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Abstract

Cardiovascular disease (CVD) is the number one leading cause for human mortality. Besides 

genetics and environmental factors, in recent years, gut microbiota has emerged as a new factor 

influencing CVD. Although cause-effect relationships are not clearly established, the reported 

associations between alterations in gut microbiota and CVD are prominent. Therefore, we 

hypothesized that machine learning (ML) could be used for gut microbiome-based diagnostic 

screening of CVD. To test our hypothesis, fecal 16S rRNA sequencing data of 478 CVD and 473 

non-CVD human subjects collected through the American Gut Project were analyzed using 5 

supervised ML algorithms including random forest (RF), support vector machine, decision tree, 

elastic net and neural networks (NN). Thirty-nine differential bacterial taxa were identified 

between the CVD and non-CVD groups. ML modeling using these taxonomic features achieved a 

testing AUC (area under the receiver operating characteristic curves; 0.0: perfect anti-

discrimination; 0.5: random guessing; 1.0: perfect discrimination) of ~0.58 (RF and NN). Next, 

the ML models were trained with the top 500 high-variance features of operational taxonomic 

units (OTUs), instead of bacterial taxa, and an improved testing AUC of ~0.65 (RF) was achieved. 

Further, by limiting the selection to only the top 25 highly contributing OTU features, the AUC 

was further significantly enhanced to ~0.70. Overall, our study is the first to identify dysbiosis of 

gut microbiota in CVD patients as a group and apply this knowledge to develop a gut microbiome-

based ML approach for diagnostic screening of CVD.
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Introduction

Cardiovascular disease (CVD) refers to a number of morbid conditions such as heart failure,
1 hypertension 2 and atherosclerosis,3 which could develop simultaneously or may lead to 

each other.4,5 Worldwide, by 2030, CVD death toll is estimated to surpass 23.6 million.1 

Multiple clinical tests, including electrocardiogram (ECG),6 chest x-ray (CXR) 7 and 

echocardiogram,8 are routinely required for a comprehensive evaluation of cardiovascular 

health. Therefore, a convenient screening test for an overall evaluation of cardiovascular 

health could save diagnostic time and facilitate a timely therapeutic intervention.9

Machine learning (ML), a major branch of artificial intelligence (AI), has been successfully 

used for diagnostic testing and prediction of a variety of diseases such as cancer,10 diabetes 

mellitus 11 and inflammatory bowel disease (IBD).12 For example, ML models have been 

trained with gut microbiota features to classify healthy and IBD subjects.13 Since 

dysregulated gut microbiota is observed in several types of CVD, such as hypertension,14–20 

heart failure 21 and atherosclerosis, 22 we hypothesized that supervised ML models could be 

trained with gut microbiota data for diagnostic screening of CVD. To test this hypothesis, we 

evaluated the capacity of different supervised ML models to detect and differentiate gut 
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microbiome signatures from fecal 16S metagenomics data obtained from 478 CVD and 473 

non-CVD subjects through American Gut Project. To our knowledge, our study is the first to 

demonstrate the promising potential of AI via ML models for a convenient diagnostic 

screening of CVD based on fecal microbiota composition.

Methods

The authors declare that all supporting data are available within the article [and its online 

supplementary files].

Data collection and processing

The workflow of the whole study is summarized in Figure 1A. Human 16S rRNA 

sequencing data was collected through the American Gut Project 23 using Redbiom.24 Out of 

a total of 16,998 stool samples (as of February 11, 2020) under Qiita study ID 10317, 613 

CVD samples were collected from the participants diagnosed (by a medical professional) 

with cardiovascular disease and 16,385 non-CVD samples were collected from the 

participants with no cardiovascular disease. Out of 16,385 non-CVD samples, 602 samples 

were randomly selected in order to match the final sample size of the CVD group after 

quality filtering. Metadata and BIOM files of the samples were downloaded using the 

“redbiom fetch” function with the context “Deblur-Illumina-16S-V4–150nt-780653”. The 

BIOM file was further processed using QIIME 2 (version 2019.10) for quality filtering to 

discard the samples with a total frequency less than 10,000. The table of operational 

taxonomic units (OTUs) was generated using the filtered BIOM file with the BIOM format 

tool.25 The stool 16S data collected from 478 CVD and 473 non-CVD subjects were 

obtained for subsequent analyses.

