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Teaser Artificial intelligence-integrated drug discovery and development has accelerated the
growth of the pharmaceutical sector, leading to a revolutionary change in the pharma

industry. Here, we discuss areas of integration, tools, and techniques utilized in enforcing
AI, ongoing challenges, and ways to overcome them.
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Artificial Intelligence (AI) has recently started to gear-up its application in

various sectors of the society with the pharmaceutical industry as a front-

runner beneficiary. This review highlights the impactful use of AI in

diverse areas of the pharmaceutical sectors viz., drug discovery and

development, drug repurposing, improving pharmaceutical productivity,

clinical trials, etc. to name a few, thus reducing the human workload as

well as achieving targets in a short period. Crosstalk on the tools and

techniques utilized in enforcing AI, ongoing challenges, and ways to

overcome them, along with the future of AI in the pharmaceutical

industry, is also discussed.

The use of artificial intelligence (AI) has been increasing in various sectors of society, particularly

the pharmaceutical industry. In this review, we highlight the use of AI in diverse sectors of the

pharmaceutical industry, including drug discovery and development, drug repurposing, improv-

ing pharmaceutical productivity, and clinical trials, among others; such use reduces the human

workload as well as achieving targets in a short period of time. We also discuss crosstalk between

the tools and techniques utilized in AI, ongoing challenges, and ways to overcome them, along

with the future of AI in the pharmaceutical industry.

Artificial intelligence: things to know
Over the past few years, there has been a drastic increase in data digitalization in the pharma-

ceutical sector. However, this digitalization comes with the challenge of acquiring, scrutinizing,

and applying that knowledge to solve complex clinical problems [1]. This motivates the use of AI,

because it can handle large volumes of data with enhanced automation [2]. AI is a technology-

based system involving various advanced tools and networks that can mimic human intelligence.

At the same time, it does not threaten to replace human physical presence [3,4] completely.

AI utilizes systems and software that can interpret and learn from the input data to make
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independent decisions for accomplishing specific objectives. Its

applications are continuously being extended in the pharmaceu-

tical field, as described in this review. According to the McKinsey

Global Institute, the rapid advances in AI-guided automation will

be likely to completely change the work culture of society [5,6].

AI: networks and tools
AI involves several method domains, such as reasoning, knowl-

edge representation, solution search, and, among them, a funda-

mental paradigm of machine learning (ML). ML uses algorithms

that can recognize patterns within a set of data that has been

further classified. A subfield of the ML is deep learning (DL), which

engages artificial neural networks (ANNs). These comprise a set of

interconnected sophisticated computing elements involving

‘perceptons’ analogous to human biological neurons, mimicking

the transmission of electrical impulses in the human brain [7].

ANNs constitute a set of nodes, each receiving a separate input,

ultimately converting them to output, either singly or multi-

linked using algorithms to solve problems [8]. ANNs involve

various types, including multilayer perceptron (MLP) networks,

recurrent neural networks (RNNs), and convolutional neural net-

works (CNNs), which utilize either supervised or unsupervised

training procedures [9,10].

The MLP network has applications including pattern recogni-

tion, optimization aids, process identification, and controls, are

usually trained by supervised training procedures operating in a

single direction only, and can be used as universal pattern classi-

fiers [11]. RNNs are networks with a closed-loop, having the

capability to memorize and store information, such as Boltzmann

constants and Hopfield networks [11,12]. CNNs are a series of

dynamic systems with local connections, characterized by its

topology, and have use in image and video processing, biological
FIGURE 1
system modeling, processing complex brain functions, pattern

recognition, and sophisticated signal processing [13]. The more

complex forms include Kohonen networks, RBF networks, LVQ

networks, counter-propagation networks, and ADALINE networks

[9,11]. Examples of method domains of AI are summarized in

Figure 1.

Several tools have been developed based on the networks that

form the core architecture of AI systems. One such tool developed

using AI technology is the International Business Machine (IBM)

Watson supercomputer (IBM, New York, USA). It was designed to

assist in the analysis of a patient’s medical information and its

correlation with a vast database, resulting in suggesting treatment

strategies for cancer. This system can also be used for the rapid

detection of diseases. This was demonstrated by its ability to detect

breast cancer in only 60 s [14,15].

AI in the lifecycle of pharmaceutical products
Involvement of AI in the development of a pharmaceutical

product from the bench to the bedside can be imagined given

that it can aid rational drug design [16]; assist in decision making;

determine the right therapy for a patient, including personalized

medicines; and manage the clinical data generated and use it for

future drug development [17]. E-VAI is an analytical and deci-

sion-making AI platform developed by Eularis, which uses ML

algorithms along with an easy-to-use user interface to create

analytical roadmaps based on competitors, key stakeholders,

and currently held market share to predict key drivers in sales

of pharmaceuticals [18], thus helping marketing executives to

allocate resources for maximum market share gain, reversing

poor sales and enabled them to anticipate where to make invest-

ments. Different applications of AI in drug discovery and devel-

opment are summarized in Figure 2.
Drug Discovery Today 
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FIGURE 2

Applications of artificial intelligence (AI) in different subfields of the pharmaceutical industry, from drug discovery to pharmaceutical product management.
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AI in drug discovery
The vast chemical space, comprising >1060 molecules, fosters the

development of a large number of drug molecules [19]. However,

the lack of advanced technologies limits the drug development

process, making it a time-consuming and expensive task, which

can be addressed by using AI [15]. AI can recognize hit and lead

compounds, and provide a quicker validation of the drug target

and optimization of the drug structure design [19,20]. Different

applications of AI in drug discovery are depicted in Figure 3.

