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SUMMARY

Sequential activation of neurons has been observed during various behavioral and cognitive 

processes, but the underlying circuit mechanisms remain poorly understood. Here we investigate 

premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the 

performance of the temporally precise courtship song. We use high-density silicon probes to 

measure song-related population activity, and we compare these observations with predictions 

from a range of network models. Our results support a circuit architecture in which heterogeneous 

delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor 

neuron activity. We gauge the impact of several delay sources, and we find the primary contributor 

to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 

7.5 ms for each link within the sequence. Thus, local axonal ‘delay lines’ can play an important 

role in determining the dynamical repertoire of neural circuits.
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Etoc:

By recording and modeling sequential activity in neurons involved in motor control during the 

complex behavior of singing in zebra finch, Egger et al., determine that local ultraslow axonal 

conduction between sequentially active neurons generates network delays that underlie the pattern 

of network activity within the circuit.
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INTRODUCTION

Sequential neural activity in local brain areas is thought to play a critical role in behaviors 

such as motor control (Luczak et al., 2015; Mauk and Buonomano, 2004; Peters et al., 2014; 

Prut et al., 1998), navigation (Foster and Wilson, 2007; Pastalkova et al., 2008), and 

decision-making (Mello et al., 2015; Schmitt et al., 2017). A variety of mechanisms have 

been proposed to underlie the generation of neural sequences (Diesmann et al., 1999; Fiete 

et al., 2010; Goldman, 2009; Hahnloser et al., 2002; Kleinfeld and Sompolinsky, 1988; Laje 

and Buonomano, 2013; Rajan et al., 2016), but experimental tests of these network models 

have been stymied by the scarcity of data sets that relate behavior, network function and 

circuit structure. The zebra finch song system is ideally suited for studying the mechanistic 

basis of neural sequence generation. Each adult male zebra finch produces a courtship song 

that is nearly identical from one rendition to the next (Glaze and Troyer, 2006), consisting of 
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~3–7 discrete vocal elements known as ‘syllables’. Many lines of evidence have suggested 

that neural activity controlling the moment-to-moment timing of song production is 

primarily mediated by a single brain region, called HVC (proper name) (Hahnloser et al., 

2002; Long and Fee, 2008; Nottebohm et al., 1976; Vu et al., 1994). A population of 

HVC(RA) projection neurons sends these premotor commands to a primary motor cortical 

site (i.e., the robust nucleus of the arcopallium, or RA) which in turn drives motoneurons 

(Wild, 1993) controlling the millisecond-resolution timing of muscle commands that directly 

impact behavioral output (Adam and Elemans, 2020).

The HVC premotor sequence is composed of roughly 20,000 HVC(RA) neurons, each 

producing high-frequency bursts of action potentials (~4–5 spikes/burst, ~5–10 ms duration) 

at a single moment during the song (Hahnloser et al., 2002; Kozhevnikov and Fee, 2007). At 

a population level, different HVC(RA) neurons are often active at different moments of the 

song, whose length typically ranges from ~0.5–1.0 seconds. Several models have been 

proposed to explain HVC sequence generation (Cannon et al., 2015; Galvis et al., 2018; 

Gibb et al., 2009; Hamaguchi et al., 2016; Jin et al., 2007; Long et al., 2010; Pehlevan et al., 

2018). A feature at the heart of many of these models is local connectivity between 

HVC(RA) neurons capable of propagating activity from earlier to later steps in the song 

sequence. Previous work had demonstrated the existence of these interconnections (Kornfeld 

et al., 2017; Kosche et al., 2015; Mooney and Prather, 2005). However, the size of HVC(RA)-

HVC(RA) synapses appears to be somewhat restricted (Kornfeld et al., 2017), leading to 

unitary postsynaptic potentials of approximately 2 mV (Mooney and Prather, 2005), 

considerably smaller than the depolarization observed during a song-related burst (~10–15 

mV) (Long et al., 2010), suggesting that multiple convergent presynaptic inputs are required. 

The exact identity of these presynaptic partners (i.e., specific timing, spatial location) 

remains unknown, due in part to the technical difficulties in measuring synaptic connectivity 

between sequentially active neurons during behavior.

As an alternative means of addressing the mechanisms of song-related sequence generation, 

we leverage detailed measurements of circuit, synaptic and biophysical properties of zebra 

finch HVC neurons (Benezra et al., 2018; Kornfeld et al., 2017; Kosche et al., 2015; Long et 

al., 2010; Mooney and Prather, 2005) to develop network models of HVC(RA) sequence 

generation where the only free parameter is the connectivity of presynaptic partners. These 

models predict millisecond-timescale differences in HVC population activity that had eluded 

existing experimental measurements. Specifically, previous electrophysiological studies had 

been restricted to measuring responses from individual projection neurons (Hahnloser et al., 

2002; Long et al., 2010) or occasionally pairs (Lynch et al., 2016), forcing investigators to 

retrospectively construct an inferred sequence by relating each measured time point to the 

produced song. Such an approach can address questions of representation within HVC 

(Amador et al., 2013; Lynch et al., 2016), but it does not allow for the direct observation of 

neural sequences that unfold during singing.

We overcome these obstacles by using high-density silicon probes to measure song-related 

sequential activity of up to 70 simultaneously recorded projection neurons and find that our 

data strongly favor a network configuration in which axonal conduction delays between 

sequentially active cells help to distribute the timing of premotor bursts throughout the 
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duration of the song. We then use fluorescence imaging during singing to demonstrate the 

impact of these delays on the spatial patterns of activated neurons within HVC. To explore 

the universality of this mechanism, we estimated the distribution of axonal conduction 

delays in rodent layer 4 (L4) neocortical neurons and found them to be consistent with those 

we describe in the songbird. Hence, axonal conduction delays may play a key role in 

shaping network activity across a range of local brain circuits.

RESULTS

Measurement and modeling of network sequences in HVC

We first sought to determine the fine temporal structure of song-related sequences within 

HVC using high-density silicon probes (Figure 1A), which we used to monitor the spiking 

activity of 291 HVC projection neurons in 5 birds during song production. We 

simultaneously recorded between 45 and 70 projection neurons over observation periods 

lasting 1 to 4.5 hours. We used antidromic responses and other electrophysiological features 

(see Methods, Figure S1) to distinguish HVC(RA) neurons (n = 83) from those projecting to 

the basal ganglia (HVC(X) neurons, n = 208). We observed stable sequences (11 to 20 

HVC(RA) burst events per bird) that could be clearly visualized in single trials (Figures 1B 

and 1C).

Previous manipulations of HVC activity during singing support the idea that song-related 

sequences are sustained by local circuitry (Long and Fee, 2008; Vu et al., 1994). As 

discussed above, most network models (Galvis et al., 2017; Long et al., 2010; Pehlevan et 

al., 2018) suggest a functionally feedforward architecture in which connected chains of 

neurons generate reliable sequential activity, and it is likely that convergent inputs from 

multiple presynaptic partner neurons are required to drive burst spiking during singing 

(Figure 1D). There are two categorically different means of accomplishing this arrangement. 

In the first, each HVC(RA) neuron is driven by a synchronously active presynaptic 

population (Figure 1E). In the second, presynaptic populations are active at a range of 

different times which are accompanied by matching delays that enable simultaneous 

integration at the postsynaptic neuron (Figure 1F).

To examine whether these connectivity schemes could result in measurable differences in the 

population activity of HVC(RA) neurons, we constructed two network models (see Methods; 

Figure S2) constrained by previous experimental observations (Benezra et al., 2018; 

Kornfeld et al., 2017; Kosche et al., 2015; Long et al., 2010; Mooney and Prather, 2005) and 

differing only in the degree of synchrony of presynaptic neurons. Resultant population 

activity patterns from these two arrangements were categorically distinct: Sequences in the 

‘synchronous model’ (Figure 1E) consisted of a series of co-active groups of neurons, while 

network activity in the ‘asynchronous model’ (Figure 1F) was smoothly evolving in time. 