Taxonomic analysis

Taxonomic assignment was performed using QIIME 2 with a pre-trained Naive Bayes 

classifier on the Greengenes (version 13.8) 99% OTUs.26 Linear discriminant analysis effect 

size (LEfSe) 27 via Galaxy/Hutlab (https://huttenhower.sph.harvard.edu/galaxy/) was used to 

identify differentially abundant taxonomic features. Taxonomical features with a linear 

discriminant analysis (LDA) score more than 2.0 were plotted with the LEfSe bar graph and 

cladogram.

Supervised ML modeling

The process of supervised ML is summarized in Figure 1B. Five different supervised ML 

algorithms were trained with the features of bacterial taxa or OTUs using the caret R 

package:28 decision tree (DT), elastic net (EN), neural networks (NN), random forest (RF) 

and support vector machine with radial kernel (SVM). Kernlab,29 randomForest,30 rpart,31 

and glmnet 32 were used as the helper R packages. Data were assigned into training (70%) 

and testing (30%) datasets after the whole dataset was shuffled. In order to reduce the 

computational complexity and the dimensionality of the feature space, OTU-wise variance 

was calculated for each OTU as a preliminary task for the selection of OTU features and the 

top 500 OTUs with the highest variance across all the samples were selected for training the 

ML models. Training performance of the different ML models was evaluated by 10-fold 
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cross-validation and the process was repeated for 10 times. Hyperparameter tuning was 

automatically executed by caret testing 10 different values for each hyperparameter. In the 

testing phase, prediction performance of each ML model was evaluated by the performance 

parameters including AUC (area under the receiver operating characteristic curves), 

sensitivity and specificity. The entire process, representing a Monte Carlo procedure 33, 

comprising of data shuffling, data splitting, training and testing were independently 

performed for 50 iterations. The box-plot representations of the values of AUC, sensitivity 

and specificity were generated using the ggplot2 package 34 in R.

Identification of highly contributing OTU features (HCOFs)

HCOFs were selected on the basis of variable importance scores (ranged from 0 to 100; 0: 

no contribution to the model; 100: contributing most to the model) calculated using the 

“varlmp” function 28 from the caret R package. Importance scores of top OTU features were 

plotted using the ggplot2 package in R. To evaluate how the selected HCOFs were able to 

classify the CVD and non-CVD groups, only selected HCOFs were used for ML modeling 

as described above.

Statistical Analysis

LEfSe 27 was used to perform the Kruskal-Wallis test for differential analysis of bacterial 

taxa among different groups and the LDA score more than 2.0 was defined as the threshold 

for selecting the discriminative features. The values of mean and standard deviation of AUC, 

sensitivity and specificity were computed from the 50 independent iterations of ML 

modeling.

Results

Differential bacterial taxa between the CVD and non-CVD groups

Significant differences in gut microbiota were observed between the CVD and non-CVD 

subjects (Figure 2A and Figure 2B). A total of 39 taxonomic features (LDA > 2) were found 

to be enriched in either CVD or non-CVD group (Figure 2A and Supplementary Table S1). 

For example, at the bacterial genus level, Bacteroides, Subdoligranulum, Clostridium, 
Megasphaera, Eubacterium, Veillonella, Acidaminococcus and Listeria were more abundant 

in the CVD group (Figure 2A). In contrast, Faecalibacterium, Ruminococcus, Proteus, 
Lachnospira, Brevundimonas, Alistipes, and Neisseria were more abundant in the non-CVD 

group (Figure 2A). Differential enrichments in several major bacterial taxa in the CVD and 

non-CVD group and their phylogenetic relationships are presented using the cladogram 

(Figure 2B).

Supervised ML models trained with enriched taxonomic features

Supervised ML models were trained with the 39 differential taxonomic features for 

predictive classification and diagnostics of the CVD and non-CVD subjects. Table 1 and 

Figure 2C through 2E present performances measures of the 5 different ML algorithms 

evaluated on the testing dataset for the CVD versus non-CVD classification. RF and NN 

performed better than other models, but they only achieved an AUC of ~0.58, followed by 

EN (~0.57 AUC), SVM (~0.55 AUC) and DT (~0.51 AUC) (Table 1 and Figure 2C). RF and 

Aryal et al. Page 4

Hypertension. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NN had lower sensitivity but higher specificity than EN, DT and SVM (Table 1, Figure 2D 

and 2E).