Despite its advantages, AI faces some significant data chal-

lenges, such as the scale, growth, diversity, and uncertainty of

the data. The data sets available for drug development in pharma-

ceutical companies can involve millions of compounds, and

traditional ML tools might not be able to deal with these types

of data. Quantitative structure-activity relationship (QSAR)-based

computational model can quickly predict large numbers of com-

pounds or simple physicochemical parameters, such as log P or log

D. However, these models are some way from the predictions of

complex biological properties, such as the efficacy and adverse

effects of compounds. In addition, QSAR-based models also face

problems such as small training sets, experimental data error in

training sets, and lack of experimental validations. To overcome

these challenges, recently developed AI approaches, such as DL

and relevant modeling studies, can be implemented for safety and

efficacy evaluations of drug molecules based on big data modeling

and analysis. In 2012, Merck supported a QSAR ML challenge to

observe the advantages of DL in the drug discovery process in the

pharmaceutical industry. DL models showed significant predictiv-

ity compared with traditional ML approaches for 15 absorption,

distribution, metabolism, excretion, and toxicity (ADMET) data

sets of drug candidates [21,22].

The virtual chemical space is enormous and suggests a geo-

graphical map of molecules by illustrating the distributions of

molecules and their properties. The idea behind the illustration of

chemical space is to collect positional information about mole-

cules within the space to search for bioactive compounds and,

thus, virtual screening (VS) helps to select appropriate molecules

for further testing. Several chemical spaces are open access, in-

cluding PubChem, ChemBank, DrugBank, and ChemDB.
82 www.drugdiscoverytoday.com
Numerous in silico methods to virtual screen compounds from

virtual chemical spaces along with structure and ligand-based

approaches, provide a better profile analysis, faster elimination

of nonlead compounds and selection of drug molecules, with

reduced expenditure [19]. Drug design algorithms, such as cou-

lomb matrices and molecular fingerprint recognition, consider the

physical, chemical, and toxicological profiles to select a lead

compound [23].

Various parameters, such as predictive models, the similarity of

molecules, the molecule generation process, and the application

of in silico approaches can be used to predict the desired chemical

structure of a compound [20,24]. Pereira et al. presented a new

system, DeepVS, for the docking of 40 receptors and 2950 ligands,

which showed exceptional performance when 95 000 decoys were

tested against these receptors [25]. Another approach applied a

multiobjective automated replacement algorithm to optimize the

potency profile of a cyclin-dependent kinase-2 inhibitor by asses-

sing its shape similarity, biochemical activity, and physicochemi-

cal properties [26].

QSAR modeling tools have been utilized for the identification of

potential drug candidates and have evolved into AI-based QSAR

approaches, such as linear discriminant analysis (LDA), support

vector machines (SVMs), random forest (RF) and decision trees,

which can be applied to speed up QSAR analysis [27–29]. King et al.

found a negligible statistical difference when the ability of six AI

algorithms to rank anonymous compounds in terms of biological

activity was compared with that of traditional approaches [30].

AI in drug screening
The process of discovering and developing a drug can take over a

decade and costs US$2.8 billion on average. Even then, nine out of

ten therapeutic molecules fail Phase II clinical trials and regulatory

approval [31,32]. Algorithms, such as Nearest-Neighbour classi-

fiers, RF, extreme learning machines, SVMs, and deep neural net-

works (DNNs), are used for VS based on synthesis feasibility and

can also predict in vivo activity and toxicity [31,33]. Several

biopharmaceutical companies, such as Bayer, Roche, and Pfizer,

have teamed up with IT companies to develop a platform for the

discovery of therapies in areas such as immuno-oncology and
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FIGURE 3

Role of artificial intelligence (AI) in drug discovery. AI can be used effectively in different parts of drug discovery, including drug design, chemical synthesis, drug
screening, polypharmacology, and drug repurposing.
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cardiovascular diseases [19]. The aspects of VS to which AI has been

applied are discussed below.

Prediction of the physicochemical properties

Physicochemical properties, such as solubility, partition coeffi-

cient (logP), degree of ionization, and intrinsic permeability of

the drug, indirectly affect its pharmacokinetics properties and its

target receptor family and, hence, must be considered when

designing a new drug [34]. Different AI-based tools can be used

to predict physicochemical properties. For example, ML uses large

data sets produced during compound optimization done previ-

ously to train the program [35]. Algorithms for drug design include

molecular descriptors, such as SMILES strings, potential energy

measurements, electron density around the molecule, and coor-

dinates of atoms in 3D, to generate feasible molecules via DNN and

thereby predict its properties [36].

Zang et al. created a quantitative structure–property relation-

ship (QSPR) workflow to determine the six physicochemical prop-

erties of environmental chemicals obtained from the

Environmental Protection Agency (EPA) called the Estimation

Program Interface (EPI) Suite [35]. Neural networks based on the

ADMET predictor and ALGOPS program have been used to predict

the lipophilicity and solubility of various compounds [37]. DL

methods, such as undirected graph recursive neural networks and

graph-based convolutional neural networks (CVNN), have been

used to predict the solubility of molecules [38].

In several instances, ANN-based models, graph kernels, and

kernel ridge-based models were developed to predict the acid

dissociation constant of compounds [35,39]. Similarly, cell lines,

such as Madin-Darby canine kidney cells and human colon ade-

nocarcinoma (Caco-2) cells have been utilized to generate cellular

permeability data of a diverse class of molecules, which are subse-

quently fed to AI-assisted predictors [34].
Kumar et al. developed six predictive models [SVMs, ANNs, k-

nearest neighbor algorithms, LDAs, probabilistic neural network

algorithms, and partial least square (PLS)] utilizing 745 com-

pounds for training; these were used later on 497 compounds to

predict their intestinal absorptivity based on parameters including

molecular surface area, molecular mass, total hydrogen count,

molecular refractivity, molecular volume, logP, total polar surface

area, the sum of E- states indices, solubility index (log S), and

rotatable bonds [40]. On similar lines, RF and DNN-based in silico

models were developed to determine human intestinal absorption

of a variety of chemical compounds [41]. Thus, AI has a significant

role in the development of a drug, to predict not only its desired

physicochemical properties, but also the desired bioactivity.