Since HVC determines motor timing within the zebra finch song production pathway, each 

model suggests qualitatively different ‘population clock’ dynamics (Buonomano and 

Karmarkar, 2002; Paton and Buonomano, 2018) – either with discrete ‘ticks’ at a ~6–7 ms 

timescale (synchronous model) or with a higher resolution, continuous timing signal 

throughout the behavior (asynchronous model).
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Using population recordings to estimate HVC network structure

To distinguish between synchronous and asynchronous network activity, our measurements 

must be significantly more precise than the relevant timescales of our model predictions 

(i.e., the interburst interval of the synchronous model). One existing source of temporal jitter 

is behavioral variability. Consistent with previous reports (Glaze and Troyer, 2006), the 

duration of zebra finch songs in our data set varied by 1.8 ± 0.4% across renditions (Figure 

2A, n = 5 birds, 12 to 47 song motif renditions per bird). These variations were accompanied 

by correlated differences in spike timing, where activity of neurons later in the sequence was 

shifted in proportion to the change in overall song duration (Figures 2B and 2C). To 

compensate for this source of variability, we aligned neural sequences across different trials 

to each other using linear transformations (see Methods). After alignment, burst onset times 

were extremely precise (Figures 2D and 2E; HVC(RA): 0.64 ± 0.29 ms; HVC(X): 0.72 ± 0.46 

ms; median ± median absolute deviation). Therefore, our electrophysiological measurements 

of HVC projection neuron activity have the temporal precision to distinguish between the 

two models presented above (Figures 1E and 1F).

Our next step was to leverage the submillisecond timing precision of our recordings to test 

specific predictions concerning the relative timing of song-related burst firing: In the 

synchronous model (Figure 1E), network activity should be periodic (i.e., occurring only in 

specific time steps), while the asynchronous model (Figure 1F) predicts continuous coverage 

of activity throughout the song. We examined cases in which multiple projection neurons 

were recorded during individual syllables, consisting of 66 HVC(RA) and 216 HVC(X) total 

bursts. Burst events within syllables did not exhibit any obvious regularity (Figures 2F and 

2G), which would have been indicative of the synchronous model. To detect the presence of 

any such periodic structure in population activity, we used a Fourier analysis to analyze burst 

onset times for all HVC projection neurons as well as for HVC(RA) neurons, considered 

separately (Figure 2G).

We formally tested existing network models by comparing the relative timing of HVC 

projection neuron bursts (Figure 2) with predictions generated from the proposed 

synchronous and asynchronous circuit configurations (Figures 1E and 1F, 3A and 3B). 

Importantly, we set the number of simulated burst times to match our observations (i.e., 282 

total HVC projection neuron bursts in 22 syllables and 66 HVC(RA) bursts in 15 syllables) to 

ensure that our data set would be sufficient to distinguish between these models. The 

synchronous model predicted a peak in the power spectrum at ~170 Hz (Figures 3C and 

Figure S3), corresponding to a ~6 ms interval between time steps (e.g., Figure 1E). In 

contrast, the power spectrum predicted by the asynchronous model, which generates a 

uniform coverage of bursts throughout the song (e.g., Figure 1F), was flat within this 

frequency range (Figure 3D). When we compared these simulations with measured burst 

times, we found that our data set was strongly aligned with the predictions of the 

asynchronous model (synchronous model: p < 10−4 for HVC projection neurons and 

HVC(RA) only, asynchronous model: p = 0.90 for HVC projection neurons and p = 0.52 for 

HVC(RA) neurons, bootstrap, see Methods).

The synchronous and asynchronous models represent only two specific network 

configurations out of a large range of possibilities. To systematically explore the relationship 
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between burst transmission delays and circuit dynamics, we varied both the mean (Figure 

3E) and standard deviation (SD; Figure 3F) of our delay distribution over an order of 

magnitude. We then generated a network model for each case and simulated a family of 

burst times to compare with observed data, now restricting our analysis to measured 

sequences of HVC(RA) neurons (Figures 1G, 3A and 3B). When the delay distribution was 

narrow or the mean delay was very short, simulated HVC sequences were composed of 

bursts in discrete time steps. However, delay distributions exceeding a minimum mean and 

SD, led to smooth simulated network sequences, as observed in HVC during song (Figure 

2G). This effect was robust to the presence of recurrent (i.e., non-feedforward) connections 

(Figures S4A and S4B) as well as the precise shape of the delay distribution (Figure S4C). 

Thus, our simulations support the hypothesis that delays could provide a robust mechanism 

for the formation of smooth sequences, as observed within HVC during song.

Biophysical origin of HVC circuit delays

What neural processes can create such delays? For instance, the time between the arrival of a 

spike at the axon terminal to the start of the postsynaptic potential is typically exceptionally 

short (~150 μs (Sabatini and Regehr, 1996), and therefore unlikely to explain the smooth 

network sequences we observe. On the other hand, delays related to postsynaptic integration 

and axonal conduction velocity have the potential to be significant. Here we consider each of 

these parameters as they apply to HVC network function.

Postsynaptic integration can generate heterogeneous delays in two primary ways. First, 

synaptic inputs are spatially summated from separate regions of the dendritic arbor allowing 

for the possibility that distal and proximal inputs can arrive at the soma at different times. 

Such spatial summation is unlikely to affect HVC(RA) neurons, however; their dendrites are 

short (< 100 μm) and radiate from the somata equally in all directions, leading to a spherical 

shape of the dendritic tree (Benezra et al., 2018) and therefore limiting delay variability. 

Second, neuronal time constants, which affect the timescale over which synaptic inputs 

could be summated, can differ greatly within specific cell classes, potentially influencing 

network function (Giocomo and Hasselmo, 2008). To directly address this feature in HVC, 

we reanalyzed a published data set of intracellular recordings performed during singing 

(Long et al., 2010; Vallentin and Long, 2015). We found that temporal summation – defined 

as the time course of the depolarization immediately preceding a burst – was highly 

consistent across neurons (2.3 ± 0.4 ms, n = 11; Figure 4A–C). We modified our network 

models to explicitly reflect different degrees of temporal summation in HVC(RA) neurons by 

parametrically varying their passive integrative properties (see Methods). These simulations 

suggest that differences in temporal summation across neurons cannot account for the 

smooth network sequences observed (Figure 4D), further excluding a postsynaptic 

mechanism as a significant source of network delay.

We then explored the alternative possibility that local connections between HVC(RA) 

neurons could exhibit delays related to the time required for an action potential to travel 

from its initiation site near the neuronal soma to axon terminals (i.e., axonal conduction 

delays). In previous work (Benezra et al., 2018), we had found that HVC(RA) neurons often 

send extensive axonal collaterals throughout HVC, and we used 22 complete reconstructions 
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to estimate the distance from the soma to each of the synaptic sites along the axon, a log-

normal distribution ranging from 0.19 to 1.34 mm (5th to 95th percentiles). To convert these 

pathlength measurements into axonal delays, we needed to measure the conduction velocity 

of local HVC(RA) axon collaterals, which are thin and difficult to record. However, we could 

estimate these values using in vivo whole-cell recordings (n = 40 HVC(RA) neurons) to 

measure conduction velocity in antidromically activated HVC→RA projection axons 

(Figures 5A and S5A, see Methods), a path distance of 2.8 ± 0.2 mm (n = 4 neurons, e.g., 

Figure 5B). We then corrected for differences in axon diameter (descending axon: 446 ± 135 

nm, local collaterals: 167 ± 73 nm) using cable theory (Rushton, 1951) (See Methods, 

Figures 5C and 5D, Figures S5B–D). Assuming homogeneous biophysical properties (i.e., 

channel density) across the axon, we arrived at a final estimated conduction velocity of 

0.187 ± 0.035 mm/ms, corresponding to conduction delays ranging from 1 to 7.5 ms (5th and 

95th percentiles, Figure 5E). Our network model demonstrates that these values are sufficient 

to enable HVC to generate smooth sequences (Figure 5F). Taken together, we find that 

axonal conduction delays contribute significantly to network dynamics within HVC.

