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Hypertension and atherosclerosis, the predecessors of stroke and 
myocardial infarction, are chronic vascular inflammatory reactions. 
Tumor necrosis factor alpha (TNFα), the “master” proinflammatory 
cytokine, contributes to both the initiation and maintenance of vas-
cular inflammation. TNFα induces reactive oxygen species (ROS) 
production which drives the redox reactions that constitute “ROS 
signaling.” However, these ROS may also cause oxidative stress which 
contributes to vascular dysfunction. Mice lacking TNFα or its receptors 
are protected against both acute and chronic cardiovascular injury. 
Humans suffering from TNFα-driven inflammatory conditions such 
as rheumatoid arthritis and psoriasis are at increased cardiovascular 
risk. When treated with highly specific biologic agents that target 
TNFα signaling (Etanercept, etc.) they display marked reductions in 
that risk. The ability of TNFα to induce endothelial dysfunction, often 
the first step in a progression toward serious vasculopathy, is well 
recognized and has been reviewed elsewhere. However, TNFα also has 
profound effects on vascular smooth muscle cells (VSMCs) including 

a fundamental change from a contractile to a secretory phenotype. 
This “phenotypic switching” promotes proliferation and production 
of extracellular matrix proteins which are associated with medial hy-
pertrophy. Additionally, it promotes lipid storage and enhanced mo-
tility, changes that support the contribution of VSMCs to neointima 
and atherosclerotic plaque formation. This review focuses on the 
role of TNFα in driving the inflammatory changes in VSMC biology 
that contribute to cardiovascular disease. Special attention is given 
to the mechanisms by which TNFα promotes ROS production at spe-
cific subcellular locations, and the contribution of these ROS to TNFα 
signaling.
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According to 2016 statistics from the World Health 
Organization, ischemic heart disease and stroke remain the 
top 2 causes of mortality worldwide, causing approximately 
the same number of deaths as the next 7 diagnoses combined.1 
These “final common pathways” of mortality are promoted 
by chronic vascular inflammatory conditions such as hyper-
tension, atherosclerosis, and diabetes. Understanding the 
risk factors that predispose to cardiovascular disease allows 
identification of individuals who may benefit from preven-
tative therapy. However, vascular dysfunction progresses 
slowly and is asymptomatic until very late in the disease 
process. Effective prevention must be administered for 
many years, which necessitates a very favorable safety pro-
file. This highlights the critical need to understand basic 
mechanisms of vascular inflammation. Therapies for hy-
pertension that target blood pressure normalization may 
tangentially address the underlying vascular inflammation 
but do not treat it directly. Cholesterol lowering drugs like 
statins do address vascular inflammation by lowering serum 
levels of proinflammatory lipids, however, vascular disease 
still kills numerous individuals who have no abnormalities 
in their lipid profile. Primary treatment of vascular inflam-
mation holds great appeal but has been elusive. To effectively 
target the inflammatory process, we must identify key steps 

in relevant signaling pathways and fully understand the 
mechanisms by which they proceed.

Blood vessels are composed of (i) an intimal layer of endo-
thelial cells that cover a basement membrane, (ii) a media com-
posed of layered, circumferentially oriented vascular smooth 
muscle cells (VSMCs) with interposed extracellular matrix, and 
(iii) an adventitia that includes extracellular matrix, fibroblasts, 
fat cells, nerve cells, and small arteries (vaso vasorum). All 3 
layers are involved in the response to both acute and chronic 
inflammatory triggers. Tumor necrosis factor alpha (TNFα) 
is produced by inflammatory cells such as monocytes and 
neutrophils that invade the injured vascular wall, as well as 
by cells that are native to the tissue, particularly VSMCs. 
Circulating levels of TNFα are elevated and have been directly 
implicated in patients who develop cardiovascular disease in-
cluding hypertension,2 atherosclerosis,3 and ischemic heart di-
sease4 as well as in animal models of acute arterial injury.5 In 
addition, atherosclerotic plaques contain particularly high local 
levels of TNFα.6,7 An overview of the contributions of TNFα to 
the pathophysiology of vascular disease is provided in Figure 1.

A very proximal step of TNFα signaling in VSMCs is 
the production of extracellular superoxide anion (O2

·−) by 
nicotinamide adenine dinucleotide phosphate (NADPH) 
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oxidase 1 (Nox1).8,9 This signaling step is shared by several 
other signaling molecules that are also key drivers of vas-
cular inflammation including platelet-derived growth factor, 
Angiotensin II (Ang II), and interleukin-1beta.9,10 A recur-
ring challenge in understanding mechanisms of vascular in-
flammation is distinguishing the role of O2

·− and its reactive 
oxygen species (ROS) metabolites in signaling from poten-
tially independent deleterious effects of oxidants on cellular 
metabolism and survival. This review will focus on how the 
responses of VSMCs to TNFα contribute to vascular inflam-
mation in hypertension and atherosclerotic disease. Current 
understanding of the mechanisms by which O2

·− supports 
TNFα signaling and oxidative stress in VSMCs will be 
explored in detail.