Supervised ML models trained with high-variance OTUs

Next, supervised ML models were trained with the top 500 high-variance OTU features, 

instead of taxonomic features, to test if the diagnostic classification could be further 

improved. Interestingly, the testing AUC of RF was significantly improved to ~0.65 and its 

sensitivity was also significantly increased to ~0.70 despite no significant improvement of 

specificity (Table 1 and Figure 3). However, the AUC and specificity of NN significantly 

decreased to ~0.48 and ~0.46, respectively (Table 1 and Figure 3). No significant 

improvements in the performance measures of EN, DT and SVM were observed (Table 1 

and Figure 3).

Supervised ML models trained with HCOFs

To further improve the diagnostic classification of the RF model and also reduce the 

dimensionality of the OTU feature space, HCOFs were further selected from the top 500 

high-variance OTU features. Variable importance scores (ranged from 0 to 100) of OTUs 

were calculated and the top 100 HCOFs with the highest scores were selected for training 

the RF model (Figure 4A and Supplementary Table S2). The RF algorithm was then re-

implemented using the top 20, 25, 50, 75 and 100 HCOFs, respectively. The RF models 

trained with the top 20 and top 25 HCOFs not only reduced the dimensionality of the feature 

space, but also achieved a further improvement of testing AUC (~0.70) and performed 

slightly better than other three RF models trained with ≥50 HCOFs (Table 2 and Figure 4B). 

The RF model trained with the top 25 HCOFs had slightly higher sensitivity and specificity 

than the model trained with the top 20 HCOFs (Table 2, Figure 4C and 4D). Therefore, we 

concluded that the RF model trained with only 25 OTU features could achieve a good 

diagnostic classification power of predicting and identifying the subjects with CVD.

Discussion

Mounting evidence points to a strong link between cardiovascular health and gut microbiota.
35–37 Albeit being highly variable between individuals, gut microbiota has been successfully 

used as a feature to differentiate between health and disease in a variety of illnesses.13,38,39 

Therefore, in this study we asked whether gut microbiome data can be used to diagnose 

CVD in humans. CVD is a broad term including a range of morbid conditions from 

hypertension and atherosclerosis to heart failure. As such, the host molecular mechanisms 

underlying a broad group of subjects classified as having CVD vary widely. Even so, we 

asked if there are any early warning signs which are trackable across all of the clinical 

conditions which belong under the broad class called as CVD. To this end, given the recent 

literature on a strong association between gut microbial communities and a variety of CVD 
17,21,22,40, we examined whether an alteration in gut microbial composition could serve as a 

common differentiator between subjects with any form of CVD and those with normal 

cardiovascular health. Remarkably, not only were we able to detect distinct microbial 

signatures (Figure 2A and 2B), but we were also successful in applying gut microbiome data 
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as training modules for supervised ML modeling to differentiate between these two groups 

with a promising predictive diagnostics potential.

The approach of utilizing 16S metagenomics data for disease prediction using supervised 

ML is not new,38,41–43 however its application in CVD is novel. One of the strengths of our 

study is that it was conducted with a large sample size consisting of 478 CVD and 473 non-

CVD human subjects. While larger sample sizes are better under a controlled setting of 

restricting them by a single feature such as age for example, the cohort we used here were 

not limited by any features. The entire cohort was well represented by a dynamic range of 

various features such as ages, sexes, dietary habits and lifestyles.23 Thereby, the 

experimental design was more permissive to contribute to a high degree of within-group 

variability for a rigorous examination of the capacity of ML models using gut microbiota as 

the sole feature for diagnostic classification of non-CVD vs CVD. However, we have to 

point out the limitation that gut microbiome can be influenced by other features such as diet 

and medication, but those data are not fully available in the American Gut Project for a 

comprehensive evaluation of their impact in our current ML analysis. Moreover, even though 

we only used the fecal 16S data collected from the CVD participants indicated by 

“diagnosed by a medical professional (doctor, physician assistant)” and the non-CVD 

participants indicated by “I do not have this condition” in the database of the American Gut 

Project, we could not rule out the possibility of misreported or undiagnosed CVD cases. 

