Appendix Fig. A1 shows the correlation of 0.41 be-
tween change in the number of trips and the number of COVID-19 cases
per capita.

Exploring the cross-sectional relationship across five major U.S.
cities, we estimate a quasi-elasticity of cases with respect to mobility
of approximately two, with a 10 percentage point decline in travel lead-
ing to a 10x(0.019 x 100) = 19% decline in total cases per capita. We
estimate a similar elasticity of deaths with respect to mobility.Yet there
are many reasons to be skeptical about this estimate. First, zip codes dif-
fer along many dimensions, such as income and race, which may influ-
ence the spread and measurement of COVID-19. Second, mobility may
decline with the level of infection, which could bias downwards the es-
timated link between cases and mobility. Third, the connection between
mobility and disease can differ across cities, both due to different ini-
tial infection rates and because travel may take different forms. Finally,
improvements in testing might lead to higher case counts, and mobility
could respond to testing improvements.

We take two strategies to address omitted neighborhood character-
istics. First, we control for racial composition, income and age, which
reduce the measured connection between mobility and disease preva-
lence, so that a 10 percentage point decline in trips is associated with a
7% decline in case rates across the five cities. In NYC, the coefficient is
somewhat larger, such that a 10 percentage point decline in trips implies
a 10% decline in cases per capita.

Second, we look at results over time within NYC zip codes control-
ling for neighborhood fixed effects. We follow the medical literature
(Lauer et al. 2020) and estimate a model with a two-week gap between
new cases and mobility. The average onset time is closer to 1 week, but
this two-week gap should capture over 97.5% of cases. Controlling for
week and zip code fixed effects, the link between COVID-19 prevalence
and mobility disappears when using our SafeGraph mobility measure,

3 All analysis of COVID-19 deaths is limited to NYC.

Journal of Urban Economics 127 (2022) 103292

=-81.2--78.0
m-86.1 —-81.2
943 - -86.1

(a) % Change in Trips, May ’20 vs May ’19

EINo data
(b) Cases per capita

Fig. 1. Mobility Change and COVID-19 Cases per capita in NYC. Source: Cases
per capita from NYC Health Department, available at https://www1.nyc.gov/
site/doh/covid/covid-19-data.page. % Change in trips from SafeGraph Weekly
Patterns Data, using visitors traveling from home. % Change in trips calculated
between May 13-19, 2019 and May 4-10, 2020.

and falls by 79% relative to the cross-sectional results when using the
turnstile measure.

If movement falls more in places with more disease, then these fixed
effect estimates underestimate the true link between contagion and mo-
bility. Consequently, our preferred specifications follow an instrumen-
tal variables strategy that uses employment by industry in a given zip
code to predict changes in mobility. We consider two instruments. First,
following Bartik et al. (2020)), we focus on the share of residents work-
ing in essential industries, according to state shutdown essential worker
designations. As this first instrument could be be sensitive to work-
ers in especially risky occupations, such as health care and police of-
ficers, we exclude workers in the NAICS sector 62 (“Health Care and
Social Assistance”) and in NAICS sector 92 (“Public Administation”)
in constructing this instrument. Second, we use the share of residents
employed in industries where they can work remotely, according to
Dingel and Neiman (2020), also excluding NAICS sectors 62 and 92.
Bartik et al. (2020) confirm that Dingel and Neiman (2020)’s predictions
about remote work during the pandemic have largely born out across
industries. Locations with more essential workers have more travel,
whereas locations with more teleworkable residents have less travel. In
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our NYC panel specifications, we allow the instruments to have different
impacts week-by-week.

Across almost every specification, the measured link between mo-
bility and disease is larger in these instrumental variable specifications,
suggesting reverse causality biased the ordinary least squares estimates
downwards. In our multi-city IV specification with demographic con-
trols, we estimate that a 10 percentage point drop in travel implies a
0.25 log point (25%) drop in per capita COVID-19 prevalence. This rep-
resents 4.25 fewer cases per 1000 inhabitants, from a sample mean of
17 per 1000.

City-specific estimates produce higher coefficients in New York,
Boston and Philadelphia and lower coefficients in Atlanta and Chicago.
Mobility seems to spread COVID-19 in the northeastern cities, but not
the others. This difference likely reflects the initial infection rate rather
than the nature of mobility, since public transportation is also used in
Chicago.

Zip codes across cities may still have significant unobserved hetero-
geneity driving disease spread, motivating our preferred panel research
design, which can compare zip codes with large changes in exogenous
mobility against those with small changes over the evolution of the pan-
demic. Moving from the cross-sectional analysis to our NYC-Safegraph
data panel, we estimate an instrumental variables coefficient of 0.03
with zip code fixed effects. This translates to our headline finding that
a 10 percentage point decline in mobility implies a 30% decline in new
cases per capita two weeks later (10(100x0.03 log points)). Using turn-
stile data, we estimate a larger coefficient of 0.049 with zip code fixed
effects. While the turnstile results support the view that cases rise with
mobility, at least over this period in NYC, it does not provide a clean
estimate of the impact of public transportation use on the spread of
COVID-19 hypothesized by Harris (2020), because our instruments are
not public transit specific.