Axonal conduction delays can explain song-related spatial activity patterns within HVC

We have demonstrated that axonal conduction delays may have the capacity to significantly 

impact the temporal structure of the HVC network, potentially leading to continuous burst 

events throughout song. We next asked whether the impact of axonal delays can be detected 

in the spatial properties of HVC circuit dynamics. Because synapses located closer to the 

soma are activated after shorter delays than those further away (i.e., Figure 5E), we reasoned 

that the spatial distribution of the synapses responsible for driving the next step of the HVC 

sequence can provide an independent test of the range of delays underlying HVC network 

dynamics. To investigate this, we generated ‘spatial models’ for a variety of delay 

distributions, varying the mean and SD values as in the above analysis (i.e., Figure 3G). For 

each model, we placed ‘virtual synapses’ at specific locations onto 22 morphologically 

reconstructed HVC (RA) axon collaterals (Benezra et al., 2018) corresponding to the selected 

delay distributions given our estimate of conduction velocity. For instance, in cases in which 

the conduction delays were long but exhibited a low variance, synapses were clustered on 

distal axons (Figure 6A). We also considered cases in which the means of the conduction 

delays were low, across different variance conditions (Figures 6B and 6C). We compare 

these possibilities against a scenario in which the mean and variance were both relatively 

high (Figure 6D), as we estimate for HVC delays. Because of the differential placement of 

synapses within the axonal field, each model should result in a different prediction 

concerning the spatiotemporal pattern of activity (Graber et al., 2013; Markowitz et al., 

2015; Peh et al., 2015) in HVC during singing (i.e., the location of postsynaptic neurons that 

represent the next step within the sequence).

To examine these song-related spatial patterns, we performed 2-photon imaging of 

GCaMP6-expressing projection neurons during singing. We combined new observations 

with a previously published data set (Katlowitz et al., 2018; Picardo et al., 2016), totaling 

182 putative HVC(RA) neurons (Figure 6E, see Methods). Using established techniques 

(Picardo et al., 2016; Pnevmatikakis et al., 2016), we precisely estimated burst onset times 

with a temporal resolution of ~10 ms and related these values to the spatial position for each 
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neuron (Figure 6F). We then determined the relative locations and burst time differences of 

all neuron pairs (n = 5,842 pairs). We excluded all cases with a difference in burst times 

greater than 20 ms (n = 5,582 pairs, 95.5%) and therefore unlikely to be driven by 

monosynaptic connections. In the remaining 260 cases, sequentially active neuron pairs 

were found over a wide range of relative locations (178 ± 102 μm, mean ± SD), from 

immediately adjacent (~10 μm) to much longer distances (~500 μm, or approximately one 

third of the maximum extent of HVC) (Figure 6G and 6H). These functional data were most 

similar to the simulation based on our estimates of local HVC conduction values (Figure 6I). 

We extended our analysis to consider a wider range of delay distributions and found a family 

of solutions whose predicted spatial patterns correlated significantly (r > 0.6, p < 0.05, two-

sided t-test) with our imaging data (Figure 6J). Importantly, these independently observed 

solutions overlapped both with the estimated axonal delays (Figure 5F) and the range of 

models in which HVC forms smooth sequences (Figure 3G), consistent with asynchronous 

functional connectivity between HVC(RA) neurons based on local axonal delays.

Delay distributions are conserved from songbird to mammalian neocortex

We have demonstrated the impact of local axonal delays on the timing and structure of 

network activity within HVC of the zebra finch. Given the extraordinarily slow axonal 

conduction velocity in HVC compared with known values measured in a variety of different 

circuits (Figure 7A), it remains unclear whether such delays will play a role within those 

networks or whether this solution is simply a specialization within zebra finch HVC. We 

began to examine this issue by analyzing the local collaterals of 14 spiny neurons in Layer 4 

of rat somatosensory cortex (Figure 7B) (Narayanan et al., 2015). When we measured the 

pathlength from the soma to different locations along the axon, we found that the entire size 

of the axonal field was considerably larger than that of HVC(RA) neurons (Figure 7C). 

Surprisingly, when we estimated conduction delays – accounting for both the discrepancies 

in conduction velocity and pathlength – we find that the range of these values is identical in 

both cell classes (L4: 3.4 ± 2.3 ms, HVC(RA): 3.3 ± 2.1 ms, Figure 7D). Therefore, 

conduction delays could potentially play an important computational role within a broad 

range of neural circuits.

DISCUSSION

Using a combination of modeling and experimental approaches, we investigated how local 

excitatory circuits can give rise to convergent synaptic input underlying sequential activity in 

the zebra finch song system. We used silicon probes to enable single-trial 

electrophysiological measurements of song-related sequences within HVC, observations that 

support a central role for slow and heterogeneous delays in HVC network dynamics. We 

further demonstrate that these delays are likely due to conduction properties of HVC axon 

collaterals, and we show that this circuit feature may influence the spatiotemporal patterns of 

HVC activity observed during singing. Taken together, we have shown that axonal 

conduction velocity can lead to a continuous distribution of premotor bursts, which 

facilitates the placement of descending motor commands at any time point during the song. 

Furthermore, we estimate that conduction delays are significantly larger than those afforded 

by other biophysical parameters. Approximately half of the total elapsed time of the HVC 
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sequence could be attributed to local axonal conduction, a comparatively inflexible process 

that may underlie the behavioral stereotypy inherent in the adult zebra finch song 

(Lombardino and Nottebohm, 2000) by rendering the circuit less sensitive to perturbations 

(Hamaguchi et al., 2016; Swadlow et al., 1981).

Previous models of premotor sequence generation have suggested that HVC feedforward 

networks (Galvis et al., 2017; Long et al., 2010; Pehlevan et al., 2018) could be based on a 

synfire chain architecture (Abeles, 1991; Amari, 1972; Diesmann et al., 1999). In our study, 

we find that the synchronous model – which is functionally equivalent to the synfire chain 

configuration – makes predictions about network timing that are inconsistent with our 

observations. Sufficiently heterogeneous delays change the regime of these feedforward 

networks to smoothly evolving dynamics. The asynchronous HVC model, strongly 

supported by our data, has fundamental similarities with previously described 

‘polychronous’ networks, which are capable of generating almost arbitrary neural sequences 

in the presence of a suitable range of delays (Izhikevich, 2006). A salient feature of 

polychronous networks is the potential to self-organize such connectivity patterns through 

spike timing-dependent plasticity mechanisms (Gerstner et al., 1996; Izhikevich, 2006), and 

future work will determine the relevance of axonal delays for assembly of HVC circuits 

during song learning (Fiete et al., 2010; Jun and Jin, 2007; Okubo et al., 2015).

A potential limitation of our model is its exclusive focus on local excitatory connectivity 

within HVC (Kornfeld et al., 2017; Long et al., 2010). The role of other circuit elements, 

such as local inhibitory interneurons, in controlling song-related HVC(RA) neuron activity 

also remains to be explored (Gibb et al., 2009; Jin et al., 2007; Kosche et al., 2015; 

Markowitz et al., 2015; Yildiz and Kiebel, 2011). Furthermore, in addition to local synapses 

within HVC, premotor neurons also receive excitatory connections from other brain regions 

(Akutagawa and Konishi, 2010; Nottebohm et al., 1982), and future studies will elucidate 

how these external inputs contribute to song-related activity in HVC. For example, inputs 

from the thalamic nucleus Uvaeformis may be instrumental in initiating (Andalman et al., 

2011; Danish et al., 2017; Galvis et al., 2018) or maintaining (Hamaguchi et al., 2016) HVC 

sequential activity.