TNFα AND VSMC IN VASCULAR DISEASE

Phenotypic switching

A fundamental mechanism by which inflammation 
promotes vascular disease is via a change in VSMC gene and 
protein expression from a pattern that promotes “normal” 
contractile function, to one supporting an increased ca-
pacity for migration and secretion of extracellular matrix 
proteins. This switch is associated with a decrement in the 

expression of proteins that support contractile function (my-
osin heavy chain, smooth muscle alpha actin, calponin, etc.) 
and increased expression of extracellular matrix proteins 
such as type I  collagen and osteopontin.11 These pheno-
typic changes facilitate VSMC migration out of the media 
into the intimal layer. Once there, they can take on the ap-
pearance of fibroblasts or become indistinguishable from 
macrophage-derived foam cells and participate in formation 
of a neointima. Phenotypic switching is of fundamental im-
portance to the atherosclerotic process. However, the roles of 
VSMCs are complex and stage-dependent. Recent consensus 
suggests that VSMC proliferation may be predominantly re-
parative and may not be the primary driver of plaque for-
mation, while the role of migration remains controversial. 
In contrast, VSMC death and senescence clearly appear 
to promote atherogenesis and likely contribute to plaque 
instability.11

There was a longstanding controversy as to the primary 
source of the VSMCs that are responsible for the acute re-
pair of injured blood vessels. While there may be some 
contribution from circulating VSMC progenitor cells, 
the primary cells responsible for neointima formation 
are now accepted to be resident VSMCs of the media that 
have undergone phenotypic modulation. These changes 
are widespread throughout the media and are thought to 

Figure 1. The role of TNFα in VSMC-related cardiovascular disease. In a healthy state, the primary functional components of the arterial wall; endo-
thelial cells and VSMCs reside in a stable, interdependent and homeostatic state (left). In hypertension low grade inflammation is triggered by genetic, 
epigenetic, and/or environmental factors, and this is associated with increased serum and vascular levels of TNFα. This contributes to the develop-
ment of altered endothelial and VSMC function, inducing both structural (hyperplasia and hypertrophy) and functional (contractility) changes (center). 
Atherosclerotic plaques begin as fatty streaks where endothelial injury results in local recruitment of macrophages and VSMCs to the intima. TNFα 
promotes phenotypic switching of VSMCs which is associated with proliferation, enhanced motility, and increased secretion of extracellular matrix 
proteins and lipid uptake (right). The lipid laden foam cells which constitute the bulk of cells within an atheroma are composed of approximately equal 
numbers of macrophages and cells of VSMC lineage which are indistinguishable histologically. Persistent high local levels of TNFα can lead to apoptosis 
and necrosis, destabilization of the neointima, and eventually plaque rupture with vessel occlusion. Abbreviations: TNFα, tumor necrosis factor alpha; 
VSMC, vascular smooth muscle cell.
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be reversible.11,12 A  variety of signaling pathways promote 
phenotypic switching including growth factors such as 
platelet-derived growth factor,13 transforming growth factor 
β, vasoconstrictors such as endothelin-1 and Ang II,12 and 
cytokines such as TNFα and interleukin-1beta. Importantly, 
in addition to their proinflammatory signals, all these factors 
increase VSMC O2

·− production which can reduce local ni-
tric oxide concentrations and promote oxidative injury.

Abdominal aortic balloon injury in rabbits induces a 
subset of more proliferative VSMCs that also produce more 
TNFα. This suggests that VSMC-derived TNFα serves as a 
marker of a modulated smooth muscle cell phenotype after 
acute vascular injury.14 These local changes in TNFα abun-
dance may also independently drive phenotypic changes in 
VSMCs. In pigs, chronic local exposure to TNFα-induced 
alterations in the smooth-muscle myosin heavy chain 
isoform expression that were consistent with VSMC dedif-
ferentiation.15 In addition, the well-established ability of 
TNFα to promote either growth or apoptosis may be im-
pacted by VSMC phenotype. Two stable subpopulations of 
VSMCs were isolated from human saphenous vein: spindle 
and epithelioid-shaped VSMCs. TNFα stimulated growth of 
spindle shaped cells but caused apoptosis of epithelioid ones 
which expressed higher levels of the type 1 TNFα receptor 
(TNFR1).16