Our paper is related to the broader emerging body of research
on COVID-19 in economics. First, a macroeconomics literature has
used Susceptible-Infected-Recovered (SIR) models to simulate the im-
pact of policies such as lock-downs on disease burden and economic
outcomes, including Acemoglu et al. (2020), Alvarez et al. (2020),
Atkeson (2020) and Ferndndez-Villaverde and Jones (2020). Sec-
ond, others have analyzed the spatial diffusion of COVID-19, includ-
ing Antras et al. (2020), Argente et al. (2020), Birge et al. (2020),
Fajgelbaum et al. (2020), Bisin and Moro (2020) and Cufat and
Zymek (2020). A third line of work has examined how agents’ be-
havioral responses (e.g. social distancing) likely effect the dynamics
of COVID-19, including Fenichel et al. (2011), Alfaro et al. (2020),
Farboodi et al. (2020), and Toxveard (2020). Fourth, a more mi-
croeconometric literature has examined locations’ observable char-
acteristics within cities and across U.S. counties that correlate with
COVID-19 incidence, including Almagro and Orane-Hutchinson (2020),
Couture et al. (2020) and Desmet and Wacziarg (2020). Finally, other
research has compared the spatial diffusion and economic impact of
COVID-19 to previous pandemics such as the 1918 influenza, as in
Barro et al. (2020) and Correia et al. (2020).

Section 2 discusses our data sources and Section 3 introduces our
empirical strategies. Section 4 discusses the results found using the
cross-section of zip codes in five cities. Section 5 discusses our panel
results. Both Sections 4 and 5 include results using instrumental vari-
ables. Section 6 concludes.

2. Data

We build a weekly panel of zip codes for NYC, and take a cross-
sectional snapshot of four other US cities: Atlanta, GA, Boston, MA,
Chicago, IL and Philadelphia, PA. All of these cities provide new case
counts by zip code. Counts of daily new cases and cumulative cases
come from each city’s (or county’s) department of public health. We
have daily case data for NYC from April 4, 2020 through June 7, 2020.
Because this misses much of the run-up in cases, we set cumulative
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and new cases to 0 in 2020w11, and assume cases double weekly until
2020w14, for which we have data. We use snapshots of cumulative cases
for the remaining cities. Atlanta has data as of June 2, 2020; Boston as
of May 24, 2020; Chicago and Philadelphia as of June 6, 2020.

SafeGraph released publicly available data for cell phone trips be-
tween December 31st, 2018 — present. We pull weekly data for our
five cities. The data tracks the number of visitors to a point of inter-
est (POI) in a given week. Every POI observation contains informa-
tion on its census blockgroup, as well as the number of visitors by
their home blockgroup. We construct an origin-destination (OD) ma-
trix from these observed trips, assuming travel from home, by counting
how many visitors travel from each origin blockgroup to each POI block-
group. The data only shows OD pairs with at least 4 visitors, so it under-
counts pairs with low travel volume. Finally, we aggregate the block-
group level OD matrices to zip codes in line with our COVID-19 case
data. When using SafeGraph data, our measure of mobility, %ATrips;.is
the percent change in the number of trips away from one’s home
zip code.

Our second mobility datasource comes from the Metropolitan Tran-
sit Authority’s turnstile data. Turnstile entries are recorded every few
hours, for each unique turnstile. We map each subway turnstile to a zip
code, and count the entries each week by zip code. When using MTA
data, our measure of mobility, %ATrips;.is the percent change in the
number of subway entries in zip code i.

Our instruments use Dingel and Neiman (2020)’s teleworkability
shares by 2-digit NAICS and definitions of essential industries (4-digit
NAICS) from Delaware and Minnesota, in combination with zip code
level employment data from the American Community Survey (ACS).
Details for instrument construction follow in Section 3.1.

To analyse how mobility interacts with demographics, we collect de-
mographic data at the zip level on share African American, median age,
and median income from the American Community Survey. To identify
zip code level shares of teleworkable and essential workers, we use zip
code level employment by industry from the ACS, which identifies
the industries in which residents work, the details of which are listed in
Table A2.

Finally, for NYC, we have data on where police officers lived as of
2016, via a Freedom of Information Law request by Bell (2020). We use
this data to control for the police employment in our panel analysis.

Appendix Table Al lists the summary statistics for each of our re-
search designs. The first panel lists statistics for zip codes in all 5 cities
in our cross-sectional analysis; the middle panel lists statistics for the
zip codes in our NYC SafeGraph panel; the bottom panel lists statistics
for the zip codes in our NYC turnstile panel. Notably, all three panels
show large drops in mobility, between 63% and 71% for the average zip
code.

3. Research design

In order to estimate the relationship between mobility the spread of
COVID-19, we implement the following:

ln(TotalCasesiPC) =a+ p%ATrips; + City, + ¢; [€))

ln(NewCasesf;C) = p%ATrips;,_, + zip; + week, + € 2)

Eq. (1) regresses log total cases per capita in zip code i on the %Ain
mobility, measured by SafeGraph trips leaving residential zip code i.
Eq. (2) regresses log daily new cases in zip code i in week 7 on %A in
mobility, measured by SafeGraph trips leaving residential zip code i or
by the number of turnstile turns in residential zip code i two weeks prior.
Eq. (1) includes city fixed effects, and Eq. (2) includes zip and week fixed
effects to capture persistent differences across zip codes and city-level
variation in response to COVID-19. In all cross-sectional analysis, we
control for the log of healthcare employment, adding the log of police
employment in panel analysis, as we only have police data for NYC.
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Healthcare workers and police officers were disproportionately exposed
to COVID-19 during this time period, and were more likely to continue
going to work. These controls ensure that our estimate of the impact
of mobility is less likely to reflect the impact of working in a hospital,
or responding to an emergency. Even with these controls, our estimates
should always be interpreted as the combined impact of exposure during
travel and exposure at destination.