The idea that axons contribute to information processing in neural circuits has long been 

explored for long-range connections between different brain areas (Carr and Konishi, 1988; 

Innocenti et al., 1994; Salami et al., 2003; Sugihara et al., 1993). For instance, in the 

brainstem of the barn owl, axons carrying sound information from both ears form precisely 

tuned and spatially organized ‘delay lines’ (Jeffress, 1948) necessary for detecting minute 

interaural time differences (Carr and Konishi, 1988). In contrast, the role of axonal delays 

within local microcircuits is often disregarded (Budd et al., 2010), possibly because of the 

technical challenges involved in obtaining reliable estimates of conduction velocity in local 

circuits or because of a tenuous relationship between brain activity and behavior. In this 

study, we find that spatiotemporal patterns within HVC appear to be strongly influence by 

‘local delay lines’. We do not yet know whether this specialization is unique to circuits in 

which a high degree of temporal precision is required or whether it can be more broadly 

found in other networks, including those capable of more flexibility (Cohen et al., 2020; 

Fujimoto et al., 2011). Although we find that conduction delays along intracortical axons in 
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a rodent neocortical area are likely to be comparable to those reported here in zebra finch 

HVC, the extent to which these collaterals may support persistent activity (Sachidhanandam 

et al., 2013) or some other aspect of processing (Wilson et al., 2011) within this region so far 

remains unexplored. Further work in other circuits can establish whether this delay 

distribution represents a universal scaling law (Buzsaki and Mizuseki, 2014; Liewald et al., 

2014; Miller, 1996) across different species, brain regions, cell types, etc., or whether these 

local delays are specially tuned for the requirements of each unique case. Overall, our results 

suggest that in addition to defining the static architecture of neural networks (Denk et al., 

2012; Plaza et al., 2014; Seung, 2012), functional properties of axons within local circuits 

can also strongly influence neural activity patterns.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Michael Long (mlong@med.nyu.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The data sets generated during this study are available 

upon request from the Lead Contact. Source code and documentation required for setting up 

and running simulations of the network models can be downloaded from: https://

psu.box.com/s/55gh5tjgpvcxikel4wjfkzxdwyc0s7x4.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used adult (>90 days posthatch) male zebra finches (Taeniopygia guttata) that were 

obtained from an outside breeder and maintained in a temperature- and humidity-controlled 

environment with a 12/12 hr light/dark schedule. All animal maintenance and experimental 

procedures were performed according to the guidelines established by the Institutional 

Animal Care and Use Committee at the New York University Langone Medical Center.

METHOD DETAILS

Surgeries—Surgical procedures for retrograde labeling of HVC(RA) neurons, viral 

injections, chronic cranial window implantation for 2-photon imaging, intracellular 

microelectrode recordings, and in vivo whole-cell recordings have previously been described 

in detail (Kornfeld et al., 2017; Long et al., 2010; Picardo et al., 2016). For extracellular 

recordings, high-density silicon probes (128 channels; Diagnostic Biochips) were mounted 

to a microdrive (NeuroNexus), and a stainless steel ground wire (0.001”, California Fine 

Wires) was soldered to the reference of the headstage, which was held in place by a custom 

3D printed enclosure (Formlabs). A craniotomy (~ 1 mm length x 100 μm width) was made 

over HVC (2.3 mm lateral / 0.25 mm anterior of the bifurcation of the sagittal sinus). Silicon 

probes were implanted at a depth of ~500–800 μm in HVC. Silicon elastomer (Kwik Cast, 

WPI) was applied to the craniotomy and dental acrylic was used to secure the microdrive 

and the enclosure for the headstage in place. For antidromic activation of HVC(RA) neurons, 

a bipolar stimulation electrode was implanted into RA.
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Silicon probe recordings of HVC activity during song—Neural activity of freely 

moving birds was recorded using an electrically assisted commutator (Doric Lenses) and the 

RHD USB Interface Board or RHD Recording Controller (Intan Technologies). 

Vocalizations were recorded using an omnidirectional microphone (Audio-Technica) and a 

preamplifier (Presonus). Antidromic stimulation was applied using biphasic current pulses 

of 20 μs duration and amplitudes between 20–500 μA. To help characterize cell types 

(Figure S1), we also reanalyzed a previously reported data set of identified HVC neurons 

(Lynch et al., 2016; Okubo et al., 2015).

Identification of HVC projection neurons in silicon probe recordings—Spike 

detection and clustering was performed using KiloSort software (Pachitariu et al., 2016) and 

manual post-processing (merging/splitting of clusters) was performed using phy (Rossant et 

al., 2016). Spike times of all clusters were aligned to onsets and offsets of song motifs. 

Reliable burst events across motifs that are characteristic of HVC projection neuron activity 

(Hahnloser et al., 2002; Kozhevnikov and Fee, 2007) were readily apparent. Clusters lacking 

these events were not considered any further. The remaining clusters often exhibited more 

than one burst event and non-zero spontaneous spiking activity (defined as spiking in 5-

minute windows before and after each song bout). To determine whether multiple bursts 

and/or spontaneous activity (if present) in one cluster were likely to originate from the same 

or multiple, erroneously combined units, we compared the waveforms and amplitude 

distribution of spontaneous spikes to those of the first spike from each bursting event across 

multiple channels. Specifically, we only considered bursts and/or spontaneous activity to 

originate from different units if they differed in both waveform and amplitude distribution. 

Here, amplitude similarity between the first spikes in bursts and/or spontaneous activity was 

measured by determining the amplitude (i.e., difference between maximum and minimum of 

the spike waveform) on each electrode, normalizing these values to the maximum amplitude 

across channels and computing the mean amplitude distribution for all first spikes in a burst/

spontaneous spikes. We then determined the 8 electrodes with the largest mean amplitudes 

and computed the inner product of the normalized amplitude distribution on these electrodes 

for all pairwise combinations of first spikes of the same burst event/spontaneous spikes (i.e., 

generating a null distribution for each burst event/spontaneous activity). We next repeated 

the calculation of this inner product between all pairwise combinations of first spikes of 

different burst events/spontaneous spikes and determined whether these distributions were 

different from the null distributions. After identifying bursting units in this way, we 

computed their spontaneous activity. Single-bursting units were classified as HVC(RA) 

neurons if their spontaneous activity was less than the lowest spontaneous firing rates of 

HVC(X) neurons (antidromically identified previously (Lynch et al., 2016; Okubo et al., 

2015) (Figures S1B and S1C).

Alignment of neural sequences—First, we determined a reference song motif to which 

neural sequences in all other motifs were aligned. We chose the motif with a duration closest 

to the mean motif duration (motif m). For alignment of sequences in individual syllables, we 

first determined during which (if any) syllable individual bursts occurred. Sequences in 

individual syllables were aligned independently of sequences in other syllables in the 

following way: For each motif n, we created a vector tn of all burst onset times throughout 
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the motif. We then fitted an affine transformation tn′ = anmtn + bnm minimizing the squared 

difference between aligned burst times in trial n and the reference trial m tn′ − tm T tn′ − tm . 

Burst timing jitter was defined as the root mean squared error of aligned burst times across 

motifs. Sequences of HVC(RA) and HVC(X) bursts were aligned separately. We only 

performed this alignment for syllables which contained at least three bursts.