Prediction of bioactivity

The efficacy of drug molecules depends on their affinity for the

target protein or receptor. Drug molecules that do not show any

interaction or affinity towards the targeted protein will not be able

to deliver the therapeutic response. In some instances, it might

also be possible that developed drug molecules interact with

unintended proteins or receptors, leading to toxicity. Hence, drug

target binding affinity (DTBA) is vital to predict drug–target inter-

actions. AI-based methods can measure the binding affinity of a

drug by considering either the features or similarities of the drug

and its target. Feature-based interactions recognize the chemical

moieties of the drug and that of the target to determine the feature

vectors. By contrast, in similarity-based interaction, the similarity

between drug and target is considered, and it is assumed that

similar drugs will interact with the same targets [42].

Web applications, such as ChemMapper and the similarity

ensemble approach (SEA), are available for predicting drug–target

interactions [43]. Many strategies involving ML and DL have been

used to determine DTBA, such as KronRLS, SimBoost, DeepDTA,
www.drugdiscoverytoday.com 83
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and PADME. ML-based approaches, such as Kronecker-regularized

least squares (KronRLS), evaluate the similarity between drugs and

protein molecules to determine DTBA. Similarly, SimBoost utilized

regression trees to predict DTBA, and considers both feature-based

and similarity-based interactions. Drug features from SMILES,

ligand maximum common substructure (LMCS), extended con-

nectivity fingerprint, or a combination thereof can also be consid-

ered [42].

DL approaches have shown improved performance compared

with ML because they apply network-based methods that do not

depend on the availability of the 3D protein structure [43].

DeepDTA, PADME, WideDTA, and DeepAffinity are some DL

methods used to measure DTBA. DeepDTA accepts drug data in

the form of SMILES, whereby, the amino acid sequence is entered

for protein input data and for the 1D representation of the drug

structure [44]. WideDTA is CVNN DL method that incorporates

ligand SMILES (LS), amino acid sequences, LMCS, and protein

domains and motifs as input data for assessing the binding affinity

[45].

DeepAffinity and Protein And Drug Molecule interaction prE-

diction (PADME) are similar to the approaches described earlier

[46]. DeepAffinity is an interpretable DL model that uses both RNN

and CNN and both unlabeled and labeled data. It takes into

account the compound in the SMILES format and protein

sequences in the structural and physicochemical properties [47].

PADME is a DL-based platform that utilizes feed-forward neural

networks for predicting drug target interactions (DTIs). It consid-

ers the combination of the features of the drug and target protein

as input data and forecasts the interaction strength between the

two. For the drug and the target, the SMILES representation and

the protein sequence composition (PSC) are used for illustration,

respectively [46]. Unsupervised ML techniques, such as MANTRA

and PREDICT, can be used to forecast the therapeutic efficacy of

drugs and target proteins of known and unknown pharmaceuti-

cals, which can also be extrapolated to the application of drug

repurposing and interpreting the molecular mechanism of the

therapeutics. MANTRA groups compound based on similar gene

expression profiles using a CMap data set and clusters those

compounds predicted to have a common mechanism of action
TABLE 1

Examples of AI tools used in drug discovery

Tools Details 

DeepChem MLP model that uses a python-based AI system to 

suitable candidate in drug discovery
DeepTox Software that predicts the toxicity of total of 12 000 

DeepNeuralNetQSAR Python-based system driven by computational tool
aid detection of the molecular activity of compoun

ORGANIC A molecular generation tool that helps to create
molecules with desired properties

PotentialNet Uses NNs to predict binding affinity of ligands 

Hit Dexter ML technique to predict molecules that might respo
biochemical assays

DeltaVina A scoring function for rescoring drug–ligand bindi
affinity

Neural graph fingerprint Helps to predict properties of novel molecules 

AlphaFold Predicts 3D structures of proteins 

Chemputer Helps to report procedure for chemical synthesis i
standardized format

84 www.drugdiscoverytoday.com
and common biological pathway [43]. The bioactivity of a drug

also includes ADME data. AI-based tools, such as XenoSite, FAME,

and SMARTCyp, are involved in determining the sites of metabo-

lism of the drug. In addition, software such as CypRules, MetaSite,

MetaPred, SMARTCyp, and WhichCyp were used to identify spe-

cific isoforms of CYP450 that mediate a particular drug metabo-

lism. The clearance pathway of 141 approved drugs was done by

SVM-based predictors with high accuracy [48].

Prediction of toxicity

The prediction of the toxicity of any drug molecule is vital to avoid

toxic effects. Cell-based in vitro assays are often used as prelimi-

nary studies, followed by animal studies to identify the toxicity of

a compound, increasing the expense of drug discovery. Several

web-based tools, such as LimTox, pkCSM, admetSAR, and Toxtree,

are available to help reduce the cost [35]. Advanced AI-based

approaches look for similarities among compounds or project

the toxicity of the compound based on input features. The

Tox21 Data Challenge organized by the National Institutes of

Health, Environmental Protection Agency (EPA), and US Food

and Drug Administration (FDA) was an initiative to evaluate

several computational techniques to forecast the toxicity of 12

707 environmental compounds and drugs [35]; an ML algorithm

named DeepTox outperformed all methods by identifying static

and dynamic features within the chemical descriptors of the

molecules, such as molecular weight (MW) and Van der Waals

volume, and could efficiently predict the toxicity of a molecule

based on predefined 2500 toxicophore features [49]. The different

AI tools used in drug discovery are listed in Table 1.

