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Abstract
Objective
To further clarify the molecular pathogenesis of RNA polymerase III (Pol III)-related leuko-
dystrophy caused by biallelic POLR1C variants at a cellular level and potential effects on its
downstream genes.

Methods
Exome analysis andmolecular functional studies using cell expression and long-read sequencing
analyses were performed on 1 family with hypomyelinating leukodystrophy showing no clinical
and MRI findings characteristic of Pol III–related leukodystrophy other than hypomyelination.

Results
Biallelic novel POLR1C alterations, c.167T>A, p.M56K and c.595A>T, p.I199F, were identified
as causal variants. Functional analyses showed that these variants not only resulted in altered
protein subcellular localization and decreased protein expression but also caused abnormal
inclusion of introns in 85% of the POLR1C transcripts in patient cells. Unexpectedly, allelic
segregation analysis in each carrier parent revealed that each heterozygous variant also caused
the inclusion of introns on both mutant and wild-type alleles. These findings suggest that the
abnormal splicing is not direct consequences of the variants, but rather reflect the downstream
effect of the variants in dysregulating splicing of POLR1C, and potentially other target genes.

Conclusions
The lack of characteristic clinical findings in this family confirmed the broad clinical spectrum of
Pol III–related leukodystrophy. Molecular studies suggested that dysregulation of splicing is the
potential downstream pathomechanism for POLR1C variants.
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RNA polymerase III (Pol III)-related leukodystrophy is
characterized by hypomyelination in the CNS with various
additional manifestations such as hypogonadotropic hypo-
gonadism, hypodontia, cerebellar ataxia, and atrophy of the
corpus callosum. After the proposal of multiple clinical
entities,1,2 the discovery of pathogenic variants in genes
encoding 2 major subunits of Pol III, POLR3A and POLR3B,3,4

in the majority of patients led to the concept of Pol III–related
leukodystrophy being emerged.5 Recently, variants in yet an-
other gene coding for Pol III complex, POLR1C, were identi-
fied in patients who were negative for, but showed clinical
features similar to those with, POLR3A and POLR3B variants.6

Here, we report a patient with novel POLR1C pathogenic
variants, who showed clinical and imaging features compatible
with hypomyelinating leukodystrophy without additional
features characteristic of Pol III–related leukodystrophy. We
also propose a potential molecular mechanism of POLR1C
variants involving dysregulation of splicing.

Methods
This study was approved by the Institutional Review Board of
the National Center of Neurology and Psychiatry. Genomic
DNA and total RNA were extracted from the peripheral blood
of the patient and parents. For DNA diagnostic testing, we
performed quantitative PCR for the screening of PLP1 dupli-
cation, followed by exome sequencing for Mendelian disease
panel (TruSight One, Illumina), as we previously performed
according to the manufacturer’s protocol.7 POLR1C comple-
mentary DNAs were obtained by reverse transcriptase (RT)-
PCR, which were cloned into an expression vector, pcDNA3.1
(Invitrogen) with FLAG-tag at the N-terminus, for subsequent
Sanger sequencing and transient expression studies in HeLa
cells forWestern blotting and fluorescent immunostaining. For
long-read next-generation sequencing, barcoded RT-PCR
products (control, father, mother, and patient) were se-
quenced on a single MinION R9.4 flow cell (Nanopore).

Data availability
Any data not published within the article will be shared by
request from any qualified investigator.

Case report
The patient was a Japanese boy without a family history of
neuromuscular diseases and had normal neurodevelopment
during infancy. At age 2 years, he developed action tremor of
his fingers, had difficulty in writing, and showed early signs of
motor dyspraxia. At age 3 years, he developed amblyopia
secondary to hypermetropia and astigmatism.Myopia was not
noted. At age 3 years and 10 months, he presented with action

tremors in fingers, but there were no other neurologic ab-
normalities. He showed a developmental quotient of 105
(Enjoji analytical developmental test for infants and toddlers).
Subsequently, he became neurodevelopmental abilities stag-
nated and regressed in his daily activities and nystagmus be-
came apparent. On his visit at age 5 years and 9 months, he
had a short stature with 101.4 cm (−2.1 SD) tall without
apparent microcephaly, facial abnormalities, or ambiguous
genitalia. No delay or abnormal order in dentation was noted.
He exhibited lateral nystagmus, action tremors, and slurred
speech. The finger-to-nose, pronosupination, and tandem
walk tests showed mild dysmetria and ataxia. Deep tendon
reflexes of the lower limbs were increased. He exhibited a
staggering wide-based gait and was unable to stand on 1 leg
for more than 2 seconds. Both parents were intellectually and
physically normal with no neurologic findings.