While TotalCasesf C can be interpreted as the change in total cases,
since there were no COVID-19 cases before our sample, the same cannot
be said for mobility. Because we are limited to a cross-sectional panel,
the only way to capture time-varying mobility is to take the difference
pre- and post-COVID-19. We use a specification in which we regress
the log of our cases variable on the left-hand side on the percentage
point reduction in trips on the right-hand side, which implies that the
coefficient § has an interpretation as a quasi-elasticity: 100 x fis the %
decrease in total (new) cases per capita for each percentage point drop
in trips.

Because residents are likely to reduce trips in response to increases
in cases of COVID-19, g in both equations is likely biased down-
wards. Additionally, trips and cases may be measured with error, fur-
ther attenuating f. To address these concerns, we build instruments
using pre-period information on one’s proclivity to travel during the
pandemic.

3.1. Building the instrument

We construct two instruments to address these concerns of bias and
measurement error. Both instruments use the American Community Sur-
vey’s zip code level data on residents’ employment by industry. We know
the share of private-sector employment in the industry classifications
listed in Appendix Table A2.

For our first instrument, we use data on essential industries from
Minnesota and Delaware. These states designated a subset of the 4-
digit NAICS codes as essential, allowing these industries to remain open.
Within each 2-digit NAICS grouping in Appendix Table A2, we calculate
the national share of employment designated as essential. Using the ACS
zip level data, we know employment by 2-digit NAICS grouping. Using
the national essential share in combination with the zip code employ-
ment composition, we construct ShareEssential; for a zip code i as the
employment-weighted average essential share. For example, consider a
zip code i with 100 residents working in two industries: 40 in NAICS 42,
and 60 in NAICS 31-33. If 50% of the national employment in NAICS
42 is designated as essential, and 30% of NAICS 31-33 is designated
essential, we construct ShareEssential, = 2340803260 _ ( 3¢

Because this first instrument could be be sensitive to workers in es-
pecially risky occupations such as health care and police officers, we
exclude workers in the NAICS sectors 62 (“Healthcare and Social As-
sistance”) and 92 (“Public Administration”) in constructing this instru-
ment.

For our second instrument, we use Dingel and Neiman (2020)’s def-
inition of teleworkable industries. They provide a list of 2-digit NAICS
industry codes, along with the share of that industry that can reliably
telecommute. Since the ACS data combines many of Dingel & Neiman’s
NAICS codes, we take simple averages across the sub-categories that we
combine. As with ShareEssential;, we take the employment-weighted
average telecommuting share across industries within a zip to construct
ShareT elework;. The second instrument also excludes NAICS sectors 62
and 92.

The relevance criterion requires that the share of teleworking or es-
sential workers is correlated with the change in travel within a given
zip code. Appendix Fig. A2 shows that trips dropped more in zip codes
with lower shares of essential workers or in those with higher shares
of workers who could reliably telecommute. The exclusion restriction
requires that the share of essential workers or telecommuters in 2018
does not impact COVID-19 cases except through taking trips from home.

Journal of Urban Economics 127 (2022) 103292
3.2. Multicity IV

For the cross-sectional, multiple city specification, we track the log
of cumulative COVID-19 cases per capita by zip code as of the dates in
Section 2 and regress it on the %A in travel, in percentage points, be-
tween May 2019 and May 2020. We instrument for mobility with both
instruments, in the first stage shown in Eq. (1.1). This provides varia-
tion in %ATrips; using the pre-COVID-19 employment mix, allowing us
to estimate the second stage, Eq. (1.2), without concern of behavioral
responses such as staying home. We also include city fixed effects and
control for the log of employment in healthcare.

%ATrips; =6+ yIV; + City, +n, (1.1)
ln(TotalCasesiPC) =a+ ﬂ%A/Tr\ipsi + City. +¢; (1.2)

3.3. Panel design

To use the panel data in NYC, we begin by considering Eq. (2). 100 x
f can be interpreted as the % increase in new cases per capita in one’s
home zip code associated with an additional 1 percentage point increase
in trips originating in the same zip code two weeks prior.* Once we
instrument for trips, the design changes to Egs. (2.1) and (2.2):

BATrips; = yIV; X week, + zip; + week, + n;, 2.1
ln(NewCasesf:C) = ﬂ%AT/rip\su_z + zip; + week, + €, 2.2)

The first stage regresses trip change (relative to travel in 2020w9)
two weeks ago on the instrument, which we interact with a week dummy
to introduce temporal variation. We include zip code fixed effects to
control for time-invariant characteristics. Week fixed effects control for
city-level changes in virus awareness, shut-down, orders, etc. that would
impact all locations. Finally, we control for the log of residents working
in healthcare or as police officers.

4. Cross-sectional results

Table 1 shows our results using a cross-section of zip codes in Atlanta,
Boston, Chicago, New York, and Philadelphia. Our core specification re-
gresses the logarithm of cases per capita identified as of our city-specific
snapshot dates in Section 2, on the percent change in trips between the
week of May 13-19, 2019 and May 4-10, 2020. Table 2 shows the city-
specifc results.

Table 1 column (1) shows the ordinary least squares coefficient is
0.019, implying that for every ten percentage points that travel fell be-
tween May of 2019 and 2020, the number of cases per capita fell by 0.19
log points (19%). This specification includes metropolitan area fixed ef-
fects and controls for the number of residents employed in the health
care sector. The average zip code reported 17 cases per 1000 people, so
a 10 percentage point reduction in travel would lower this to 13.8 per
1,000.