SEA was used to evaluate the safety target prediction of 656

marketed drugs against 73 unintended targets that might produce

adverse effects [43]. Developed using an ML-based approach,

eToxPred was applied to estimate the toxicity and synthesis feasi-

bility of small organic molecules and showed accuracy as high as

72% [48]. Similarly, open-source tools, such as TargeTox and

PrOCTOR, are also used in toxicity prediction [50]. TargeTox is

biological network target-based drug toxicity risk prediction meth-

od that uses the guilt-by-association principle whereby entities

that have similar functional properties share similarities in bio-

logical networks [51]. It can produce protein network data and
Website URL Refs

find a https://github.com/deepchem/deepchem [21]

drugs www.bioinf.jku.at/research/DeepTox [22]
s that
ds

https://github.com/Merck/DeepNeuralNet-QSAR [23]

https://github.com/aspuru-guzik-group/ORGANIC [24]

https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507 [25]
nd to http://hitdexter2.zbh.uni-hamburg.de

ng https://github.com/chengwang88/deltavina

https://github.com/HIPS/neural-fingerprint
https://deepmind.com/blog/alphafold

n https://zenodo.org/record/1481731

https://github.com/deepchem/deepchem
http://www.bioinf.jku.at/research/DeepTox
https://github.com/Merck/DeepNeuralNet-QSAR
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https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507
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unite pharmacological and functional properties in a ML classifier

to predict drug toxicity [52]. PrOCTOR was trained using a RF

model and took into account drug-likeliness properties, molecular

features, target-based features, and properties of the protein targets

to generate a ‘PrOCTOR score’, which forecasted whether a drug

would fail in clinical trials owing to its toxicity. It also recognized

FDA-approved drugs that later reported adverse drug events [53].

In another approach, Tox_(R)CNN involving a deep CVNN meth-

od evaluated the cytotoxicity of drugs that had been exposed to

DAPI-stained cells [54].

AI in designing drug molecules
Prediction of the target protein structure

While developing a drug molecule, it is essential to assign the

correct target for successful treatment. Numerous proteins are

involved in the development of the disease and, in some cases,

they are overexpressed. Hence, for selective targeting of disease, it

is vital to predict the structure of the target protein to design the

drug molecule. AI can assist in structure-based drug discovery by

predicting the 3D protein structure because the design is in accor-

dance with the chemical environment of the target protein site,

thus helping to predict the effect of a compound on the target

along with safety considerations before their synthesis or produc-

tion [55]. The AI tool, AlphaFold, which is based on DNNs, was

used to analyze the distance between the adjacent amino acids and

the corresponding angles of the peptide bonds to predict the 3D

target protein structure and demonstrated excellent results by

correctly predicting 25 out of 43 structures.

In a study by AlQurashi, RNN was used to predict the protein

structure. The author considered three stages (i.e., computation,

geometry, and assessment) termed a recurrent geometric network

(RGN). Here, the primary protein sequence was encoded, and the

torsional angles for a given residue and a partially completed

backbone obtained from the geometric unit upstream of this were

then considered as input and provided a new backbone as output.

The final unit produced the 3D structure as the output. Assessment

of the deviation of predicted and experimental structures was done

using the distance-based root mean square deviation (dRMSD)

metric. The parameters in RGN were optimized to keep the dRMSD

low between the experimental and predicted structures [56].

AlQurashi predicted that his AI method would be quicker than

AlphaFold in terms of the time taken to predict the protein

structure. However, AlphaFold is likely to have better accuracy

in predicting protein structures with sequences similar to the

reference structures [57].

A study was conducted to predict the 2D structure of a protein

using MATLAB assisted by a nonlinear three-layered NN toolbox

based on a feed-forward supervised learning and backpropagation

error algorithm. MATLAB was used to train input and output data

sets, and the NNs were learning algorithms and performance

evaluators. The accuracy in predicting the 2D structure was

62.72% [58].

Predicting drug–protein interactions

Drug–protein interactions have a vital role in the success of a

therapy. The prediction of the interaction of a drug with a receptor

or protein is essential to understand its efficacy and effectiveness,

allows the repurposing of drugs, and prevents polypharmacology

[55]. Various AI methods have been useful in the accurate
prediction of ligand–protein interactions, ensuring better thera-

peutic efficacy [55,59]. Wang et al. reported a model using the SVM

approach, trained on 15 000 protein–ligand interactions, which

were developed based on primary protein sequences and structural

characteristics of small molecules to discover nine new com-

pounds and their interaction with four crucial targets [60].

Yu et al. exploited two RF models to predict possible drug–

protein interactions by the integration of pharmacological and

chemical data and validating them against known platforms, such

as SVM, with high sensitivity and specificity. Also, these modes

were capable of predicting drug–target associations that could be

further extended to target–disease and target–target associations,

thereby speeding up the drug discovery process [61]. Xiao et al.

adopted the Synthetic Minority Over-Sampling Technique and the

Neighborhood Cleaning Rule to obtain optimized data for the

subsequent development of iDrugTarget. This is a combination of

four subpredictors (iDrug-GPCR, iDrug-Chl, iDrug-Enz, and iDrug-

NR) for identifying interactions between a drug and G-protein-

coupled receptors (GPCRs), ion channels, enzymes, and nuclear

receptors (NR) respectively. When this predictor was compared

with existing predictors through target-jackknife tests, the former

surpassed the latter in terms of both prediction accuracy and

consistency [62].

The ability of AI to predict drug–target interactions was also

used to assist the repurposing of existing drugs and avoiding

polypharmacology. Repurposing an existing drug qualifies it di-

rectly for Phase II clinical trials [19]. This also reduces expenditure

because relaunching an existing drug costs �US$8.4 million com-

pared with the launch of a new drug entity (�US$41.3 million)

[63]. The ‘Guilt by association’ approach can be utilized to forecast

the innovative association of a drug and disease, which is either a

knowledge-based or computationally driven network [64]. In a

computationally driven network, the ML approach is widely used,

which utilizes techniques such as SVM, NN, logistic regression,

and DL. Logistic regression platforms, such as PREDICT, SPACE,

and other ML approaches, consider drug–drug, disease–disease

similarity, the similarity between target molecules, chemical struc-

ture, and gene expression profiles while repurposing a drug [65].