We performed several tests at age 5–6 years. Laboratory tests
revealed prepubertal patterns of pituitary gonadotropins and
testosterone. The Wechsler Intelligence Scale for Children,
fourth edition, showed regression with a full-scale intelligence
quotient of 70. Peripheral nerve conduction velocities and au-
ditory brainstem responses were normal. EEG was normal. MRI
showed diffuse T2 hyper- and T1 iso-intensities in the white
matter, indicating hypomyelination (figure 1, A and B). T1 and
T2 shortening in the optic radiation, the ventrolateral thalamus,
and the dentate nucleus was noted, as typically observed in Pol
III–related leukodystrophy (figure 1, A–C).8 Cerebellar atrophy
or thinning of the corpus callosum was not evident (figure 1, C
and D). MRIs of the parents were not available.

Results
After PLP1 duplication was excluded, the panel exome se-
quencing identified 2 novel heterozygous missense variants in
exon 3 and exon 6 of the POLR1C gene (NM_203290.3:
c.167T>A, p.M56K and c.595A>T, p.I199F, respectively;
figure 1E). Parental segregation analysis confirmed com-
pound heterozygosity. In silico prediction analyses revealed
both variants to be pathogenic at different levels (figure 1F).
RT-PCR using the patient’s sample showed increased pro-
portion of splicing variants with a combination of full intron 3
and/or half/full intron 4 inclusions, all of which are pre-
sumably nonfunctioning variants with premature termination
codons on sequence validation (figure 2, A and B). The pa-
tient’s major transcript was the variant including both intron 3
and intron 4. Three representative variants expressed in HeLa
cells showed that p.M56K alone did not change the protein
stability, but the nuclear localization was modestly diminished
(figure 2, C–G). p.M56K with intron 3 and intron 4 inclusion
significantly decreased the protein level. Meanwhile, p.I199F

Glossary
Pol III = polymerase III.
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caused cytosolic punctation and reduced protein expression
(figure 2, C–H). The punctation did not overlap with lyso-
somal marker Lamp1, an autophagosome marker LC3, or
with the proteosome marker, ubiquitin (data not shown).

To our surprise, both parents also showed increased proportion
of the intron 3/4 inclusion variant (figure 2A), which prompted
us to use long-read next-generation sequencing to obtain deep
reads of all variants with allelic segregation. Mapping patient
POLR1C transcripts on genome demonstrated that they were
biallelic, andmore than 85% of correctly mapped transcripts were
intron-containing variants (figure 3A). Both parents also showed
apparently increased proportion of intron-containing variants
(64% in the father and 52% in the mother). These findings
suggested 2 possible mechanisms: (1) both c.167T>A and
c.595A>T variants directly affected the splicing to properly
remove intron 3/4, or (2) splicing abnormality resulted from
impaired function of Pol III target genes that play roles in the
maintenance of splicing. To delineate these 2 possibilities, the

parental reads of each allele were remapped to determinewhether
each variant affected splicing in cis or trans. Surprisingly, the
proportion of intron-containing variants was equivalent between
wild-type and mutant alleles in both parents, indicating that both
variants affect splicing in trans (figure 3B). Because it is unlikely
that the variant in one allele directly affects the splicing of the
other, this trans effect is probably driven by the latter hypothesis.

Discussion
In this study, we reported 1 family with novel POLR1C
compound heterozygous variants. Clinically, our patient so far
had no characteristic features of Pol III–related leukodystro-
phy, such as dental abnormality and hypogonadism, and no
cerebellar atrophy and thinning of the corpus callosum. Al-
though these features are common in patients with POLR3A
or POLR3B variants,9 thereby serving as diagnostic key fea-
tures, findings other than hypomyelination are not necessarily

Figure 1 MRI and POLR1C variants

BrainMRI of the present patient examined at age 5 years 9months. (A) T2-weighted axial image shows diffusely elevatedwhitematter signal. T2 shortening in
the optic radiation and the ventrolateral thalamus is noted. (B) T1-weighted axial shows high to iso-signal, consistent with hypomyelination. T1 shortening in
the optic radiation and the ventrolateral thalamus is noted. (C) T2-weighted axial image shows no sign of cerebellar atrophy. (D) FLAIR sagittal image
demonstrates no thinning of the corpus callosum or cerebellar atrophy. (E) POLR1C Sanger sequence chromatograms showing compound heterozygous
c.T167A:p.M56K and c.A595T:p.I199F variants in the patient (top) inherited from each parent (middle and bottom). Lower panels show the deduced amino
acid change in each allele. (F) In silico prediction of pathogenicity. FLAIR = fluid-attenuated inversion recovery.
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present in all cases.10 Previously reported 32 cases with
POLR1C variants presented with at least one of these
features.6,11,12 Thus, the present case also suggested that
lacking characteristic features of Pol III–related leukodystro-
phy does not exclude the presence of POLR1C variants.

