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Aristotle first described emergent systems as being greater than the sum of their parts: “the 

totality is not, as it were, a mere heap, but the whole is something besides the parts.”1 

Emergence occurs when an entity has properties that its individual components do not have, 

but are attributable to interactions among its components. Recognizing and understanding 

emergent systems is important because attempts to interpret and influence them by their 

individual components are often unsuccessful.

Emergent systems arise when individual units take simple actions, creating a transcendent 

pattern. Harvester ants systematically leave their colony searching for food, return at a rate 

correlating with its availability, and no longer depart if foragers do not return for an 

extended period, resembling the Transmission Control Protocol algorithm that manages 

internet data congestion.2 Autonomous actions by stock traders generate sophisticated 

market patterns that transcend individual decisions made within another emergent system: 

the human brain, composed of individual neurons whose coordinated actions produce 

consciousness and executive function.

Some diseases should be regarded as emergent systems. Frailty may be recognized by 

combinations of unintentional weight loss, exhaustion, weakness, slow walking speed, and 

low physical activity. This diagnostic approach fails to accurately represent complex 

interactions among physical, cognitive, social, and biologic factors producing accumulation 

of comorbidities, loss of compensatory reserve, and increased vulnerability to illness.3 Not 

surprisingly, frailty phenotyping and prognostication are often inconsistent and inaccurate.

Frailty increases perioperative and postoperative morbidity and mortality, along with 

hundreds of other risk factors whose relationships with outcomes are influenced by complex, 

non-linear interactions among diseases and host factors. Accordingly, preoperative risk 

stratification is evolving from additive scoring systems and regression-based calculators to 

machine learning algorithms which may be more accurate than online calculators and 

physicians in predicting adverse events, including another emergent system: sepsis.4,5 The 

definition of sepsis conveys depth and complexity: “life-threatening organ dysfunction 

caused by a dysregulated host response to infection.” Organ dysfunction is graded by the 
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sequential organ failure assessment (SOFA) score which uses static variable thresholds for a 

small number of parameters without considering the associations among them. Immune 

dysregulation is absent from clinical sepsis phenotyping methods.

Frailty, operative risk, and sepsis emerge from complex, non-linear underlying pathology. 

Traditional phenotyping and risk assessment tools do not accurately represent these 

emergent systems, but artificial intelligence models do. State-of-the art phenotyping and 

surgical risk assessment could be achieved by expert classification of high-quality training 

datasets paired with artificial intelligence models that use natural language processing to 

capture written clinical assessments and computer vision to analyze imaging findings like 

psoas muscle indices, automatically detecting phenotypes by time-honored classification 

systems while discovering new phenotypes, identifying candidates for clinical trial 

enrollment, providing accurate risk assessments, and augmenting surgical decision-making.

This approach could be used in surgical wards and intensive care units (ICUs), which often 

depend on sporadic, manual assessments of important parameters like pain and physical 

function and require time-consuming review of massive amounts of data by busy surgeons 

making decisions during and between cases. Deep learning has been applied to sequential 

time-series electronic health record physiologic data, producing accurate real-time in-

hospital mortality predictions with greater accuracy than traditional additive acuity scores.6 

New technologies will allow deep models to see more data from more unique sources. An 

ICU patient assessment platform could continuously assess visual cues for pain and physical 

function, combine these inputs with live-streaming physiologic data anchored to a robust 

characterization of acute and chronic medical conditions derived from the electronic health 

record, and use deep models to predict imminent adverse events and long-term outcomes 

(Figure 1). A similar approach could surveil ward patients for decompensation and alert 

rapid response teams.

Beyond phenotyping and risk assessment, artificial intelligence models are capable of 

recommending resuscitation and vasopressor administration strategies for septic patients by 

identifying the treatment strategy with the highest odds of survival.7 Similar methods could 

be used to augment surgical decision-making for source control of infection and any other 

clinical scenario for which big data are available. Decision-making under time constraints 

with incomplete information may force reliance on heuristics, or cognitive shortcuts, which 

are prone to bias and error. With years of training, human intuition, and use of de-biasing 

strategies like morbidity and mortality conferences and surgeon-specific registries, surgeons 

are in the best position to offer wisdom and advice about surgical diseases to patients and 

their caregivers. Artificial intelligence can augment this process by providing real-time 

recommendations for strategies with the highest probability of success.

Unfortunately, deep and reinforcement learning models offer little insight regarding the 

relative importance of model inputs in determining outputs. Self-attention mechanisms and 

probabilistic graphical models provide visual representations of model activities, but lack 

mechanistic detail. Technological advances and scientific rigor must answer this call. 

Artificial intelligence should be used to augment human decision-making rather than replace 

it. A surgeon makes mistakes one at a time, but an errant model could harm hundreds or 
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thousands of patients around the world in a short period of time. Artificial intelligence 

models must be trained on high-quality data, outputs must be carefully interpreted by well-

trained clinicians, and their performance must be directly compared with traditional scoring 

systems in prospective clinical trials to validate observations from retrospective studies. 

Because emergent systems affect medical and surgical patients of all ages, future 

investigations should test applications of artificial intelligence to emergent systems across 

the field of medicine.

Traditional methods for patient phenotyping, risk assessment, and augmented decision-

making are ill-equipped to address the complex, non-linear underlying pathology of 

emergent systems. Thoughtful integration of deep and reinforcement learning harbors the 

potential to enhance shared decision-making regarding informed consent and resource 

utilization, facilitate early identification of patients at increased risk for adverse events, 

recommend optimal treatment strategies, and promote the development of targeted 

preventative and therapeutic measures for established and yet undiscovered phenotypes.
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Figure 1: 
Traditional and emergent approaches to patient assessment on surgical wards and intensive 

care units.
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