Cellular network-based deep learning technology (deepDTnet)

has been explored to predict the therapeutic use of topotecan,

currently used as a topoisomerase inhibitor. It can also be used for

the therapy of multiple sclerosis by inhibiting human retinoic acid

receptor-related orphan receptor-gamma t (ROR-gt) [66]. This

platform is currently under a provisional US patent. Self-organiz-

ing maps (SOMs) are in the unsupervised category of ML and are

used in drug repurposing. They use a ligand-based approach to

search novel off-targets for a set of drug molecules by training the

system on a defined number of compounds with recognized

biological activities, which is later used for the analysis of different

compounds [67]. In a recent study, DNN was used to repurpose

existing drugs with proven activity against SARS-CoV, HIV, influ-

enza virus, and drugs that are 3C-like protease inhibitors. In this,

extended connectivity fingerprint (ECFP), functional-class finger-

prints (FCFPs), and an octanol-water partition coefficient (ALogP_-

count) were considered to train the AI platform. From the results, it

was concluded that 13 of the screened drugs could be carried

toward further development based on their cytotoxicity and viral

inhibition [68].
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Drug–protein interactions can also predict the chances of

polypharmacology, which is the tendency of a drug molecule

to interact with multiple receptors producing off-target ad-

verse effects [69]. AI can design a new molecule based on the

rationale of polypharmacology and aid in the generation of

safer drug molecules [70]. AI platforms such as SOM, along

with the vast databases available, can be used to link several

compounds to numerous targets and off-targets. Bayesian

classifiers and SEA algorithms can be used to establish links

between the pharmacological profiles of drugs and their pos-

sible targets [67].

Li et al. demonstrated the use of KinomeX, an AI-based online

medium using DNNs for the detection of polypharmacology of

kinases based on their chemical structures. This platform uses

DNN trained with �14 000 bioactivity data points developed based

on >300 kinases. Thus, it has practical application in studying the

overall selectivity of a drug towards the kinase family and particu-

lar subfamilies of kinases, thus helping to design novel chemical

modifiers. This study used NVP-BHG712 as a model compound to

predict its primary targets and also its off-targets with reasonable

accuracy [71]. One prominent instance is Cyclica’s cloud-based

proteome-screening AI platform, Ligand Express, which is used to

find receptors that can interact with a particular small molecule

(the molecular description of which is in SMILE string) and pro-

duce on and off-target interactions. This helps in understanding

the possible adverse effects of the drug [72].

AI in de novo drug design Over the past few years, the de novo drug

design approach has been widely used to design drug molecules.

The traditional method of de novo drug design is being replaced by

evolving DL methods, the former having shortcomings of compli-

cated synthesis routes and difficult prediction of the bioactivity of

the novel molecule [36]. Computer-aided synthesis planning can

also suggest millions of structures that can be synthesized and also

predicts several different synthesis routes for them [73].

Grzybowski et al. developed the Chematica program [74], now

renamed Synthia, which has the ability to encode a set of rules into

the machine and propose possible synthesizing routes for eight

medicinally essential targets. This program has proven to be effi-

cient both in terms of improving the yield and reducing expenses.

It is also capable of providing alternate synthesizing strategies for

patented products and is said to be helpful in the synthesis of

compounds that have not yet been synthesized. Similarly, DNN

focuses on rules of organic chemistry and retrosynthesis, which,

with the aid of Monte-Carlo tree searches and symbolic AI, help in

reaction prediction and the process of drug discovery and design,

which is much faster than traditional methods [75,76].

Coley et al. developed a framework in which a rigid forward

reaction template was applied to a group of reactants to synthesize

chemically feasible products with a significant rate of reaction. ML

was used to determine the dominant product based on a score

given by the NNs [23]. Putin et al. explored a DNN architecture

called the reinforced adversarial neural computer (RANC) based on

RL for de novo design of small organic molecules. This platform was

trained with molecules represented as SMILES strings. It then

generated molecules with predefined chemical descriptors in

terms of MW, logP, and topological polar surface area (TPSA).

RANC was compared with another platform, ORGANIC, where the
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former outperformed in generating unique structures without

sufficient loss of their structure length [77].

Even RNN was based on the long short-term memory (LSTM)

relating to molecules obtained from the ChEMBL database and

fed as SMILES strings. This was used to generate a diverse library

of molecules for VS. This approach was extended to procure novel

molecules toward a particular target, such as targets for the 5-

HT2A receptor, Staphylococcus aureus, and Plasmodium falciparum

[78].

Popova et al. developed the Reinforcement Learning for Struc-

tural Evolution strategy for de novo drug synthesis, which involves

generative and predictive DNNs to develop new compounds. In

this, the generative model produces more unique molecules in

terms of SMILE strings based on a stack memory, whereas the

predictive models are used to forecast the properties of the devel-

oped compound [79]. Merk et al. also exploited the generative AI

model to design retinoid X and PPAR agonist molecules, with

desired therapeutic effects without requiring complex rules. The

authors successfully designed five molecules, four out of which

have shown good modulatory activity in cell assays, thereby

emphasizing the use of generative AI in new molecule synthesis

[80]. The involvement of AI in the de novo design of molecules can

be beneficial to the pharmaceutical sector because of its various

advantages, such as providing online learning and simultaneous

optimization of the already-learned data as well as suggesting

possible synthesis routes forcompounds leading to swift lead

design and development[78,81].

AI in advancing pharmaceutical product development
The discovery of a novel drug molecule requires its subsequent

incorporation in a suitable dosage form with desired delivery

characteristics. In this area, AI can replace the older trial and error

approach [82]. Various computational tools can resolve problems

encountered in the formulation design area, such as stability

issues, dissolution, porosity, and so on, with the help of QSPR

[83]. Decision-support tools use rule-based systems to select the

type, nature, and quantity of the excipients depending on the

physicochemical attributes of the drug and operate through a

feedback mechanism to monitor the entire process and intermit-

tently modify it [84].

Guo et al. integrated Expert Systems (ES) and ANN to create a

hybrid system for the development of direct-filling hard gelatin

capsules of piroxicam in accordance with the specifications of its

dissolution profile. The MODEL EXPERT SYSTEM (MES) makes

decisions and recommendations for formulation development

based on the input parameters. By contrast, ANN uses backpropa-

gation learning to link formulation parameters to the desired

response, jointly controlled by the control module, to ensure

hassle-free formulation development [82].

