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Abstract

Purpose: While most adults are infected Epstein-Barr virus (EBV), 3-5% remain uninfected. The 

human leukocyte antigen (HLA) complex, which controls many pathogens, may influence 

infection and disease associated with EBV.

Recent Findings: Numerous EBV proteins and miRNAs down-regulate HLA class I and II 

expression on the cell surface. HLA class II functions as a receptor for EBV entry into B cells. 

Specific HLA class II alleles correlate with the susceptibility of B cells to EBV infection in vitro 
and with EBV seropositivity or seronegativity of humans. HLA class I polymorphisms correlate 

with development and severity of EBV infectious mononucleosis and with the risk of several 

virus-associated malignancies including nasopharyngeal carcinoma, Hodgkin lymphoma, and 

post-transplant lymphoproliferative disease.

Significance: These findings indicate that while EBV has evolved to use MHC class II as a 

receptor for virus entry, polymorphisms in MHC class II and class I influence virus infection and 

disease.
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Introduction

The human leukocyte antigen (HLA) complex encodes the major histocompatibility 

complex (MHC) proteins in humans. The major function of the HLA complex is to present 
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antigens derived from pathogens, tissue-specific differentiation antigens, or mutated proto-

oncogenes on the cell surface for recognition by T cells in response to infection or to 

malignancy (1). HLA serves as a key determinant for resistance to infections. The major 

HLA class I genes (HLA-A, HLA-B and HLA-C) and class II genes (HLA-DR, DP and DQ) 

are located on chromosome 6 (2). The current number of HLA and related alleles is 22,548, 

which give rise to tens of thousands of possible combinations (http://hla.alleles.org/alleles/

index.html (3). The evolution of diversity of HLA molecules is thought to be the result of 

selection and adaption from combating infection by modulating host immunity (4). 

Consequently, there are strong associations between HLA alleles and various diseases, 

including infection, autoimmune diseases and cancer.

Over 90% of world’s adult population is infected with Epstein-Barr virus (EBV). Both 

social/economic factors and genetic composition of individuals affect susceptibility to virus 

infection and the outcome of infection. While most infections occur in infants and young 

children who present with nonspecific symptoms or no symptoms, in young adults EBV 

frequently causes infectious mononucleosis (5). EBV is associated with several 

malignancies, including lymphomas (Burkitt and Hodgkin lymphoma) and epithelial cell 

cancers (nasopharyngeal carcinoma and gastric carcinoma). In patients with acquired 

immune deficiencies, such as HIV and persons receiving bone marrow transplants, or 

patients with congenital immunodeficiencies such as X-linked lymphoproliferative disease, 

EBV can result in lymphoproliferative disease or lymphoma.

Modulation of HLA class I and II molecules by EBV

Since HLA determines the efficiency of the presentation of EBV peptides to T cells, down-

regulation of HLA by the virus is an important mechanism for immune invasion by EBV (6–

8). Several EBV lytic and latent proteins down-regulate HLA class I as part of the virus’ 

immune-evasion mechanisms. BILF1 binds to MHC class I resulting in degradation of the 

latter protein and reduced expression on the cell surface (9). BNLF2 interacts with the 

transporter associated with antigen processing resulting in reduced MHC class I expression 

at the surface of cells (10). BDLF3 increases internalization of surface MHC class I with 

reduced expression of MHC I on the cell surface (11). BGLF5 inhibits host protein 

synthesis, including expression of MHC class I (12). BZLF1 inhibits upregulation of MHC 

class I expression by LMP1 (13). EBNA1 inhibits its own presentation to the MHC class I 

complex through glycine-alanine repeats in the protein (14, 15). Analysis of nasopharyngeal 

carcinoma cells indicated that levels of EBNA1, EBNA2, EBNA3A, EBNA3B, LMP1, and 

LMP2A are inversely correlated with expression of MHC class I (16).

Several EBV proteins modulate MHC class II expression or interfere with its activity. 

BZLF1 inhibits expression of MHC class II (17). BCRF1inhibits both constitutive and IFN-

γ induced expression of MHC class II (18). BDLF3, BGLF5, BZLF1, and LMP2A each has 

been found to downregulate expression of MHC class II (11, 12, 17, 19). BZLF2 interferes 

with MHC class II presentation of antigens to T cells (20).
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EBV encodes at least 44 microRNAs (miRNA), several of which directly or indirectly 

control antigen presentation by down-regulating HLA class I and class II and reducing 

immune surveillance by virus-specific CD4+ and CD8+ T cells (21–23).