Histological procedures—For serial block-face electron microscopic (SBEM) imaging, 

perfusion and histology was performed as described in detail previously (Kornfeld et al., 

2017). For transmission electron-microscopic imaging, the protocol used for SBEM imaging 

was slightly modified as follows. After the bird was transcardially perfused, the brain was 

removed from the skull and post-fixed overnight (Kornfeld et al., 2017). The brain was then 

cut into 100 μm thick slices using a vibratome (Leica VT1000S). Residual peroxidase 

activity was suppressed by soaking the sample in 3% H2O2 for 20 min before labeling the 

sample with an avidin-peroxidase complex and DAB. A slice containing clearly visible 

stained fibers from HVC to RA was unmounted by immersing the microscope slide into PB. 

After washing with PB, the samples were post fixed in 1% OsO4 for 2 hours, block stained 

with 1% uranyl acetate for 1 hour, dehydrated in ethanol and embedded in EMbed 812 

(Electron Microscopy Sciences, Hatfield, PA). Semi-thin sections were cut at 1 μm and 

stained with 1% toluidine blue to find the previously identified area of interest containing 

fibers from HVC to RA. In each sample, 20 serial ultrathin sections with 100 nm thickness 

were cut, mounted on slot copper grids, and stained with uranyl acetate and lead citrate.

Transmission-electron microscope imaging—Stained grids were examined under a 

Philips CM-12 electron microscope (FEI; Eindhoven, The Netherlands) and photographed 

with a Gatan (4k x 2.7k) digital camera (Gatan, Inc., Pleasanton, CA). Samples were imaged 

at a series of increasing magnifications (i.e., ranging from 3,400x to 66,000x magnification) 

to allow identification of fiber tracts and ultimately individual fibers within these tracts. 

Diameter measurements of unmyelinated projection axons were made on images with a 

magnification of at least 40,000x.

Axon diameter measurements—All light micrographs used for illustration of local and 

descending axons were captured using a Zeiss AxioObserver Inverted. We acquired images 

of descending HVC(RA) neuron axons from ultrathin sections using a transmission electron 

microscope (see above). Unmyelinated descending axons were identified based on dark 

DAB labeling in EM micrographs. Myelinated axons were identified morphologically by 

presence of multiple, closely wrapped membrane layers (i.e., myelin sheaths; Figures S5B 

and S5C). Diameters were measured along the shortest axis of the circumference of each 

axon (i.e., axons are roughly cylindrical, and this corresponds to the diameter of the cylinder 

irrespective of sectioning angle) (Figure S5D). Diameters of local HVC(RA) neuron 

collaterals were measured using a previously reported data set acquired using serial block-

face EM (Kornfeld et al., 2017) with a voxel size of 11 × 11 × 29 nm3 containing HVC(RA) 

neurons labeled by injection of a tracer (BDA-dextran) into RA. Diameters of randomly 

selected locations along labeled local axon collaterals were measured by determining the 

image plane that was closest to the orthogonal plane defined by the axon and measuring the 

axon diameter in that plane.
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Estimating axonal conduction delays—Conduction delays along local HVC(RA) 

neuron axons were obtained by measuring the pathlength from the soma to points along the 

axon spaced at the mean inter-bouton interval of HVC(RA) neuron axons (10.5 μm) 

(Kornfeld et al., 2017). Combining these measurements from 22 reconstructions of premotor 

neuron axons reported previously (Benezra et al., 2018) resulted in an average distribution of 

pathlengths. We then converted these pathlengths into a conduction delay distribution by 

multiplying each pathlength distance with the conduction velocity of long-range axons. A 

log-normal distribution described the shape of the conduction delay distribution well (least-

squares fit R2 = 0.9988). We therefore used mean and standard deviation of a log-normal 

distribution to parameterize the conduction delays for the network models (Figures 1E and F, 

Figure 3).

Conduction delays along L4 spiny neuron axons were estimated in the same way. We 

measured the distribution of pathlength distances of 14 complete reconstructions of the 

intracortical axonal arbor of L4 neurons labeled in vivo (Narayanan et al., 2015) and 

multiplied pathlengths by a conduction velocity of 0.3 mm/ms (Hirsch and Gilbert, 1991; 

Shu et al., 2007) to obtain the conduction delay distribution.

The conduction time along long-range axons from HVC to RA was measured from whole-

cell membrane potential recordings of HVC(RA) neurons as the difference between the onset 

time of antidromic stimulation in RA and action potential onset. The action potential onset 

was defined by calculating the second derivative of the membrane potential between 0–20 

ms after stimulation and determining the first upward threshold crossing, where the 

threshold was set as the minimum of either 3 standard deviations of the second derivative or 

400 mV/ms2. To determine the threshold between groups of conduction delays, we used k-

means clustering with two groups. The pathlength of the long-range axon of HVC(RA) 

neurons was measured from the soma to the first bifurcation of the axon as it entered RA. 

The average conduction velocity of unmyelinated descending axons was calculated by 

dividing the average descending pathlength by the average conduction time of the second 

mode of the conduction time distribution (Figure S5A). We then used a simple biophysical 

model relating the diameter of unmyelinated axons to conduction velocity (Hodgkin and 

Huxley, 1952; Rushton, 1951):

u = c d

Here, u is the conduction velocity, d the axon diameter, and c a constant. We determined c 
using the average conduction velocity and average diameter of putative unmyelinated 

descending axons and assumed that this constant is the same for unmyelinated local axons of 

HVC(RA) neurons (i.e., that the basic biophysical properties underlying action potential 

propagation are the same). We then calculated a distribution of conduction velocities given 

the observed distribution of diameters of local axonal projections. To estimate the 

distribution of conduction times to synapses onto other HVC(RA) neurons, we used a Monte 

Carlo simulation approach. We stepped through all possible synapse locations along the set 

of reconstructed axon morphologies of HVC(RA) neurons. For each possible location, we 

calculated the distribution of conduction times to that location given the pathlength to the 
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soma and the estimated distribution of local conduction velocities. We then randomly 

selected one of the possible conduction times and assigned it as a synapse onto other 

HVC(RA) neurons based on EM measurements of premotor synapse density for each location 

relative to the soma (Kornfeld et al., 2017). We ran 100 Monte Carlo simulations to obtain a 

robust estimate of the resulting conduction time distribution to other HVC(RA) neurons.

Simulating synapse locations along axons—Synapse locations along HVC(RA) 

neuron axons for a given delay mean and SD were simulated as follows. Points along the 

reconstructed axon were grouped according to their pathlength distance to the soma into 50 

μm bins. If successive points in the reconstruction had an interval of more than 1 μm, 

additional points were inserted at 0.5 μm intervals using linear interpolation (i.e., leaving the 

pathlength unchanged). Next, the log-normal delay distribution with given mean and SD was 

converted to a pathlength distribution by multiplication with the axonal conduction velocity 

of local HVC(RA) neuron axons (i.e., 0.187 mm/ms). For each neuron, we generated NSyn * 

LNeuron / LAvg samples from this log-normal distribution. Here, NSyn = 170 is the average 

number of synapses made by each HVC(RA) neuron onto other premotor neurons (Kornfeld 

et al., 2017), LNeuron is the total axonal pathlength of this specific premotor neuron and LAvg 

is the average axonal pathlength across all 22 premotor neurons (Benezra et al., 2018). 

Samples beyond the maximum pathlength distance of an axon to the soma were repeated. A 

histogram of these pathlength samples with a bin width of 50 μm was computed. For each 50 

μm bin, points along the reconstruction in the corresponding pathlength bin were randomly 

sampled until the number of elements in this bin of the histogram was reached and a synapse 

was placed at the location of the sampled points along the reconstruction. For comparison 

with calcium imaging data, simulated synapse locations were aligned by centering each 

reconstruction at the soma location, projecting onto the horizontal plane, and measuring 

their distance to the origin (Figure 6I).