Various mathematical tools, such as computational fluid dynam-

ics (CFD), discrete element modeling (DEM), and the Finite Element

Method have been used to examine the influence of the flow

property of the powder on the die-filling and process of tablet

compression [85,86]. CFD can also be utilized to study the impact

of tablet geometry on its dissolution profile [87]. Thecombination of

these mathematical models with AI could prove to be of immense

help in the rapid production of pharmaceutical products.
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AI in pharmaceutical manufacturing
With the increasing complexities of manufacturing processes

along with increasing demand for efficiency and better product

quality, modern manufacturing systems are trying to confer hu-

man knowledge to machines, continuously changing the

manufacturing practice [88]. The incorporation of AI in

manufacturing can prove to be a boost for the pharmaceutical

industry. Tools, such as CFD, uses Reynolds-Averaged Navier-

Stokes solvers technology that studies the impact of agitation

and stress levels in different equipment (e.g., stirred tanks),

exploiting the automation of many pharmaceutical operations.

Similar systems, such as direct numerical simulations and large

eddy simulations, involve advanced approaches to solve compli-

cated flow problems in manufacturing [85].

The novel Chemputer platform helps digital automation for the

synthesis and manufacturing of molecules, incorporating various

chemical codes and operating by using a scripting language known

as Chemical Assembly [23]. It has been successfully used for the

synthesis and manufacture of sildenafil, diphenhydramine hydro-

chloride, and rufinamide, with the yield and purity significantly

similar to manual synthesis [89]. The estimated completion of

granulation in granulators of capacities ranging from 25 to 600 l

can be done efficiently by AI technologies [90]. The technology

and neuro-fuzzy logic correlated critical variables to their

responses. They derived a polynomial equation for the prediction

of the proportion of the granulation fluid to be added, required

speed, and the diameter of the impeller in both geometrically

similar and dissimilar granulators [91].

DEM has been widely utilized in the pharmaceutical industry,

such as in studying the segregation of powders in a binary mixture,

the effects of varying blade speed and shape, predicting the

possible path of the tablets in the coating process, along with

analysis of time spent by tablets under the spray zone [85]. ANNs,

along with fuzzy models, studied the correlation between machine

settings and the problem of capping to reduce tablet capping on

the manufacturing line [92].

Meta-classifier and tablet-classifier are AI tools that help to

govern the quality standard of the final product, indicating a

possible error in the manufacturing of the tablet [93]. A patent

has been filed, demonstrating a system capable of determining the

most exquisite combination of drug and dosage regimen for each

patient, using a processor receiving patient information, and

designs the desired transdermal patch accordingly [94].

AI in quality control and quality assurance
Manufacturing of the desired product from the raw materials

includes a balance of various parameters [93]. Quality control tests

on the products, as well as maintenance of batch-to-batch consis-

tency, require manual interference. This might not be the best

approach in each case, showcasing the need for AI implementation

at this stage [85]. The FDA amended the Current Good Manufactur-

ing Practices (cGMP) by introducing a ‘Quality by Design’ approach

to understand the critical operation and specific criteria that govern

the final quality of the pharmaceutical product [95].

Gams et al. used a combination of human efforts and AI,

wherein preliminary data from production batches were analyzed

and decision trees developed. These were further translated into

rules and analyzed by the operators to guide the production cycle
in the future [93]. Goh et al. studied the dissolution profile, an

indicator of batch-to-batch consistency of theophylline pellets

with the aid of ANN, which correctly predicted the dissolution

of the tested formulation with an error of <8% [96].

AI can also be implemented for the regulation of in-line

manufacturing processes to achieve the desired standard of the

product [95]. ANN-based monitoring of the freeze-drying process

is used, which applies a combination of self-adaptive evolution

along with local search and backpropagation algorithms. This can

be used to predict the temperature and desiccated-cake thickness at a

future time point (t + Dt) for a particular set of operating conditions,

eventually helping to keep a check on the final product quality [97].

An automated data entry platform, such as an Electronic Lab

Notebook, along with sophisticated, intelligent techniques, can

ensure the quality assurance of the product [98]. Also, data mining

and various knowledge discovery techniques in the Total Quality

Management expert system can be used as valuable approaches in

making complex decisions, creating new technologies for intelli-

gent quality control [99].

AI in clinical trial design
Clinical trials are directed toward establishing the safety and efficacy

of a drug product in humans for a particular disease condition and

require 6–7 years along with a substantial financial investment.

However, only one out of ten molecules entering these trials gain

successful clearance, which is a massive loss for the industry [100].

These failures can result from inappropriate patient selection, short-

age of technical requirements, and poor infrastructure. However,

with the vast digital medical data available, these failures can be

reduced with the implementation of AI [101].

The enrolment of patients takes one-third of the clinical trial

timeline. The success of a clinical trial can be ensured by the

recruitment of suitable patients, which otherwise leads to �86%

of failure cases [102]. AI can assist in selecting only a specific

diseased population for recruitment in Phase II and III of clinical

trials by using patient-specific genome–exposome profile analysis,

which can help in early prediction of the available drug targets in

the patients selected [19,101]. Preclinical discovery of molecules as

well as predicting lead compounds before the start of clinical trials

by using other aspects of AI, such as predictive ML and other

reasoning techniques, help in the early prediction of lead mole-

cules that would pass clinical trials with consideration of the

selected patient population [101].

Drop out of patients from clinical trials accounts for the failure of

30%oftheclinicaltrials,creatingadditional recruitingrequirements

for the completion of the trial, leading to a wastage of time and

money. This can be avoided by close monitoring of the patients and

helping them follow the desired protocol of the clinical trial [102].

Mobile software was developed by AiCure that monitored regular

medication intake by patients with schizophrenia in a Phase II trial,

which increased the adherence rate of patients by 25%, ensuring

successful completion of the clinical trial [19].

AI in pharmaceutical product management
AI in market positioning
Market positioning is the process of creating an identity of the

product in the market to attract consumers to buy them, making

it an essentialelement in almost all business strategies for companies
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to establish their own unique identity [103,104]. This approach was

used in the marketing of pioneer brand Viagra, where the company

targeted it not only for the treatment of men’s erectile dysfunction,

but also for other problems affecting quality of life [105].