Several signaling mechanisms contribute to TNFα-
induced phenotypic switching. Proximal signaling involves 
phosphoinositide 3-kinase γ activation as demonstrated 
by inhibition or genetic knockdown of phosphoinositide 
3-kinase γ in rat aortic aortic smooth muscle cells (SMCs), 
which inhibited TNFα-induced downregulation of VSMC 
contractile genes and increased proliferation and migra-
tion.17 A further downstream, but critical component of the 
response to TNFα is activation of the nuclear factor-kappaB 
(NF-κB) transcription factor, a master regulator of inflam-
mation.18 Neointima formation was markedly reduced fol-
lowing carotid injury in VSMC-specific knockout mice that 
are unable to activate NF-κB (Ikappaβ null).19 Switching 
is also influenced by epigenetic mechanisms. Micro RNA-
155 (miR-155) expression is increased in apolipoprotein E 
(ApoE) null mice on a high fat diet and in patients with ath-
erosclerosis. TNFα-induced miR-155 expression in vessel 
segments and in cultured VSMCs which induced phenotypic 
switching in an NF-κB-dependent manner.20 Circular RNAs 
(circRNAs) are noncoding RNAs formed by back-splicing 
of exons to form a closed loop structure. This makes them 
highly stable in vivo compared with linear RNAs. Sirtuin 1 
(Sirt1) is a histone deacetylase that can also deacetylate and 
inactivate the p65 subunit of NF-κB in response to TNFα, 
thereby mitigating the transcriptional response to the cyto-
kine.21 A circRNA that arises from the Sirt1 gene (Circ-Sirt1) 
inhibits phenotypic switching of VSMCs in response to 
TNFα. This occurs via 2 mechanisms: (i) binding to and se-
questration of NF-κB (p65) in the cytoplasm and (ii) binding 
to miR-132/212, which is known to degrade Sirt1 mRNA, 
thereby enhancing expression of Sirt1.22 TNFα also can in-
duce phenotype changes via myocardin and Kruppel-like 
transcription factor 4 (KLF4)-regulated pathways. Targeting 
of KLF4 with small-interfering RNA (siRNA) blocked TNFα 

activation of inflammatory genes and suppression of con-
tractile genes, and TNFα inhibition reversed pathologic 
vessel wall alterations in hypertension and under hemody-
namic stress.23 Finally, atheromatous plaques have increased 
autophagy which is induced by TNFα and mediates protein 
and intracellular organelle degradation. The ability of TNFα 
to induce phenotypic switching in VSMCs is prevented by 
inhibition of autophagy.24

Hypertension

TNFα contributes to the vascular inflammation and 
remodeling25 which underlies the development of hyper-
tension in humans.26 Ang II-induced hypertension was 
abrogated in TNFα knockout mice. Furthermore, adminis-
tration of exogenous TNFα restored the increase in blood 
pressure induced by Ang II to levels similar to those observed 
in wild-type mice.27 Disruption of TNFα signaling using a 
biologic agent that binds up the free cytokine (Etanercept) 
also prevented Ang II-induced hypertension and aortic O2

·− 
production in mice.28 Similarly, TNFR1 knockout mice were 
protected from ethanol-induced hypertension and displayed 
reduced O2

·− in the aorta compared with wild-type mice.29 
TNFα may also play an important role in the inflamma-
tory response that drives pulmonary hypertension. In a rat 
model of monocrotaline-induced pulmonary hypertension, 
and in cultured pulmonary arterial VSMCs exposed to hy-
poxia, downregulation of miR-140-5p and upregulation of 
TNFα were observed. Furthermore, miR-140-5p directly 
targeted TNFα message for degradation and overexpression 
of this miRNA mitigated the rise in pulmonary blood pres-
sure as well as proliferation, migration, and phenotypic var-
iation of cultured pulmonary artery SMCs.30 Collectively, 
these reports suggest an important role for TNFα-induced 
inflammation in hypertension31, but they cannot discern 
the contributions of endothelial vs. VSMC inflammation 
or effects related to renal inflammation.32 Importantly, the 
response to TNFα differs remarkably between cultured en-
dothelial cells and VSMCs. The predominant response of 
endothelial cells is cell death33,34 while VSMCs respond by 
increases in proliferation35–37 and migration.38 VSMCs pro-
duce hydrogen peroxide (H2O2) in response to TNFα 9 and 
this response has been linked to “hypertrophy” of individual 
VSMCs as reflected by the aggregate protein/DNA ratio of 
cultured cells.39