In regressions (2)—(4) we include our three primary controls sepa-
rately, and in the fifth regression, we include all three together. These
controls will be used in other specifications throughout this paper, but
we only directly report the coefficients here. In the specifications in-
cluding the controls separately, each control is significant. Column (2)
shows that a 1 percentage point increase in percent African-American is
associated with a 0.57 log point increase in the COVID-19 case rate; this
gap between African-American and white case rates is a widely known
fact (Yancy 2020).

4 We use the approximation of In(x+ 1) when cases or new cases equals 0.
Results are robust to using inverse hyperbolic sine.
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Table 1
Multiple city demographics.
(€D 2) 3) “@ 5) (6) 7)
In(Cases;)OLS In(Cases;)OLS In(Cases;)OLS In(Cases;)OLS In(Cases;)OLS In(Cases;)IV In(Cases;)IV
%ATrips; 0.019* 0.015% 0.019*+ 0.008*** 0.007*+ 0.051*+ 0.025*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.005) (0.009)
%A fAm; 0.573* 0.142* 0.134
(0.073) (0.081) (0.086)
In(Age;) 0.780** 0.289 0.131
(0.215) (0.232) (0.302)
In(Inc;) 0.623* 0.627*+ 0.378*+
(0.053) (0.072) (0.137)
R-Sq. 0.531 0.571 0.549 0.648 0.652
Root MSE 0.626 0.469
Obs. 448 448 448 448 448 448 448
F-Stat. 83.82 81.12
Fixed Effects
CBSA X X X X X X X

Notes: The dependent variable is total cases per capita in zip code i. All columns control for log of healthcare employment.
Columns (1)—(5) implement versions of Eq. (1), In(TotalCases;) = a + p%ATrips; + City. + €;, each column adding additional
demographics. Columns (6)-(7) implement versions of Eq. (1.2), In(TotalCases;) = a + ﬂ%A/Tr\ipxi + City, +¢;. Eq. (1.1)
available upon request. Specifications (6) and (7) include both the teleworking and essential share instruments. Robust

standard errors included in parentheses. Significance: *p < 0.10,** p < 0.05,*** p < 0.01.

(€3] 5) 6)
In(Cases;) Boston In(Cases;) Chicago In(Cases;) Philadelphia

Table 2
Multiple city results.

@™ ) 3
In(Deaths;)NYC In(Cases,;) NYC In(Cases;) Atlanta
Panel A: OLS

%ATrips; 0.019** 0.023* 0.003
(0.006) (0.004) (0.019)

-sq. 0.125 0.224 0.018

obs. 159 159 22
Panel B: OLS With Demographics

%ATrips; 0.004 0.010* 0.001
(0.005) (0.003) (0.013)

R-Sq. 0.484 0.437 0.567

Obs. 159 159 22
Panel C: IV With Demographics

%ATrips;  0.029+ 0.068** 0.010
(0.015) (0.020) (0.029)

Root MSE 0.420 0.487 0.537

Obs. 159 159 22

F-Stat. 32.170 22.199 4.040
Controls for Panels B & C

%AS Am, X X X

In(Age;) X X X

In(Inc;) X X X

0.051 0.019* 0.012%
(0.011) (0.003) (0.003)
0.521 0.171 0.251
19 206 42
0.034* 0.005 0.008
(0.016) (0.003) (0.005)
0.569 0.514 0.465
19 206 12
0.066* 0.010 0.016*
(0.034) (0.012) (0.009)
0.422 0.482 0.222
19 206 42
5.648 38.891 5.091
X X X

X X X

X X X

Notes: The dependent variable is total cases, or total deaths, per capita in zip code i. All columns control for log of healthcare
employment. Panels A and B show versions of OLS Egs. (1) for separate cities’ cases, as well as NYC’s deaths. Panel C shows results from
Eq. (1.2), adding additional demographic controls, X;: In(TotalCases;) = a + ﬂ%A/Tr\ips, +I'X; +¢;. Panel C uses both the telework
and essential share instuments. Robust standard errors in parentheses. Significance: *p < 0.10,** p < 0.05,*** p < 0.01.

The coefficient on age in column (3) is strongly negative. This is
in line with older people taking protective steps to avoid contagion
such as staying home, because they face higher mortality risk. Col-
umn (4) documents the stark relationship between income and COVID-
19 cases; we estimate an elasticity of the case rate with respect to
income of 0.62. This coefficient is stable when we include all three
variables together, but the other variables either flip sign or lose sig-
nificance and magnitude. In this cross-sectional specification income,
rather than race or age, is the larger determinant of COVID-19 case
rates.

One natural explanation for why income reduces COVID-19 rates is
that richer people are better able to adjust their lives to avoid contagion.
Reduced mobility is one margin of that adjustment, and richer areas
have dramatically less mobility as of May 2020 in these cities. A 0.1
log point increase in the median income of the zip code is associated
with a 1.2 percent drop in trips relative to May of last year. Yet despite
controlling for the fall in trips, income remains an important explanatory

variable, suggesting our trips variable captures only one dimension of
protective behavior.

The coefficient on mobility remains stable when controlling for race
or age, but the estimate halves when we include income, either on its
own or as one of three control variables. In column (5), a 10 percentage
point reduction in mobility is associated with a 0.07 log point reduction
in cases per capita.