Sensitivity analysis of detection of localized activity patterns—Our ability to 

detect spatially localized patterns of sequentially active neurons (Figures 6A–C) can be 

compromised by the presence of unconnected neurons that are active at a similar time by 

chance. To obtain an estimate of the fraction of active neurons that have to be connected in 

order to detect spatially localized patterns, we simulated the expected spatial distribution of 

a combination of connected and unconnected neurons. For each localized pattern of 

connected neurons (Figures S6A–C, top), we computed the spatial distribution of 

sequentially active neurons as described above. We refer to this distribution as ‘100% 

connected’ (Figures S6A–C, bottom). Next, we determined the possible locations of 

unconnected neurons by analyzing all pairs of sequentially active neurons that have a burst 

time difference of more than 20 ms (we refer to this distribution as ‘unconnected’). We then 

simulated the spatial distribution expected in the presence of X% connected and (100 – X)% 

unconnected neurons by sampling from these ‘100% connected’ and ‘unconnected’ 

distributions in the respective proportions and generating a combined distribution (Figures 

S6A–C, bottom). We used a two-sided two-sample KS-test to test whether this combined 

distribution was significantly different from the observed distribution (p-values in Figures 

S6A–C, bottom).
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Estimating postsynaptic integration times—We reexamined two previously reported 

data sets (Long et al., 2010; Vallentin and Long, 2015) of intracellular recordings of 

HVC(RA) neurons during singing. For each neuron, we aligned burst onsets in different song 

motifs (defined as the peak of the 2nd derivative of the membrane potential) and calculated 

the mean membrane potential (Figure 4). We then fitted an exponential function a * exp(b * 

t) + c to the membrane potential in the time windows [−10, −5] ms and [−2, − 0.1] ms before 

burst onset (Figures 4B and 4C) and defined the rise time as τRise = 1 / b. To determine the 

rise time in model HVC(RA) neurons, we simulated 50 trials in each network model, 

recorded the membrane potential at the soma in 1,000 randomly selected model neurons and 

determined burst onset times, average membrane potential and rise time for each neuron as 

described for intracellular recordings.

Frequency analysis of burst onset times—For each bird in the electrophysiology 

data set, we determined all syllable lengths and number of bursts occurring during each 

syllable. In our modeling effort (see Figures 3A and 3B), we simulated possible burst times 

by sampling random numbers distributed in time according to the burst density of the model, 

while preserving the distribution of syllable lengths from the experimental data sets and the 

number of bursts observed during each syllable. For each syllable, we then defined the 

power spectral density Ps of the burst times as the absolute magnitude squared of the discrete 

Fourier transform evaluated at frequencies f between 1 and 200 Hz, in increments of 2 Hz:

Ps f = ∑
j = 1

n
exp 2πiftj

2

Here, n is the number of bursts in the syllable, and tj the burst onset time of the jth burst. We 

then calculated the mean power spectrum across all syllables. In order to obtain a reliable 

estimate of the predicted power spectrum of each model and its uncertainty, we repeated this 

procedure 10,000 times. We determined the mean power (Pmean) in a window (± 4 Hz) 

around the peak in the power spectrum between 75–200 Hz for each bootstrap simulation 

and Pmean of the observed burst times. We calculated the percentile of the observed Pmean 

relative to the distribution of simulated Pmean values and defined this as the p-value of the 

model power spectrum. We visually inspected all power spectra to ensure that the frequency 

corresponding to the intervals in synchronous network models – and not sub- or higher 

harmonics – was selected.

Neuron and synapse models—HVC(RA) neurons were modeled as a two-compartment 

model with a dendritic and somatic compartment (Long et al., 2010). Current injection at the 

soma triggers sodium channel-dependent action potentials, while current injection (and 

synaptic input) to the dendrite compartment triggers an all-or-none calcium spike, which in 

turn triggers a high-frequency burst of four action potentials at the soma. Ion channels were 

modeled using the Hodgkin-Huxley formalism. All model parameters are identical to our 

previous work (Long et al., 2010), except for the following adjustments made to match the 

rise time prior to burst onset with intracellular recordings during singing: Rc = 130 MΩ, Gs,L 

= 0.05 mS/cm2, τc = 15 ms. Conductance-based excitatory synapses were modeled 
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according to ‘kick-and-decay’ dynamics. Upon synaptic release, the synaptic conductance 

was increased by Gsyn, followed by an exponential decay with time constant τsyn = 5 ms. 

The weight Gsyn of individual synapses was drawn from a uniform distribution [0, Gmax], 

with Gmax set to 0.05 mS/cm2, a value that leads to a unitary EPSP of ~4 mV at the soma 

(i.e., the average EPSP amplitude is 2 mV) (Mooney and Prather, 2005).

Network assembly—The feedforward HVC network model was assembled in an iterative 

process. The algorithm was designed to enforce synchrony of the synaptic inputs to the 

postsynaptic neurons. The timing of presynaptic bursts must be such that the spikes arrive at 

the postsynaptic neuron within a narrow time window (discussed below), considering the 

different burst transmission delays (Figure 3). The number of connections that each neuron 

can receive was limited to 170, based on previous ultrastructural observations (Kornfeld et 

al., 2017).

Each iteration consisted of three steps (Figure S2A): (i) simulation of network dynamics to 

determine the burst onset times of all neurons in the network at the current iteration; (ii) 
adding feedforward connections constrained by a given delay distribution between ‘source 

neurons’ (i.e., presynaptic neurons) and ‘target neurons’ (i.e., potential postsynaptic targets 

which do not form outgoing connections in the current iteration); (iii) adding additional 

neurons into the network. As a result, the feedforward network grows and the corresponding 

population sequence in duration during this iterative process (Figure S2B). In step (i) of each 

iteration, network dynamics were simulated by activating a set of 200 predefined ‘starter 

neurons’ and recording burst onset times of all active neurons in the network. In step (ii), 
new feedforward synaptic connections between ‘source’ and ‘target neurons’ were added. 

First, N new neurons were moved from the set of ‘target neurons’ in the previous iteration to 

the set of ‘source neurons’. Specifically, these were the ‘target neurons’ whose simulated 

burst onset times were within a 2 ms window from the earliest simulated burst onset time of 

all ‘target neurons’ (Figure S2C). We then generated a ‘synaptic pool’ (i.e., a set of delays δ) 

of size Nout * Nnew (Nout = 170) by sampling from the given distribution of delays. We 

iterated over all ‘target neurons’ ordered according to the number of synaptic inputs, starting 

with the smallest number. For each ‘target neuron’, we randomly selected a ‘source neuron’ 

that fulfilled the synchrony requirement | ttarget – τint – δ – t source | ≤ τsync using a suitable 

delay δ from the ‘synaptic pool’ (Figure S2C; i.e., requiring that all synaptic inputs to the 

‘target neuron’ arrive within a synchronous time window 2*τsync (here: time window of 1 

ms). tsource is the burst onset time of the ‘source neuron’, τint is the average integration time 

constant of HVC(RA) neurons from onset of the synaptic inputs to burst threshold (~5 ms) 

(Long et al., 2010), and ttarget is the burst onset time of the ‘target neuron’. If there were 

multiple δ allowing a connection between the ‘source neuron’ and the ‘target neuron’, the 

one minimizing the quantity | ttarget – τint – δ – t source | was selected (i.e., only one synapse 

was placed between a pair of ‘source’ and ‘target neurons’). After placement, this synaptic 

connection was removed from the ‘synaptic pool’. If the number of synaptic inputs to the 

‘target neuron’ reached 170 or no connection from the ‘source neurons’ could be made given 

the delays in the ‘synaptic pool’, it was not considered as a ‘target neuron’ anymore. In step 
(iii), neurons were added to the network in order to increase the network from the set of 

starter neurons to its final size. This step was taken in case there were no more ‘target 
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neurons’ before the ‘synaptic pool’ was exhausted. In this case, the set of ‘target neurons’ 

was restored to its state at the beginning of the iteration. A new ‘target neuron’ (i.e., without 

any existing incoming or outgoing synaptic connections) was added to the network by 

placing a synaptic connection with a randomly selected delay δ from the ‘synaptic pool’ 

originating from one of the Nnew ‘source neurons’ added to the network in this iteration. The 

putative burst onset time of the new ‘target neuron’ was defined as: t new = tsource + δ + τint. 