Despite this, remarkably, differential gut microbiol signatures were detectable between the 

CVD and non-CVD groups. These data point to a core set of altered gut microbiota as a 

common denominator for a variety of clinical presentations of CVD.

Initial ML modeling using these differential taxonomic features was not satisfactory and 

only achieved ~0.58 AUC (Table 1 and Figure 2C), indicating that the identified differential 

bacterial taxa were not sufficient as reliable features in the ML based decision-making 

process. As OTUs differentiate bacteria based on DNA sequence similarity and represents a 

more informative feature than taxonomic assignment, we further tested if OTU features 

could be used to train ML models to improve their prediction power. It should be noted that 

our study did not normalize OTU data across all the samples as we aimed to test the capacity 

and adaptability of ML models trained with raw OTU data to classify and predict new 

unknown samples without the need for repeated processing of all the previous samples with 

the new samples in future. Top 500 high-variance OTU features, representing those most 

variable OTUs within all the CVD and non-CVD samples to provide rich feature 

information, were used for ML modeling and an improved testing AUC, ~0.65, was 

achieved by the RF model (Table 1 and Figure 3A). Since OTUs performed better than 

known taxa, it is also likely that a vast majority of the microbes which are common to all the 

forms of CVD are perhaps yet unknown for their taxonomic assignments.

In order to reduce the dimensionality of the feature space and further improve the predictive 

diagnostics performance, we calculated the variable importance scores of the top 500 high-

variance OTUs and selected the top 100 OTUs with the highest scores as the most highly 

contributing features for re-training the RF model. A final testing AUC of ~0.70 was 

achieved with only 25 OTU features which were used to train the RF model (Table 2 and 

Figure 4B). Importantly, these high-contributing OTUs (Figure 4A and Supplementary Table 
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S2) for ML modeling could be considered as new biomarkers for future mechanistic 

research and clinical application.

The current ML study differs from the prior reported ML approaches in that we used 

microbial composition data of stool sample, whereas almost all reported prior studies are 

based on health records.44–49 One of those reported accuracies is through supervised ML 

modeling trained with multiple clinical factors, including age, gender, smoking habit, 

systolic blood pressure, total cholesterol, HDL cholesterol, blood pressure treatment and 

diabetes, to predict CVD risks, wherein an AUC of ~0.76 was achieved.49 By comparison, 

our study has achieved a promising AUC of ~0.70 with a single parameter of stool gut 

microbiome data. While this demonstrates the promising potential of applying microbiome-

based ML for predicting CVD, in future, it will be of interest to further calibrate and 

improve predictive capability of ML modeling by including more samples from different 

sources or stratifying specific types of CVD incorporated with combinatorial features such 

as health records, in addition to gut microbiome data.

Perspectives

To our knowledge, our study is the first to demonstrate the promising potential of AI via ML 

modeling for a convenient diagnostic screening of CVD based on fecal microbiota 

composition. As multiple clinical tests, such as electrocardiogram, chest x-ray and blood 

work, are usually required for a comprehensive evaluation of cardiovascular health, our gut 

microbiome-based supervised ML approach is promising for initial routine cardiovascular 

health monitoring prior to proceeding with those various clinical tests for proper diagnosis 

of specific kinds of CVD. Moreover, the ML-based feature selection approach that we 

described by identifying highly contributing OTUs, further expands the biomarker toolkit for 

CVD. Our feature selection results show that a small number of highly informative OTUs 

not only reduce computational complexity of ML modeling but also further improve their 

diagnostic classification performances. These highly contributing OTUs could be further 

investigated for their pathophysiological and mechanistic implications in cardiovascular 

health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Significance

a. What is new?

• Our study analyzed the large-scale gut microbiota data collected from a 

significant number of human CVD and non-CVD subjects and reported 

distinct gut microbiome features associated with cardiovascular health and 

disease, without any further sub-classification into the various types of CVD.

• Further, this is the first study which demonstrates the successful application of 

AI via gut microbiome-based ML modeling for potential diagnostic screening 

of CVD.

b. What is relevant?