Because this coefficient may be biased downwards as mobility falls
more where COVID-19 cases spike, we now use our two instruments for
mobility, as in Egs. (1.1) and (1.2). The coefficient on mobility becomes
much larger, both with and without controls, in regressions (6) and (7).
The coefficient on income shrinks accordingly, as workers in telework-
able industries have on average higher incomes.®

5 See for example the American Time Use Survey, as discussed in
https://siepr.stanford.edu/research/publications/how-working-home-works-
out.
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The coefficient in regression (7) implies that as mobility drops by
10 percentage points, cases per capita drop by 0.25 log points (25%).
The average zip code saw 17 cases per 1000 people, so a 10 percentage
point drop in mobility would drop the case rate to 12.8 per 1000. This
yields 1 fewer case per 1000 than implied by the OLS analysis, for the
same drop in travel. We take this as evidence supporting the view that
cases have been much lower in places where workers could switch to
remote working, but we are cautious about interpreting the coefficient
as a causal estimate on trips alone. Workers in essential industries or
industries that cannot be done remotely face risks from many places,
especially infections in the workplaces. We therefore interpret this as
suggestive evidence that remaining at home reduces COVID-19 expo-
sure, but not that we can identify COVID-19 infection rates from an act
of mobility.

In Table 2, we report results for all five cities in our sample. We also
include the results for NYC death rates in the first column. Panel A shows
the ordinary least squares coefficient with no controls. Panel B shows
the ordinary least squares coefficient with demographcis controls. Panel
C shows the instrumental variables coefficient with controls.

In Panel A column (1), we show the 0.019 coefficient when the log-
arithm of death rates are regressed on mobility across NYC zip codes.
This coefficient becomes insignificant and negative in the first column
of Panel B, which adds controls. Death rates are strongly associated with
age at the zip code level and with the share of the population that
is African-American. In Panel C, we find that after instrumenting for
mobility, the coefficient rises to 0.029, a 53% increase from Panel A.
While the ordinary least squares coefficient on mobility does not sur-
vive controls, the instrumental variables coefficient is robust, reflecting
the fact that deaths were much higher in those parts of New York where
residents could not switch to remote work, or where essential workers
live.

In the second column, we show our results for COVID-19 cases in
NYC. The estimate in Panel A is 0.023, which is close to the deaths co-
efficient in the first column and the coefficient for all cities together in
Table 1. When we control for demographics in Panel B, the coefficient
falls considerably but remains significant. In contrast, the instrumental
variables coefficient in panel C is three times the size of the OLS coeffi-
cient from panel A. This may be due to downward bias in the ordinary
least squares coefficients as mobility shrank in response to local out-
breaks of COVID-19, the reason we seek an instrument, or because the
instrument is correlated with the error term.

Column (5) shows results for Chicago, the other city in our sample
with more than 50 zip codes. The Chicago coefficient is comparable
to the coefficient in NYC when we have no other controls. With con-
trols, the coefficient for Chicago becomes small and statistically insignif-
icant. The instrumental variables strategy does not change that fact for
Chicago. These results suggest that mobility was less harmful in Chicago
than it was in New York.

The other three cities have small samples of zip codes and we are
wary of inferring much from their results. Philadelphia shows a co-
efficient of 0.012 with uncontrolled ordinary least squares and 0.016
with the instrumental variables results with controls. The ordinary least
squares results with controls produce a considerably smaller coeffi-
cient. The Boston mobility coefficients are large and significant in all
three specification. The Atlanta results are small and insignificant in all
three specifications, possibly suggesting that mobility was not strongly
associated with the spread of COVID-19 in Atlanta during this time
period.

We believe that the results for the east coast cities tell a consistent
story. In Boston, New York and Philadelphia, the coefficients in Panels
A and C are statistically significant and sizable in magnitude. Mobility
appears to have been reliably correlated with the spread of the pan-
demic in those cities. In Atlanta and Chicago, the correlation between
COVID-19 and mobility is weak or non-existent. This pattern of results
is consistent with the idea that the impact of mobility is related to the
initial infection rate, which is likely to have been higher on the east
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coast.® It could also be that the east coast is more connected or shared
transport is more prevalent there.

5. NYC panel results

We now turn to our panel results looking within NYC over time. We
match the number of new COVID cases with mobility using the Safe-
graph data in Table 3. In Table 4, we repeat those specifications using
the MTA turnstile data. In both tables, the Panel A shows results for the
entire sample. Panel B shows results splitting the sample in two halves:
the first half of the sample as new cases were growing, and the second
half of the sample, when new cases were falling.

Table 3 column (1) shows our ordinary least squares coefficient, with
zip code and week fixed effects. Panel A shows that over the entire time
period, there is no correlation between mobility and COVID-19 cases
within zip code. This reflects the fact that the zip codes with the large
drops in mobility did not necessarily experience fewer cases. Panel B
shows that there is next to no relationship during the first period. This
coefficient drops during the second period, showing a significant neg-
ative coefficient on mobility. As we find it difficult to imagine how re-
duced mobility could have increased the spread of COVID-19, we inter-
pret this to mean that mobility shut down in places where COVID-19
cases were errupting.

Those fears of reverse causality inspire the remaining regressions.
Table 3 column (2) shows results with our two instruments and no other
controls. The effect is striking. If this coefficient were correct, then a
10 percentage point drop in trips implies a 0.61 log point decrease in
COVID-19 cases per capita. Panel B shows that the effect is stronger in
the first half of the sample than in the second half of the sample. This
specification is comparable to the cross-sectional results above with no
other controls. In both cases, the correlation between our instruments
and the demographic variables seems to be biasing the coefficient up-
wards.