The molecular mechanisms underlying POLR1C variants
causing hypomyelination remain unknown. We showed that
the POLR1C variant on each allele does not only affect the
subcellular localization and/or amount of the protein but
also affects the splicing that removes the intron 3/4. Allelic

Figure 2 Molecular effects of POLR1C variants

Agarose gel electrophoresis images of RT-PCR products using total RNA from blood cells, amplifying (A) the entire length and (B) exon 2–exon 5 of POLR1C cDNA.
(A) Although a normal control (NL) shows a single 1-Kb band (white arrowhead), the patient (PT) showed longer abnormal bands (red arrowheads) along with a
fainter normal band. Both the father (FA) and the mother (MO) also showed abnormal bands with different intensities. (B) In addition to the expected 340-bp
normal band (white arrowhead), 3 additional bands were observed in both the normal and patient samples (red arrowheads). Band isolation and sequencing
confirmed that the strongest amplicon in the patient (842bpband) includedboth intron 3 and intron 4 (int3 + int4). The others contain either the entire or the first
half of intron 4 (int4 or int4-half, respectively). (C) A scheme of each variant transcript cloned into an expression vector, pcDNA3.1. Arrowheads indicate each
variant. M2 includes intron 3 and intron 4 (int3 + int4) flanking exon 3. (D) Western blot of POLR1C variants transiently expressed in HeLa cells. Upper panel:
POLR1C; middle panel: enhanced green fluorescent protein (EGFP) (cotransfected as an inner control for normalization of transfection efficiency); lower panel:
actin (loading control). Cells were harvested after 24 hours of transfection. An anti-FLAG antibody was used to visualize exogenous POLR1C. The sizes of the M2
bandappear tobe thesameasWT, suggesting that these intronsarepartially splicedoutbefore translation. Truncatedproteinwasnot observed,presumablydue
to the removal by nonsense-mediated messenger RNA decay before translation. (E) Quantification of the POLR1C protein level. Experiments were performed in
triplicates. POLR1Cwasnormalized toEGFP. The y-axis indicates relative value to the average ofwild type. (F) Fluorescent immunostaining ofHeLa cells transiently
expressingwild-type andmutant POLR1C. Subcellular localizationof exogenousproteinwasdeterminedusing anti-FLAGantibody. Bar indicates 20μm.Wild-type
POLR1C showed strong nuclear expression (WT). The M56K mutant showed reduced nuclear staining (M1). The I199F mutant showed prominent cytosolic
punctations (yellowarrowheads;M3).DAPInuclear staining showsblue signals. ImageswereobtainedusingKeyenceBZ-X710 fluorescencemicroscope (Keyence,
Japan). (G) Quantification of nuclear localization. Using imaging software (Keyence), the ratio of signal intensities of the nucleus and cytosol wasmeasured (n = 30
cells per group). (H) The proportion of cells with cytosolic punctationswas calculated inmore than 300 cells (10 fields [30–40 cells per field] at 200×magnification).
Error bars indicated standard errors. *p < 0.05, **p < 0.01, ***p < 0.001. One-way analysis of variance.
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Figure 3 Depth of coverage of aligned reads of POLR1C cDNA

(A) Top: schematic representation of POLR1C consisting of 9 exons (black rectangles). We examined transcript variant 1 (NM_203290.3). Bottom: the bar graph
shows the sequence depth at each position, and the number shows the average depth of exons and introns. Red numbers highlight aberrant transcripts. In
addition to intron 3 and intron 4 inclusion, skipping of exon 7 was evident in a small proportion of transcripts. From the top: control (blue), father (green),
mother (light blue), andpatient (yellow). The proportion of aberrant splicing variantswas obtained by dividing the highest read count of intron 4by the highest
read count of all exons (e.g., 77879/91464 in the patient). (B) Alignment of each allelic reads. The c.167T and c.167A allele reads were selected from sequence
reads of the father, and the c.595A and c.595T allele reads were selected from those of themother. Ten thousand reads of each allele were aligned. Therewas
no obvious difference in the proportion of variants with intron inclusions between the 2 alleles in each parent.
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segregation studies using a long-read sequencing technology
in the patient revealed a large proportion of abnormal
splicing variants. Moreover, the analyses in the parental
samples showed 2 unexpected findings. First, in addition to
the exon 3 variant, the exon 6 variant also affected splicing
even in a heterozygous status, indicating that hap-
loinsufficiency of POLR1C caused molecular deficits despite
the autosomal recessive mode of inheritance. Second, each
allelic variant caused the inclusion of introns on both alleles.
This most likely resulted from altered transcription of Pol III
target genes that play a role in the regulation of splicing of
POLR1C. As one such candidate, we examined the expres-
sion of U6 snRNA, which plays a central role in spliceo-
some,13 but was not altered in either the patient nor his
parents (data not shown). Although the exact effectors
downstream of the POLR1C variants remain unknown, our
findings provide a potential molecular mechanism for
POLR1C variants that affect the activity of Pol III and
transcription of its target genes, which may lead to dysre-
gulation of splicing of genes including POLR1C.

In conclusion, we reported 1 family with hypomyelinating
leukodystrophy caused by novel POLR1C variants. Both
pathogenic variants resulted in changes in subcellular lo-
calization and reduction in protein levels, as well as inclusion
of introns, which presumably resulted in loss of function.
Allelic segregation analyses of full-length transcripts in both
patient and parents revealed that the aberrant splicing vari-
ants are not direct consequences of the coding variants, but
rather reflect the downstream effect of the variants in dys-
regulating splicing of POLR1C, and potentially other target
genes.
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