With the help of technology and e-commerce as a platform, it

has become easier for companies to get a natural recognition of

their brand in the public domain. Companies exploit search

engines as one of the technological platforms to occupy a promi-

nent position in online marketing and help in the positioning of

the product in the market, as also confirmed by the Internet

Advertising Bureau. Companies continuously try to rank their

websites higher than those of other companies, giving recognition

to their brand in a short period [106].

Other techniques, such as statistical analysis methods, particle

swarm optimization algorithms (proposed by Eberhart and Ken-

nedy in 1995) in combination with NNs, provided a better idea

about markets. They can help decide the marketing strategy for the

product based on accurate consumer-demand prediction [107].

AI in market prediction and analysis
The success of a company lies in the continuous development and

growth of its business. Even with access to substantial funds, R&D

output in the pharmaceutical industry is falling because of the

failure of companies to adopt new marketing technologies [108].

The advances in digital technologies, referred to as the ‘Fourth

industrial revolution’, is helping innovative digitalized marketing

via a multicriteria decision-making approach, which collects and

analyzes statistical and mathematical data and implements hu-

man inferences to make AI-based decision-making models explore

new marketing methodology [109].

AI also helped in a comprehensive analysis of the fundamental

requirements of a product from the customer’s point of view as

well as understanding the need of the market, which aid in

decision-making using prediction tools. It can also forecast sales

and analyze the market. AI-based software engages consumers and

creates awareness among physicians by displaying advertisements

directing them to the product site by just a click [110]. In addition,

these methods use natural language-processing tools to analyze

keywords entered by customers and relate them to the probability

of purchasing the product [111,112].

Several businesses to business (B2B) companies have announced

self-service technologies that allow free browsing of health pro-

ducts, easily found by giving its specification, place orders, and

track their shipping. Pharmaceutical companies are also introduc-

ing their online applications such as 1 mg, Medline, Netmeds, and

Ask Apollo, to fulfill the unmet needs of the patients [109].

Prediction of the market is also essential for various pharmaceuti-

cal distribution companies, which can implement AI in the field,

such as ‘Business intelligent Smart Sales Prediction Analysis’,

which uses a combination of time series forecasting and real-time

application. This helps pharmaceutical companies to predict the

sale of products in advance to prevent costs of excess stock or

prevent customer loss because of shortages [113].

AI in product cost
Based on the market analysis and cost incurred in the development

of the pharmaceutical product, the company determines the final

price of the product. The critical concept in applying AI to
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determine this price is harnessing its ability to mimic the thinking

of a human expert to assess the factors that control the pricing of a

product after its manufacture [114]. Factors, such as expenditure

during research and development of the drug, strict price regula-

tory schemes in the concerned country, length of the exclusivity

period, market share of the innovated drug after a year before are

patent expiry, price of the reference product, and price-fixing

policies determine the price of branded and generic drugs [115].

In ML, large sets of statistical data, such as product development

cost, product demand in the market, inventory cost, manufacturing

cost, and competitors’ product price, are analyzed by the software,

subsequently developing algorithms for predicting the product

price. AI platforms, such as In competitor, launched by Intelligence

Node (founded in the year 2012), is a complete retail competitive

intelligence platform that analyzes the competitor pricing data and

helps retailers and brands to monitor the competition. Wise Athena

and Navetti PricePoint enable the user to determine the pricing of

their product, suggesting that pharmaceutical companies can adopt

the same to assist product costing [116].

AI-based advanced applications
AI-based nanorobots for drug delivery
Nanorobots comprise mainly integrated circuits, sensors, power

supply, and secure backup of data, which are maintained via compu-

tational technologies, such as AI [117,118]. They are programmed to

avoid the collision, target identification, detect and attach, and

finally excretion from the body. Advances in nano/microrobots give

them the ability to navigate to the targeted site based on physiologi-

cal conditions, such as pH, thus improving the efficacy and reducing

systemic adverse effects [118]. Development of implantable nanor-

obots developed for controlled delivery of drugs and genes requires

consideration of parameters such as dose adjustment, sustained

release, and control release, and the release of the drugs requires

automation controlled by AI tools, such as NNs, fuzzy logic, and

integrators [119]. Microchip implants are used for programmed

release as well as to detect the location of the implant in the body.

AI in combination drug delivery and synergism/antagonism
prediction
Several combinations of drugs are approved and marketed to treat

complex diseases, such as TB and cancer, because they can provide

a synergistic effect for quick recovery [120,121]. The selection of

precise and potential drugs for combination requires high-

throughput screening of a considerable number of drugs, making

the process tedious; for example, cancer therapy requires six or

seven drugs as a combination therapy. ANNs, logistic regression,

and network-based modeling can screen drug combinations and

improve overall dose regimen [120,122]. Rashid et al. developed a

quadratic phenotype optimization platform for the detection of

optimal combination therapy for the treatment of bortezomib-

resistant multiple myeloma using a collection of 114 FDA-ap-

proved drugs. This model recommended the combination of

decitabine (Dec) and mitomycin C (MitoC) as the best two-drug

combination and Dec, MitoC, and mechlorethamine as the super-

ior three-drug combination [121].

Combinationdrugdeliverycanbemoreefficientifbackedupbydata

on the synergism or antagonism of drugs administered together. The

Master Regulator Inference Algorithm used ‘Mater regulator genes’ to
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efficiently predict 56% synergism. Other methods, such as Network-

based Laplacian regularized least square synergistic drug combination,

and RF, can also be used for the same [122].

Li et al. developed a synergistic drug combination model using

RF for the prediction of synergistic anticancer drug combinations.
FIGURE 4

Leading pharmaceutical companies and their association with Artificial Intelligen
cardiovascular diseases, and central nervous system disorders.
This model was formed based on gene expression profiles and

various networks, and the authors successfully predicted 28 syn-

ergistic anticancer combinations. They have reported three such

combinations, although the remainder might also prove to be

important [69]. Similarly, Mason et al. applied an ML approach,
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called the Combination Synergy Estimation, to predict potential

synergistic antimalarial combinations based on a data set of 1540

antimalarial drug compounds [123].