Column (3) includes our three demographic controls. As expected,
the coefficient drops and is in line with our previous results, and is sig-
nificant at the 1% level. A ten percentage point fall in trips is associated
with a 0.44 log point decline in cases per capita. The estimated coeffi-
cient is again higher in the first half of the sample.

Column (4) includes fixed effects for the five boroughs of NYC. The
coefficient are slightly larger than in column (3) which does not include
these borough controls. Controlling for borough causes the (unreported)
point estimate for income to fall, because boroughs are strongly corre-
lated with income and appear to have an independent impact on cases.
As the estimate for income falls, the estimate for mobility rises.

The fifth column shows our preffered results including zip code fixed
effects. These effects absorb all of the unobserved variation across the
city, and causes the coefficient to drop by a third, with a 10 percentage
point decline in travel implying a 0.3 log point (30%) decline in new
cases per capita two weeks later.

Breaking the sample into halves, the coefficients are significant and
positive across both the rise in daily new cases, as well as when daily new
cases declined; however, they are uniformly higher as new cases rose.
One interpretation of these results is that the mobility drove COVID-19
contagion through the end of April. After residents spent significant time
traveling only for absolute necessity, mobility’s impact on contagion
declined.

In Table 4, we turn to our results using NYC turnstile data. It is tempt-
ing to view this as providing an independent measure of the impact of
public transportation trips, as opposed to all types of mobility. That view
is tenable with the ordinary least squares results, if those results are not
biased by reverse causality. It is not tenable with our instrumental vari-
able results, because we use the same instruments used for Safegraph

% In the conventional SIR model, the rate of new infections depends on the
product of the fractions of infected and susceptibles (Kermack and McKendrick
1927).
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Table 3
NYC panel results: safegraph trips.

@ (2 3 4 ©)]
In(New,) OLS In(New,) IV In(New,) IV In(New,) IV In(New,) IV
Panel A: Full Sample

%ATrips;, 5 0.002 0.061*+ 0.044* 0.046** 0.030*
(0.002) (0.004) (0.007) (0.006) (0.007)

Root MSE 0.382 0.625 0.554 0.525 0.413

Observations 2045 2045 2045 2045 2045

First Stage F-Stat. 156.820 100.222 66.096 17.374
Panel B: Split Sample (2020w11 - 2020w17 vs. 2020w18 - 2020w23)

%ATrips;, o X 1stHal f 0.000 0.066*** 0.047++ 0.050* 0.034*+
(0.002) (0.006) (0.007) (0.007) (0.007)

%ATrips;,_, x 2ndHal f 0.004* 0.059" 0.042° 0.043° 0.026%
(0.002) (0.005) (0.007) (0.007) (0.008)

Root MSE 0.381 0.636 0.555 0.527 0.415

Observations 2045 2045 2045 2045 2045

First Stage F-Stat. 149.913 85.900 55.961 10.712
Controls

%A fricanAmerican, X X

In(Age;) X X

In(Inc;) X X
Fixed Effects

Zip; X X

Borough, X

W eek, X X X X X

Notes: NYC panel results using SafeGraph trips from home. Dependent variable is log of new cases per capita in zip code iin week . All columns control for log of
healthcare employment and the log of police employment. Panels A shows results for the full panel, reporting # from Eq. (1) in the first column, with versions of
Eq. (2.2) in columns (2)—(6): In(N ewCases;,) = ﬂ%ﬁr?psi + zip; + week, + ¢;,. Panel B splits the time period in half, and interacts the coefficient of interest with the
two time periods, decomposing finto 'St/ g2ndHal/  Columns (2)—(5) use both the telework and essential share instuments. Robust standard errors in parentheses.
Significance: *p < 0.10,** p < 0.05,** p < 0.01.

Table 4
NYC panel results: MTA turnstile trips.

@ (2 3 4 (©)]
In(New,) OLS In(New,) IV In(New,) IV In(New,) IV In(New,) IV
Panel A: Full Sample

%ATrips;, o 0.004** 0.061* 0.060** 0.053* 0.049*
(0.002) (0.006) (0.009) (0.009) (0.012)

Root MSE 0.412 0.811 0.795 0.713 0.527

Observations 1399 1399 1399 1399 1399

First Stage F-Stat. 67.193 42.098 20.108 15.208
Panel B: Split Sample (2020w11 - 2020w17 vs. 2020w18 - 2020w23)

%ATrips;, o X 1stHal f 0.005** 0.052* 0.065** 0.057*+ 0.055*
(0.002) (0.006) (0.010) (0.010) (0.014)

%ATrips,,_» x 2ndHal f 0.004* 0.101° 0.120° 0.108* 0.094*
(0.002) (0.019) (0.025) (0.024) (0.022)

Root MSE 0.412 1.011 1.165 1.038 0.703

Observations 1399 1399 1399 1399 1399

First Stage F-Stat. 1452.498 42.318 22.966 10.243 9.535
Controls

%A frican American, X X

In(Age;) X X

In(Inc;) X X
Fixed Effects

Zip; X X

Borough; X

W eek, X X X X X

Notes: NYC panel results using MTA turnstile trips in a given residential zip code. Dependent variable is log of new cases per capita in zip code iin week 7. All
columns control for log of healthcare employment and the log of police employment. Panels A shows results for the full panel, reporting f# from Eq. (1) in the
first column, with versions of Eq. (2.2) in columns (2)-(6): In(N ewCases;,) = ﬂ%A/Tr\ips, + zip; + week, + ¢,,. Panel B splits the time period in half, and interacts the
coefficient of interest with the two time periods, decomposing finto g'st#e!/ g2ndHal/  Columns (2)-(5) use both the telework and essential share instuments.Robust
standard errors in parentheses. Significance: *p < 0.10,"* p < 0.05,*** p < 0.01.

mobility. We believe that using the same instruments for different vari- modest in magnitude over the entire sample, 1st and 2nd halves. A ten
ables is reasonable, as both variables are imperfect attempts to measure percentage point fall in public transit trips is associated with 0.04 log
mobility. points fewer (4%) COVID-19 cases per capita.