The role of HLA class II in EBV infection in vitro

EBV establishes latency in B lymphocytes. The virus displays many glycoproteins on its 

envelope including glycoprotein gp350, gB, gH/gL, and gp42 (24, 25). Each of these five 

glycoproteins is important for entry into cells. The virus attaches to B cells using EBV 

gp350 which binds to one of two receptors CD21 (also termed CR2) or CD35 (also termed 

CR1) (26–28). EBV gp42 is essential for infection of B cells and uses HLA class II 

molecules as a receptor (29–32). The C-terminus of gp42 binds to the β chain of HLA class 

II (33–36). Antibodies to gp42, HLA class II, or soluble gp42 inhibit EBV infection of B 

cells (29, 37). gp42 is a type II membrane protein. The functional form lacks the N-terminal 

domain of the gp42, which is cleaved during processing of the protein. EBV gp42 interacts 

with gH/gL and consequently recruits gB, a fusion protein (37, 38). EBV gH/gL, gB, and 

gp42 are essential for fusion of the virus to B cells during EBV entry. The role of gp42 in 

fusion is distinct from its interaction with HLA class II, since a gp42 monoclonal antibody 

(CL40) that does not block gp42 binding to MHC class II still blocks fusion (39).

HLA class II molecules are encoded by 5 genes, HLA-DR, HLA-DP, HLA-DO, HLA-DM, 
and HLA-DO. HLA-DP, HLA-DQ, HLA-DR present antigens that are outside the cell to T 

cells; HLA-DM, and HLA-DO are important for internal processing of antigens. HLA class 

II molecules are comprised of a and β polypeptide chains. Each a and β chain of HLA-DR, -

DP, or -DQ has a highly conserved a2 and β2 region and a polymorphic al and β1 region. 

HLA class II proteins consist of HLA-DR, -DQ, or -DP molecules and are inherited as 

haplotypes which share about 70% sequence similarity to each other. EBV gp42 can bind to 

any of the three HLA class II molecules (34, 40), although their binding affinities may not 

be identical. Unlike HLA class II mediated antigen presentation, in which the peptide 

binding groove consists of both α1 and β1 chains, EBV gp42 interacts only with the β chain 

of HLA class II (33, 34, 41, 42), although the gp42 binding site is near the peptide grove. 

This may help to explain how soluble gp42 can interfere with antigen presentation (20, 34, 

43).

CD21-positive B or T cells lacking MHC class II are only infectible if HLA-DR, -DP, or DQ 

are exogenously expressed in the cells (44). Since EBV gp42 is critical for virus infection 

through its interaction with HLA class II and fusion to B cells, B cells with different HLA 

sequences might show different susceptibility to EBV infection. An in vitro study in which 

HLA-DQ was transiently expressed in a B cell line lacking HLA class II showed that cells 

expressing HLA-DQ3.3 (α*0301 × β*03032) cells were less susceptible to EBV infection, 

while cells expressing HLA-DQ2 (a*0501 × β*0201) were more susceptible to virus 

infection (44).
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The role of HLA class I in EBV infection in vitro

HLA class I molecules are encoded by 6 genes, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F 
and HLA-G, and 12 pseudogenes (3). HLA class I molecules bind to β2 microglobulin and 

present peptides that are inside the cell onto the surface of the cells.

Lai et al. used monoclonal antibodies with T cell receptor-like epitopes to show that 

antibody binding to peptides from HLA A*02:01, A*02:03, A*02:06 and A*02:07 alleles 

mediates both complement-dependent and antibody-dependent cellular cytotoxicity on EBV-

transformed human B lymphoblastoid cell lines (45).

The role of HLA class II in EBV infection of humans

About 3-5% of adults in the general population are seronegative for EBV. The ability of 

EBV to bind to B cells has been correlated with the EBV serostatus in several studies. 