AI emergence in nanomedicine
Nanomedicines use nanotechnology and medicines for the diag-

nosis, treatment, and monitoring of complex diseases, such as

HIV, cancer, malaria, asthma, and various inflammatory diseases.

In recent years, nanoparticle-modified drug delivery has become

important in the field of therapeutics and diagnostics because they

have enhanced efficacy and treatment [121,124]. A combination

of nanotechnology and AI could provide solutions to many pro-

blems in formulation development [125].

A methotrexate nanosuspension was computationally formulat-

ed by studying the energy generated on the interaction between the

drug molecules, monitoring the conditions that could lead to the

aggregation of the formulation [83]. Coarse-grained simulation,

along with chemical calculation, can aid the determination of drug-

–dendrimer interactions and evaluation of drug encapsulation with-

in the dendrimer. In addition, software such as LAMMPS and

GROMACS 4 can be used to examine the impact of surface chemistry

on the internalization of nanoparticles into cells [83].

AI assisted the preparation of silicasomes, which is a combina-

tion of iRGD, a tumor-penetrating peptide, and irinotecan-loaded

multifunctional mesoporous silica nanoparticles. This increased

the uptake of silicasomes three–fourfold because iRGD improves

the transcytosis of silicasomes, with improved treatment outcome

and enhanced overall survival [124].

Pharmaceutical market of AI
To decrease the financial cost and chances of failures that accom-

pany VS, pharmaceutical companies are shifting towards AI. There

was an increase in the AI market from US$200 million in 2015 to

US$700 million in 2018, and is expected to increase to $5 billion

by 2024 [126]. A 40% projected growth from 2017 to 2024 indi-

cates that AI will likely revolutionize the pharmaceutical and

medical sectors. Various pharmaceutical companies have made

and are continuing to invest in AI and have collaborated with AI

companies to developed essential healthcare tools. The collabora-

tion of DeepMind Technologies, a subsidiary of Google, with the

Royal Free London NHS Foundation Trust for the assistance of

acute kidney injury, is an example of this. Major pharmaceutical

companies and AI players are detailed in Figure 4 [19].

Ongoing challenges in adopting AI: leads on ways to
overcome
The entire success of AI depends on the availability of a substantial

amount of data because these data are used for the subsequent

training provided to the system. Access to data from various

database providers can incur extra costs to a company, and the

data should also be reliable and high quality to ensure accurate

result prediction. Other challenges that prevent full-fledged adop-

tion of AI in the pharmaceutical industry include the lack of skilled

personnel to operate AI-based platforms, limited budget for small

organizations, apprehension of replacing humans leading to job

loss, skepticism about the data generated by AI, and the black box

phenomenon (i.e., how the conclusions are reached by the AI

platform) [6].
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Automation of certain tasks in drug development, manufactur-

ing, and supply chains, clinical trials, and sales will take place with

time, but these all fall under the category of ‘narrow AI’; where AI

has to be trained using a large volume of data and, thus, makes it

suitable for a particular task. Therefore, human intervention is

mandatory for the successful implementation, development, and

operation of the AI platform. However, the fear of unemployment

could be a myth given that AI is currently is taking over repetitive

jobs, while leaving scope for human intelligence to be used for

developing more complicated insights and creativity.

Nevertheless, AI has been adopted by several pharmaceutical

companies, and it is expected that a revenue of US$2.199 billion

will be created by 2022 through AI-based solutions in the pharma-

ceutical sector, with an investment exceeding US$7.20 billion across

300+ deals between 2013 and 2018 by the pharmaceutical industry

[127]. Pharmaceutical organizations need clarity about the potential

of AI technology in finding solutions to problems once it has been

implemented, along with understanding the reasonable goals that

can be achieved. Skilled data scientists, software engineers with a

sound knowledge of AI technology, and a clear understanding of the

companybusiness targetanditsR&D goal can bedevelopedtoutilize

the full potential of the AI platform.

Concluding remarks and prospects
The advancement of AI, along with its remarkable tools, continu-

ouslyaims to reduce challenges faced by pharmaceutical companies,

impacting the drug development process along with the overall

lifecycle of the product, which could explain the increase in the

number of start-ups in this sector [23]. The current healthcare sector

is facing several complex challenges, such as the increased cost of

drugs andtherapies, and society needs specific significant changes in

this area. With the inclusion of AI in the manufacturing of pharma-

ceutical products, personalized medications with the desired dose,

release parameters, and other required aspects can be manufactured

according to individual patient need [85]. Using the latest AI-based

technologies will not only speed up the time needed for the products

to come to the market, but will also improve the quality of products

and the overall safety of the production process, and provide better

utilization of available resources along with being cost-effective,

thereby increasing the importance of automation [128].

The most significant worry regarding the incorporation of these

technologies is the job losses that would follow and the strict

regulations needed for the implementation of AI. However, these

systems are intended only to make work easier and not to

completely replace humans [129]. AI can not only aid quick

and hassle-free hit compound identification, but also contribute

to suggestions of synthesis routes of these molecules along with

the prediction of the desired chemical structure and an under-

standing of drug–target interactions and its SAR.

AI can also make major contributions to the further incorpo-

ration of the developed drug in its correct dosage form as well as its

optimization, in addition to aiding quick decision-making, lead-

ing to faster manufacturing of better-quality products along with

assurance of batch-to-batch consistency. AI can also contribute to

establishing the safety and efficacy of the product in clinical trials,

as well as ensuring proper positioning and costing in the market

through comprehensive market analysis and prediction. Although

there are no drugs currently on the market developed with
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AI-based approaches and specific challenges remain with regards

to the implementation of this technology, it is likely that AI will

become an invaluable tool in the pharmaceutical industry in the

near future.
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