Column (1) shows our ordinary least squares results with zip code Columns (2)—(4) show instrumental variables results without zip

fixed effects. The coefficient is positive and statistically significant, but code fixed effects that closely parallel those found in columns (2)-(4)
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of Table 3. Across the entire time period, the coefficient with no con-
trols in column (2) is about 0.06, and the coefficients in (3) and (4) are
similar. In contrast to the SafeGraph analysis, the results are stronger
in the second half of our time period than in the first half of our time
period. Additionally, they are uniformly stronger than those using the
Safegraph data. It could be that the turnstiles data captures a riskier
form of mobility, perhaps due to trip duration or shared mode, or that
the zip codes with subway stations have more exposure to COVID-19 as
more people pass through them.

In column (5) we show results with zip code fixed effects. The coeffi-
cient for the overall period is 0.049 and significant at the 1% level. This
implies a quite large impact of reducing trips. A 10 percentage point re-
duction in trips is associated with a 0.49 log point fall in new COVID-19
cases per capita two weeks later.

6. Conclusion

Research is at an early stage on the progress of COVID-19 across
America. Yet we already have plausible sources of variation in the be-
havior of different parts of the population. Some industries comfort-
ably worked from home. Others could not and have braved exposure to
COVID-19 to earn a living. In this paper, we used variation in that in-
dustrial mix to estimate the impact that mobility had on COVID-19 case
rates.

Our estimates were not uniform. The measured effects of mobility
were larger in New York, Boston and Philadelphia. They were smaller
in Atlanta and Chicago. Moving around New York appears to have been
riskier in March and early April than in May. Nonetheless, our estimates
paint a consistent picture that mobility led to more COVID-19 exposure.
Moreover, almost all estimates imply an elasticity greater than two, so
that a 10 percentage point drop in trips lead to a 0.2 log point or more
reduction in COVID-19 cases per capita.

We do not claim these large effects would hold in different settings
or when people wear masks and gloves while traveling. We hope these
results may help future cost-benefit analyses around lockdown policies,
but no policy implications follow directly from them. They simply re-
mind us that people whose jobs required them to leave their homes were
more likely to get COVID-19, and - at least in NYC - they were more
likely to die.
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Fig. Al. Correlation between Travel Change and COVID-19 Cases per Capita
in NYC. Source: Cases per capita from NYC Health Department, available at
https://www1.nyc.gov/site/doh/covid/covid-19-data.page. % Change in trips
from SafeGraph Weekly Patterns Data, using visitors traveling from home. %

Change in trips calculated between May 13-19, 2019 and May 4-10, 2020.

Table Al
Summary statistics.

Variable Mean St.Dev.
Panel A: All 5 Cities
TotalCases;, 758 710
Tr[psf”"coym 2682 3110
Trips,COV’D 803 1119
BATrips; -70 13
ShareTele; 0.49 0.05
ShareEss; 0.49 0.05
Pop; 41,387 22,083
Age; 37 5
Inc; 87,026 43,312
%A fricanAmerican, 24 28
Observations 448

Panel B: NYC SafeGraph Panel

NewCases,, 69 108
%ATrips;,_, 63 26
ShareTele; 0.42 0.04
ShareEss; 0.72 0.02
Pop; 51,887 24919
Age; 38 5

Inc, 82,318 46,052
%A fricanAmerican,; 24 25
Observations 2045

Panel C: NYC Turnstile Panel

NewCases;, 74 113
%ATrips;, 71 26
ShareTele; 0.51 0.05
ShareEss; 0.50 0.05
Pop, 54,828 25,561
Age; 36 4

Inc; 87,855 57,939
%AfAm, 21 22
Observations 1399

Notes: Case data from specific cities’ or counties’ health
departments as in Section 2. Trips pre- and during
COVID-19 from SafeGraph. Share telecommute and
share essential as in Sections 2 and 3.1. Population,
age, income and share African American from 2018
ACS data. Panel A uses cross-sectional data for all zips
in the 5 cities. Panel B uses all zip codes in NYC from
2020w11 - 2020w23. Panel C uses all zip codes with
subway turnstiles in NYC from 2020w11 - 2020w23.
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(a) % A in Trips vs. ShareEssential; (b) % A in Trips vs. ShareTelework;

Fig. A2. A visual first stage Travel Change and Instruments in NYC.Source: % Change in trips from SafeGraph Weekly Patterns Data, using visitors traveling from
home. % Change in trips calculated between May 13-19, 2019 and May 4-10, 2020. Share Essential workers calculated from DE and MN 4-digit NAICS essential
industries. Share Telework created at the zip level using data from Dingel and Neiman (2020) weighted by local neighborhood employment composition.