All other synaptic connections placed in this iteration were removed from the network; the 

associated delays were moved back into the ‘synaptic pool’; and steps (ii) and (iii) were 

repeated until the ‘synaptic pool’ was empty. Then, the next iteration was started, and this 

process repeated until all 20,000 HVC(RA) neurons were incorporated into the network. To 

investigate the effect of the statistics of delays on sequence generation, we used different 

delay distributions during network assembly. The delay distributions in the completely 

assembled networks matched the target distributions (Figure S2D).

To generate network models using postsynaptic delays (Figure 4), we set all delays δ equal 

to zero and the synchronous time window during which inputs could arrive to individual 

neurons (2*τsync) to 8 ms. Integration times of postsynaptic neurons were controlled by 

varying the membrane capacitance of the dendritic compartment. Heterogeneity in the 

population was created by drawing the membrane capacitance for individual neurons from a 

log-normal distribution truncated below at 1 μF/cm2. Parameters of the log-normal 

distribution were determined such that at a minimum standard deviation the mean membrane 

potential rise times matched intracellular recordings. Then the SD of the log-normal 

distribution was increased while keeping the other parameters fixed (Figure 4D).

To generate network models with different degrees of feedforward (FF) and recurrent 

synaptic connections, we used a network model with delays similar to those observed in 

HVC (Figure 5F). A fraction of synapses from each neuron was randomly selected to remain 

as FF synapses and the remaining synapses were connected to other randomly selected 

neurons in the network model.

Simulations—During simulations, HVC(RA) neurons received additional independent 

white noise input currents to their somatic and dendritic compartments with zero mean and 

amplitudes Asoma = 0.1nA and Adendrite = 0.2nA, leading to fluctuations of the somatic 

membrane potential with a standard deviation of 4.2 mV (Long et al., 2010). To account for 

the white noise currents, the HVC(RA) neuron models were treated as a system of stochastic 

differential equations and solved using the AN3D1 weak 3rd order method (Debrabant, 

2010). The simulation time step was set to 0.01 ms.

Each simulation was started by activating the set of 200 ‘starter neurons’ using an excitatory 

conductance kick with amplitude 300 nS exponential decay with time constant 5 ms (i.e., 

simulating synchronous synaptic input). This input was delivered to the ‘starter neurons’ 

either synchronously, uniformly distributed over a 7 ms window, or randomly within a 10 ms 

window. In order to minimize transient effects of this activation procedure, the first 50 ms of 

simulated activity were discarded. Network activity patterns after this transient period were 

qualitatively similar between the different activation procedures. To generate burst densities, 

we ran 50 simulations, recorded the burst onset time of each neuron (i.e., the time where the 
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membrane potential at the soma crosses 0 mV for the first time during a burst) and 

calculated the average number of bursts in 0.75 ms bins.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details of experiments can be found in figure legends and the Results section, 

including the statistical tests used, exact value of n and what n represents (e.g., number of 

animals, number of cells, etc.). Values are reported as mean ± SD unless mentioned 

otherwise, and values are plotted as mean with error bars representing SD unless mentioned 

otherwise. Significance was defined at a level of 0.05. Normal distribution of data was not 

assumed. No data were excluded from analysis. Statistical calculations were performed 

using MATLAB R2016a.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Simultaneous recording of sequentially active premotor neurons during 

singing

• Models suggest that network delays impact song-related population activity

• Ultraslow axonal conduction within HVC generates substantial network 

delays

• Local axonal delays shape spatial patterns of activity within a neural circuit
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Figure 1. Measuring and modeling HVC premotor sequences.
(A) Top: Schematic of a high-density silicon probe placed within HVC of the song 

production pathway in the zebra finch. Bottom: Location of simultaneously recorded 

HVC(RA) neurons (colored dots) on a four-shank silicon probe. (B) Spectrogram of a song 

motif (letters: individual syllables) and spike raster plots of 20 simultaneously recorded 

HVC(RA) neurons. Shaded regions represent syllable times. (C) Raster plot of HVC(RA) 

neurons active during syllable B for five example song trials. (D) Inputs from individual 

presynaptic HVC(RA) neurons are not likely to be strong enough to drive burst spiking in a 

postsynaptic neuron; convergence of multiple synaptic inputs is required. (E, F) Left: 

Presynaptic neurons could be active synchronously (E) or asynchronously (F), as shown in a 

simplified schematic. Center: Spike timing of 170 presynaptic neurons in two biologically 

detailed models of the HVC(RA) network. Right: Simulated network activity of 750 

HVC(RA) neurons. See also Figures S1 and S2.
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Figure 2. Estimating HVC network activity with submillisecond precision.
(A) Spike raster plots of HVC(RA) neurons from one bird. Each row represents a single 

rendition with the timing of syllables indicated with gray shading during different song 

repetitions. (B) Difference between burst times in individual song motifs and the mean burst 

times for the spiking patterns shown in (A). Burst times in the same song motif are 

connected by lines. (C) Standard deviation (SD) of burst times of HVC(RA) neurons as a 

function of burst time during song in five birds. The gray line represents the bird analyzed in 

Panel (C). (D) Top: Burst times of the three neurons (indicated in (A) with arrowheads) after 

removing trial-to-trial variation in overall sequence speed. Bottom: Histograms of aligned 

burst onset times. (E) Histogram of burst onset jitter (root mean squared error) for 39 

HVC(RA) and 216 HVC(X) bursts recorded in five birds. (F) Top: 10 HVC(RA) and 19 

HVC(X) burst events occurring during a single syllable, sorted according to burst onset time 

(bold). Bottom: All burst onset times occurring during this syllable (black: syllable onset/

offset). (G) All burst onset times included in this data set (282 bursts – 66 HVC (RA) and 216 

HVC(X), 22 syllables, 5 birds). Each row shows all bursts occurring during individual 

syllables. The row with the arrowhead is featured in (F). Inset: Power spectra of burst onset 

times for all projection neurons (top) and for HVC(RA) neurons only (bottom). Thin lines: 

power spectra of individual birds (n=5), thick lines: average across birds.
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Figure 3. Comparison of network model predictions to recorded data.
(A, B) Simulated burst onset times for the synchronous (A) and asynchronous (B) models. 

Insets indicate the distributions of delays used. (C, D) Power spectra used to measure the 

presence of periodic activity patterns in synchronous (C) and asynchronous (D) models and 

in the experimental data (from Figure 2G). Shaded area: ± 3 SD. (E, F) Top: Three 

distributions of delays when varying the mean delay (SD fixed at 1.25 ms) (E) or the delay 

SD (mean fixed at 3.5 ms) (F). Center: Power spectra of burst onset times for network 

models with above delay distributions. Bottom: Difference in peak power in the frequency 

band from 75–200 Hz for the models based on the delay distributions and the observed 

HVC(RA) burst times (dashed line). Error bars: 2.5th and 97.5th percentiles. (G) Two-

dimensional parameter grid of network synchrony with different mean and SD values for 

delay distributions. Each grid point is colored according to the peak power of the burst onset 

times (i.e., smooth sequences in dark blue; synchronous sequences in yellow). White/black 

dots: Locations of the two models in (A, B). Black line: Models to the left and below this 

line display sequences with synchronously active groups of neurons that are inconsistent 

with song-related activity of HVC(RA) neurons (p < 0.05, bootstrap, see Methods). See also 

Figures S2, S3 and S4.
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Figure 4. Heterogeneity of membrane potential rise times is insufficient to explain HVC network 
dynamics.
(A) Membrane potential of an HVC(RA) neuron recorded intracellularly during three song 

trials. Arrow: Burst onset time. (B) Average membrane potential (in black) preceding burst 

onsets (shaded region in (A)) with exponential fit (τ = 2.5 ms). (C) Exponential fits to the 

membrane potential preceding bursts in 11 intracellularly recorded HVC(RA) neurons. (D) 

Power spectral analysis for models with varying levels of heterogeneity in membrane 

potential rise times before burst onsets. Models to the left of the vertical line produce 

network sequences with synchronous groups of neurons that are incompatible with HVC 

population recordings (p < 0.05, bootstrap, see Methods).
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Figure 5. Local HVC(RA) axonal conduction delays support smooth sequences.
(A) Antidromic responses (10 trials per neuron) following RA stimulation measured with in 

vivo whole-cell recordings from two HVC(RA) neurons allows precise measurement of 

conduction times along the descending axon. Stimulus artifact removed for visualization. 