• Hypertension is one of the most significant risk factors for developing almost 

all kinds of CVD, and thus our gut microbiome-based supervised ML 

approach can be potentially used for routine monitoring and evaluation of 

hypertension-involved cardiovascular deterioration.

c. Summary

Differential composition of gut microbiota was identified in human subjects diagnosed 

with and without CVD. Gut-microbiome based supervised ML modeling has been 

demonstrated as a promising novel approach for diagnostic screening of CVD.
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Figure 1. The study workflow.
(A) Overall analysis. (B) Supervised machine learning.
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Figure 2. Differential bacterial taxa between the groups of cardiovascular disease (CVD) and 
non-CVD and performance measures of supervised machine learning models for classifying the 
CVD and non-CVD subjects using differential taxonomic features.
(A) Linear discriminant analysis effect size (LEfSe) bar graph showing differential bacterial 

taxa. (B) Cladogram showing phylogenetic relationships of differential bacterial taxa. (C) 
Area under the receiver operating characteristic curve (AUC). (D) Sensitivity. (E) 
Specificity. Each point in the box plot represents the corresponding performance measure in 

one iteration (total 50 iterations).
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Figure 3. Performance measures of supervised machine learning models for classifying the 
cardiovascular disease (CVD) and non-CVD subjects using the top 500 high-variance operational 
taxonomic unit (OTU) features.
(A) Area under the receiver operating characteristic curve (AUC). (B) Sensitivity. (C) 
Specificity. Each point in the box plot represents the corresponding performance measure in 

one iteration (total 50 iterations).
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Figure 4. Performance measures of the random forest (RF) model for classifying the 
cardiovascular disease (CVD) and non-CVD subjects using the top highly contributing 
operational taxonomic unit features (HCOFs).
(A) Variable importance scores (ranged from 0 to 100) of the top 100 HCOFs. (B) Area 

under the receiver operating characteristic curve (AUC). (C) Sensitivity. (D) Specificity. 

Each point in the box plot represents the corresponding performance measure in one 

iteration (total 50 iterations).
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Table 1.

Performance measures of supervised ML models for classifying the CVD and non-CVD subjects using 

differential taxonomic features and top 500 high-variance OTU features.

Features Algorithms AUC Sensitivity Specificity

DT 0.51 ± 0.07 0.68 ± 0.18 0.41 ± 0.18

EN 0.57 ± 0.04 0.71 ± 0.17 0.37 ± 0.16

Bacterial Taxa NN 0.58 ± 0.04 0.59 ± 0.07 0.52 ± 0.06

RF 0.58 ± 0.04 0.59 ± 0.06 0.51 ± 0.04

SVM 0.55 ± 0.03 0.60 ± 0.08 0.49 ± 0.07

DT 0.52 ± 0.08 0.57 ± 0.10 0.53 ± 0.11

EN 0.56 ± 0.05 0.56 ± 0.09 0.55 ± 0.09

High-Variance OTUs NN 0.48 ± 0.04 0.59 ± 0.30 0.46 ± 0.28

RF 0.65 ± 0.03 0.70 ± 0.05 0.50 ± 0.04

SVM 0.57 ± 0.04 0.60 ± 0.07 0.52 ± 0.09

Values are presented as mean ± standard deviation (calculated from 50 iterations). In each iteration, entire processes of data shuffling, data splitting, 
training and testing were independently performed to compute for all the performance parameters.
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Table 2.

Performance measures of the RF model for classifying the CVD and non-CVD subjects using the highly 

contributing OTU features.

Top Features AUC Sensitivity Specificity

Top 20 0.70 ± 0.03 0.69 ± 0.04 0.58 ± 0.05

Top 25 0.70 ± 0.03 0.70 ± 0.05 0.60 ± 0.05

Top 50 0.69 ± 0.03 0.69 ± 0.05 0.56 ± 0.06

Top 75 0.68 ± 0.03 0.71 ± 0.04 0.55 ± 0.06

Top 100 0.68 ± 0.03 0.70 ± 0.05 0.55 ± 0.06

Values are presented as mean ± standard deviation (calculated from 50 iterations). In each iteration, entire processes of data shuffling, data splitting, 
training and testing were independently performed to compute for all the performance parameters.
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