Table A2
Industries and codes available in zip level ACS employment data.

ACS Indsutry Description Associated NAICS Codes
Agriculture, forestry, fishing and hunting, and mining 11, 21
Transportation and warehousing, and utilities 22, 48-49
Construction 23
Manufacturing 31-33
Wholesale trade 42

Retail trade 44-45
Information 51
Finance and insurance, 52,53
and real estate and rental and leasing

Professional, scientific, and management 54, 55, 56

and administrative and waste management services
Educational services, and health care and social assistance 61, 62*

Arts, entertainment, and recreation, 71, 72
and accommodation and food services

Other services (except public administration) 81
Public Administration 92+

Notes: This tables shows the mapping between industry titles available in the zip code
level data from the ACS on residents’ employment by industry, and their asocciated
NAICS codes. *NAICS codes 62 and 92 not used in constructing zip code level instru-

ments.
Table A3
NYC cases by borough.
@ (2) 3 4 (5) (6)
In(Cases;) NYC  In(Cases;) The Bronx  In(Cases;) Brooklyn  In(Cases;) Manhattan  In(Cases;) Queens  In(Cases;) Staten Island
Panel A: OLS
%ATrips; 0.010"+ 0.001 0.015* 0.007 0.004 0.008
(0.003) (0.005) (0.008) (0.010) (0.006) (0.004)
R-Sq. 0.437 0.645 0.544 0.624 0.262 0.892
Obs. 159 20 34 32 48 10
Panel B: Reduced form IV
ShareTele;  7.542** 0.711 2.125 3.075 7.132%+ 4.462
(0.883) (1.968) (2.212) (2.054) (2.640) (5.153)
ShareEss; 7.660%+ 1.024 9.305" 3.478* 5.345* 3.188
(0.859) (2.813) (1.806) (2.021) (2.945) (5.446)

(continued on next page)
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Table A3 (continued)
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@ (2) 3 @) 5) ©)
In(Cases;) NYC  In(Cases;) The Bronx  In(Cases;) Brooklyn  In(Cases;) Manhattan  In(Cases;) Queens  In(Cases;) Staten Island
R-Sq. 0.629 0.704 0.770 0.673 0.370 0.826
Obs. 159 20 34 32 48 10
Panel C: IV
%ATrips;  0.068+* 0.007 0.058** 0.135 0.081 0.006
(0.020) (0.008) (0.025) (0.156) (0.062) (0.011)
Root MSE ~ 0.487 0.079 0.288 0.577 0.551 0.088
Obs. 159 20 34 32 48 10
F-Stat. 22.199 10.058 4.028 2.613 1.607 1.754
Controls
%AfAm; X X X X X X
In(Age;) X X X X X X
In(Inc;) X X X X X X

Notes: This table is analogous to Table 2 in the main text, but compares cases across boroughs in NYC instead of different cities. All columns
control for log of healthcare employment. Panels A shows results from Eq. (1). Panel B shows the reduced form IV regression results from
In(TotalCases;) = a + p; ShareTele; + p,ShareEss; + I'X; + ¢;. Panel C shows results from Eq. (1.2), adding additional demographic controls,

X;: In(TotalCases;) = a + p%ATrips; + X, + €,. Robust standard errors in parentheses. Significance: *p < 0.10,** p < 0.05,** p < 0.01.

@ (5) (6)
In(Deaths;) Manhattan In(Deaths;) Queens In(Deaths,;) Staten Island

Table A4
NYC deaths by borough.

@™ ) 3)
In(Deaths;) NYC In(Deaths;) The Bronx In(Deaths;) Brooklyn
Panel A: OLS

%ATrips, 0.004 0.012 0.002
(0.005) (0.016) (0.010)

R-Sq. 0.484 0.416 0.700

Obs. 159 20 34
Panel B: Reduced form IV

ShareTele,  2.741** 1.700 0.222
(1.299) (6.164) (1.438)

ShareEss; 3.254 6.217 6.798**
(1.249) (7.827) (2.122)

R-Sq. 0.504 0.456 0.795

Obs. 159 20 34
Panel C: IV

%ATrips, 0.029** 0.030 0.039*
(0.015) (0.030) (0.023)

Root MSE 0.420 0.254 0.303

Obs. 159 20 34

F-Stat. 32.170 2.332 6.696
Controls

W%AS Am, X X X

In(Age;) X X X

In(Inc;) X X X

0.001 0.001 0.023
(0.015) (0.010) (0.013)
0.648 0.271 0.845
32 48 10
2.130 4240 11.645
(2.816) (4.061) (21.270)
5.509 4303 18.423
(2.741) (4.838) (16.230)
0.706 0.291 0.850
32 48 10
0.230 0.045 0.030
(0.242) (0.047) (0.044)
0.933 0.453 0.334
32 48 10
2.941 2377 1.310

X X X

X X X

X X X

Notes: This table is analogous to Table 2 in the main text, but compares deaths across boroughs in NYC instead of different cities. All columns control
for log of healthcare employment. Panels A shows results from Eq. (1). Panel B shows the reduced form IV regression results from /n(Total Deaths;) =
a + pyShareTele; + p,ShareEss; + I'X; + ¢;. Panel C shows results from Eq. (1.2), adding additional demographic controls, X;: In(Total Deaths;) =
a+ ﬁ%A/Tr\ips, +TI'X; + ¢;. Robust standard errors in parentheses. Significance: *p < 0.10,** p < 0.05,*** p < 0.01.
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