(B) Example reconstruction of an HVC(RA) projection neuron (axons: red, dendrites: black). 

(C) Light micrographs of local (top row) and descending (bottom row) axons from five 

HVC(RA) neurons labeled with neurobiotin. (D) Top: 3D reconstruction of the soma and 

proximal axons of a retrogradely labeled HVC(RA) neuron from a serial block-face EM 

image stack. Insets: EM micrographs of labeled axons. Bottom: Distribution of 

unmyelineated local and descending HVC(RA) axon diameters. (E) Estimate of the 

distribution of conduction delays along thin unmyelinated local axon collaterals of an 

HVC(RA) neuron (population inset). (F) The distribution of conduction delays along 

HVC(RA) neuron axons falls within the range that generate continuous sequences in our 

network model (see Figure 3G). See also Figure S5.
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Figure 6. Spatial organization of HVC projection neuron activity during singing is consistent 
with network dynamics controlled by axonal delays.
(A–D) Left: Locations of virtual active synapses along the local axonal collaterals of an 

HVC(RA) neuron for a given delay distribution (inset; mean ± SD, a: 4.5 ± 0.25 ms; b: 0.5 ± 

0.25 ms; c: 0.5 ± 2.75 ms; d: 3.3 ± 2.1 ms). Right: Distribution of virtual active synapses 

relative to the soma based on the local axonal collaterals of 22 HVC(RA) neurons. (E) 2-

photon calcium imaging of song-related bursting activity in HVC. Left: Example image of 

GCaMP6s-labeled somata. Right: Spectrogram of song motif (top), aligned normalized 

fluorescence traces of the neuron highlighted in left panel (center), and estimated burst onset 

time (bottom). (F) Left: Soma locations of 18 neurons active within the same syllable, 

projected onto the horizontal plane. Right: Estimated burst onset times of the same neurons 

within the syllable. (G, H) Relative soma locations of sequentially active neurons in (F) (i.e., 

burst onset times within 20 ms of each other). Each dot is the relative soma location of a 

postsynaptic neuron and all presynaptic neurons are aligned at the origin. (G) Relative soma 
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locations of putatively connected neurons in 9 birds (H). (I) Radial distribution of neurons in 

(H) (dashed line) and radial distribution of active synapses predicted by the four simulated 

distributions in A–D (solid lines). (J) Correlation between the radial distribution of 

sequentially active neurons (H) and simulated locations of active synapses for delay 

distributions covering the entire delay parameter space of network models (see Fig. 3G). The 

region between the black lines contains delay distributions that are significantly correlated 

with the measured distribution of sequentially active neurons (r ≥ 0.603, two-sided t-test: 

d.o.f. = 9, t ≥ 2.268, p ≤ 0.05). Black cross: estimated delays of HVC(RA) neurons (see Fig. 

5F). Delay distributions to the right and above of the white line result in smooth sequences, 

as observed in HVC(RA) neuron population activity. See also Figure S6.
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Figure 7. Conduction delays of neocortical axonal arbors.
(A) Axonal conduction velocity measurements from the peripheral to the central nervous 

system. Peripheral nerves: (Hursh, 1939); squid giant axon: (Hodgkin and Huxley, 1952); 

nucleus magnocellularis axons: (Carr and Konishi, 1990); intracortical axons: (Hirsch and 

Gilbert, 1991; Shu et al., 2007). (B) Example reconstructions of an HVC premotor neuron 

axon and a L4 spiny neuron axon from rat somatosensory cortex. A/P: anterior/posterior; 

D/V: dorsal/ventral. (C, D) Distributions of axonal pathlengths (C) and resulting conduction 

delays (D) for 22 HVC premotor neuron axons and 14 L4 spiny neuron axons (Narayanan et 

al., 2015).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV9.Syn.GCaMP6s.WPRE.SV40 Chen et al. Nature 2013 Addgene #100843

AAV9.CamKII0.4.Cre.SV40 James M. Wilson Addgene #105558

AAV9.CAG.Flex.GCaMP6f.WPRE.SV40 Chen et al. Nature 2013 Addgene #100835

AAV9.CAG.Flex.GCaMP6s.WPRE.SV40 Chen et al. Nature 2013 Addgene #100842

Chemicals, Peptides, and Recombinant Proteins

Biotinylated dextran (3,000 MW) Invitrogen D7135

Hydrogen peroxide solution (3%) Sigma-Aldrich CAS: 7722–84-1

DAB (3,3’-Diaminobenzidine) Sigma-Aldrich CAS: 91–95-2

Osmium tetroxide solution (2%) Sigma-Aldrich CAS: 20816–12-0

Uranyl Acetate Electron Microscopy 
Sciences

RT 22400

EMbed-812 Electron Microscopy 
Sciences

RT 14120

Toluidine Blue Electron Microscopy 
Sciences

RT 22050

Lead Citrate Electron Microscopy 
Sciences

RT 22410

Critical Commercial Assays

Vectastain ABC Kit Vector Laboratories PK-4000

Experimental Models: Organisms/Strains

Zebra finch (Taeniopygia guttata) Magnolia Bird Farm, 
Anaheim, CA

N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij

Matlab MathWorks https://www.mathworks.com/products/matlab.html

Markov Chain Monte Carlo deconvolution Picardo et al., Neuron 2016 https://www.sciencedirect.com/science/article/pii/
S0896627316001094?via%3Dihub

RPvdsEx Tucker-Davis Technologies http://www.tdt.com/rpvdsex.html

ScanImage Vidrio Technologies ScanImage 4.2 (2015)

KiloSort spike sorting software Pachitariu et al., biorxiv 
2016

https://github.com/cortex-lab/KiloSort

HVC network model This paper https://psu.box.com/s/
55gh5tjgpvcxikel4wjfkzxdwyc0s7x4

Other

Intracellular recording amplifier Molecular Devices Axoclamp 700-B

Digital acquisition board Molecular Devices Digidata 1550

High-density silicon probe (with integrated headstage) Diagnostic Biochips 128–5 integrated

Chronic microdrive Neuronexus dDrive-xL

Assisted Fiber-optic & Electric Rotary Joint Doric Lenses AHRJ-OE_FC_AD_12_HARW

Omnetics cable adapter Doric Lenses ADAPTER_HO12
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REAGENT or RESOURCE SOURCE IDENTIFIER

Acquisition board Intan Technologies RHD Recording Controller (512 channels)

Stimulus generator A-M Systems Model 2100

Omnidirectional microphone Audio-Technica AT803

Audio amplifier Presonus Studio Channel

Digital signal processor Tucker-Davis Technologies RX8

Resonant scanner Thorlabs N/A

Movable Objective Microscope Sutter Instrument Company N/A

16x water immersion objective Nikon MRP-07220

Transmission electron microscope FEI Philips CM-12

Digital camera for electron microscopy (4k x 2.7k) Gatan Inc. N/A

Brightfield microscope Zeiss AxioObserver Inverted
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