Gervis et al. observed relatively low EBV binding to B cells in EBV seronegative adults 

(46). CD21 and MHC class II serve as receptors for EBV infection of B cells through their 

interactions with EBV gp350 and gp42, respectively. CD21 is highly conserved; thus, the 

reduction in EBV binding to B cells in seronegative individuals is likely a result of variation 

in HLA. A significant correlation was observed between HLA-DR 13 and seronegativity to 

EBV in a study of 52 individuals (47). HLA-DR 13 is associated with HLA-DQ6 β1 *06 in 

Caucasians (48); thus, the increased EBV seronegativity found in the HLA-DR β 1 * 13-DQ 

β1 *06 haplotype may be primarily due to DQ β1 *06. We found that individuals with DQ 

β1 *06/*06 were also more likely to be EBV seronegative (49). Hocker et al. found that 

HLA-DR7 was an independent risk factor for EBV infection in pediatric allograft recipients 

(50). HLA-DR7 is strongly associated with DQ β1 *02/*02; thus, the findings of Hocker et 

al. are consistent with our findings of an increased frequency of EBV seropositivity in 

persons with HLA-DQ β1 *02 (49).

To determine if the HLA DQ restriction for EBV infection is also seen in infection of 

humans in the general population, we collected 106 EBV-seronegative individuals from a 

pool of about 3,300 healthy blood donors (49). We found that Caucasians were more likely 

to be seronegative for EBV than African Americans and other non-white persons, suggesting 

that genetics in addition to socio-economic factors may be at play (49). These seronegative 

individuals, together with 218 randomly selected EBV seropositive controls, were genotyped 

for the HLA-DQ β chain. All four DQ β1 *04/*05 positive subjects were EBV seronegative, 

while all 12 DQ β1 *02/*02 positive subjects were EBV seropositive. There was an 

increased frequency of subjects with DQ β1 *06/*06 and DQ β1 *02/*03 than expected in 

the EBV seronegative group than the seropositive controls. The data were then analyzed for 

an association between EBV serostatus and the expression of any single HLA-DQ β 1 allele. 

We found that persons with at least one HLA-DQ β1 *03 allele had the highest chance of 

being seronegative, compared with other HLA-DQ β1 alleles. In addition, a higher than 

expected proportion of EBV seropositive individuals carried at least one DQ β1 *02 or one 

DQ β1 *04 allele. Subsequent in vitro binding and infectivity assays showed that the 

efficiency of EBV gp42 to bind to specific HLA-DQ alleles was sufficient to account for the 

allele-specific correlations with EBV seropositivity and seronegativity in naturally infected 
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humans. In the presence of HLA DR and DP, gp42 protein binds more efficiently to HLA-

DQ β1 *02/*02 positive B cells than to either HLA-DQ β1 *03/*03 or *04/*05 positive B 

cells. In the absence of HLA DR or DP, gp42 protein binds more efficiently to HLA-DQ β1 

*02/*02–positive and *05/*05–positive retrovirus transduced mouse cells than to HLA-DQ 

β1 *03/*03–positive and *06/*06–positive mouse cells. Thus, both in vivo and in vitro data 

provide evidence that different HLA alleles in individuals can account for differences in 

susceptibility to EBV infection based on the role of HLA class II for entry of EBV into cells.

In a series of studies involving students in Edinburgh, HLA-DRB1*01:01 was associated 

with an increased risk of infectious mononucleosis, while HLA-DRB 1*04:01 and HLA-

DQB1*03:01were associated with a decreased risk compared with students who 

seroconverted to EBV without symptoms (51).

The role of HLA class I in EBV infection of humans

McAulay et al. reported that HLA class I polymorphisms were associated with both 

development and severity of infectious mononucleosis (52). However, in contrast with HLA 

class II, there is no evidence suggesting that HLA class I is important for entry of EBV into 

B cells. Therefore, the association of HLA class I polymorphisms with EBV is more likely 

due to genetic variation in T cell responses that control the course of primary EBV infection, 

the level of virus in the blood, virus reactivation, and control for EBV-associated 

oncogenesis (53). HLA A10, A29 and B15 were less frequent in EBV seronegative persons 

than those who were seropositive (54). Boyer et al. found a significantly decreased 

prevalence of EBV seropositivity in healthy donors who carry an HLA-A1 locus; however, 

the Al alleles were not able to be further defined by serology (55). EBV seronegativity was 

associated with HLA-C and HLA-Bw4 variants in persons over age 60 (56).

Ramagopalan et al. found that HLA-C*04:01 was associated with an increased risk of 

infectious mononucleosis, while HLA-C*02:02 and HLA-B* 15:01 were associated with a 

decreased risk compared with students who seroconverted to EBV without symptoms (51).

The Role of HLA in EBV-associated malignancies

Several cancers that are associated with EBV are more common in specific geographic 

areas. While environmental factors, including malaria or HIV, and dietary habits, may be 

risk factors for EBV diseases, genetic factors including HLA have been associated with 

EBV diseases. HLA is important for presentation of viral peptides to T cells and certain 

tumors, including EBV-positive Burkitt lymphoma cells down-regulate HLA antigens which 

may lead to tumor escape (57).

Virtually all cases of anaplastic nasopharyngeal carcinoma are associated with EBV and the 

disease is more common in Southern China and in Inuit populations. Certain HLA types, 

particularly HLA-A*02:07, A*33:03, and B*38:02, followed by A*02:06, B*58:01, and 

C*03:02 and C*07:02, are associated with an increased risk of nasopharyngeal carcinoma; 

other HLA types- HLA-A* 11:01, A*31:01, B*13:01, and B*55:02, followed by C*12:02 

and C*12:03, are associated with a reduced risk of the disease (58, 59). Genome-wide 

association studies (GWAS) have also demonstrated strong links between HLA-A and 
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nasopharyngeal carcinoma, with weaker links between HLA-B and -C loci and disease (59–

63). In addition to germline mutations, somatic mutations in HLA-A, -B, and -C have been 

reported in nasopharyngeal carcinoma (64).

HLA-A*01 is associated with an increased risk of EBV-positive Hodgkin lymphoma, while 

HLA-A*0201 correlates with a lower risk of the disease in Europeans (65–67). HLA-

A*02:07 is associated with an increased risk of EBV-positive Hodgkin lymphoma in 

Chinese (67). However, the increased risk of HLA-A*01 and decreased risk of HLA-

A*0201 for EBV-positive Hodgkin lymphoma was not observed in Hispanic patients (68). 

HLA-B37 and HLA-DR10 were associated with an increased risk of EBV-positive Hodgkin 

lymphoma in Europeans (67). HLA-wide and GWAS studies of EBV-positive Hodgkin 

lymphomas showed a positive correlation between HLA-A and a locus near the HLA-DPB1 

gene with EBV-positive Hodgkin lymphoma (69–71). Expression of HLA class I (72) and II 

on the surface of Reed-Sternberg cells (the tumor cells of Hodgkin lymphoma) is more 

common in cases of EBV-positive than EBV-negative Hodgkin lymphoma.

A small in vitro study showed that EBV-specific CD8 T cell responses to HLA-A*01-

restricted epitopes were much weaker than virus-specific CD8 T cell responses to other 

HLA class I restricted epitopes (73). In addition, EBV-specific CD4 and CD8 T cell 

responses restricted to HLA-A*01 epitopes have not been detected (53). These findings 

might explain the increased risk of EBV-positive Hodgkin lymphoma associated with HLA-

A*01. While responses to EBV EBNA3 antigens which dominate EBV-specific CD8 T cell 

response were associated with multiple HLA class I molecules, responses to EBV LMP1/2A 

which are subdominant were mostly restricted with HLA-A*02 (74).

An increased risk of developing EBV post-transplant lymphoproliferative disease was 

associated with HLA-B51 in bone marrow transplant recipients (75). A study in solid organ 

transplant recipients showed increased risk of EBV post-transplant lymphoproliferative 

disease in patients who were HLA-B18 and a reduced risk in those who were HLA-A03 or 

HLA-DR7 (76). Post-transplant lymphoproliferative disease was higher in solid organ 

transplant recipients who were homozygous for HlA-A1 and lower in those who were 

homozygous for HLA-A2 (77).

Conclusions

HLA class I and II are highly polymorphic molecules that present antigens from pathogens 

to the immune system for recognition by T cells. EBV has evolved a number of viral 

proteins to block the activity of HLA class I and II molecules. HLA class II has a critical 

role in EBV infection, since it is required for the initial stage of virus infection of B cells, 

which are the site of virus latency. Specific HLA class II alleles are associated with 

increased or reduced susceptibility to EBV infection, which also correlates with their ability 

to bind to EBV gp42. In contrast, while HLA class I is not required for virus entry, 

polymorphisms in HLA class I alleles are associated with development and severity of 

infectious mononucleosis. Specific HLA class I alleles have been associated with several 

EBV malignancies including nasopharyngeal carcinoma, Hodgkin lymphoma, and post-

transplant lymphoproliferative disease. Thus, while EBV has evolved to require HLA class 
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II for infection, both class II and class I affect susceptibility to infection and EBV-associated 

disease.
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