Human studies also support the association of TNFα 
with hypertension. While increased production of TNFα 
has been associated with essential hypertension and its var-
ious complications,40 it is challenging to isolate the patho-
physiologic influence of TNFα in a complex environment of 
vascular inflammation. However, the more rare A allele at a 
polymorphic site in the promoter region of the TNFα gene 
(-308G/A) has consistently been associated with hyperten-
sion, including in a recent meta-analysis.41 The A allele has a 
significant positive effect on TNFα transcription in reporter 
gene assays.42 In addition to essential hypertension, TNFα 
also appears to play an important role in the inflammatory 
response associated with preeclamptic hypertension. Serum 
levels of TNFα are significantly higher in preeclamptic 
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compared with normotensive pregnant women.43 This as-
sociation is supported by animal data demonstrating that 
TNFα causes greater enhancement of phenylephrine-
dependent contraction in aortae from pregnant compared 
with nonpregnant rats,44 and chronic infusion of TNFα 
increases mean arterial pressure in pregnant rats.45

As noted above in pregnant mice, TNFα can directly 
impact vascular contractility. In vivo TNFα infusion for 
14 days increased in vitro aortic contractility compared with 
saline-treated controls.46 While a similar 14  day exposure 
to TNFα did not alter blood pressure in wild-type mice, 
it caused hypertension in interleukin 10 null animals and 
enhanced both aortic and mesenteric contractile responses 
to endothelin-1.47 VSMC-derived TNFα also augments my-
ogenic tone in cerebral48 and skeletal muscle49 arterioles 
from humans and in murine mesenteric and olfactory resist-
ance vessels.49 Furthermore, both inducible deletion of the 
TNFα gene selectively in smooth muscle cells, or blocking 
signaling with Etanercept, reduced total peripheral resist-
ance and blood pressure in mice and were associated with 
a reduction in resistance artery myogenic responsiveness.50

Atherosclerosis

The leading cause of cardiovascular-associated mortality 
worldwide is atherosclerosis,51,52 the process through which 
vascular inflammation promotes fat deposition and immune 
cell infiltration into the vascular wall to form obstructive 
plaques. Vascular inflammation begins with endothelial cell 
dysfunction that can be triggered by a number of genetic 
and/or environmental factors31. This attracts and promotes 
the invasion of circulating monocytes/macrophages, which 
release TNFα in response to oxidized low-density lipopro-
tein.53 This mechanism is highlighted by the observation 
that rats injected with oxidized low-density lipoprotein dis-
play increased arterial TNFα expression within 24 hours.54 
TNFα propagates the atherosclerotic process in part by re-
ducing intracellular metabolism of lipids, allowing them 
to accumulate in specific macrophage and VSMC-derived 
foam cells55 that are virtually indistinguishable from each 
other. However, a large proportion of human neointimal 
and atherosclerotic lesions is composed of VSMC lineage 
cells.11,56 In addition to phenotypic VSMCs that are present 
in human atherosclerotic lesions, approximately half of the 
foam cells are derived from VSMCs that have undergone 
phenotypic switching.57,58 Similarly, lineage tracking in 
murine atheromas demonstrates that VSMC-derived cells 
account for approximately 70% of foam cells in ApoE null 
mice fed a Western diet for 6 or 12 weeks or a chow diet for 
longer periods.59 Importantly, the final common pathologic 
pathway of atherosclerotic lesions is cellular necrosis and ap-
optosis, which TNFα can trigger in VSMCs leading to plaque 
rupture and acute vessel occlusion.60

There has been some controversy regarding the role of 
TNFα in murine models of atherosclerosis. Perhaps the 
strongest evidence for the role of TNFα has been derived from 
mice that are both ApoE and TNFα deficient. Loss of ApoE 
decreases cholesterol release from foam cells which enhances 
inflammation and promotes atheroma development.61 

When mice deficient in both ApoE and TNFα were fed a 
cholesterol-rich diet, they had a 50% reduction in the rel-
ative atherosclerosis lesion size after 10 weeks compared 
with ApoE null controls. Similar mice also demonstrated a 
reduced number of advanced atherosclerotic lesions (53.9% 
vs. 78.6%) as well as less necrosis and apoptosis within those 
lesions.62 Further, bone marrow transplantation of ApoE-
deficient mice with dual ApoE/TNFα-deficient bone marrow 
resulted in a reduction of atherosclerotic lesion size of 83% 
compared with controls after 25 weeks of a cholesterol-rich 
diet.63 This suggests that TNFα from invading white blood 
cells is critical to the atherosclerotic process. TNFα null mice 
were also dramatically protected from neointima formation 
in response to carotid ligation,64 suggesting that TNFα can 
play an important role in atherogenesis independent of lipid 
status. In contrast to these findings, in low-density lipopro-
tein receptor knockout animals, use of a TNFα inhibitor had 
a mixed effect, reducing evidence of systemic inflammation 
but leading to increased plaque formation.65 The role of en-
dothelial vs. VSMC responses to TNFα in these atheroscle-
rosis models remains an important unknown.

A variety of human studies support a role for TNFα in ath-
erosclerosis. The same -308G/A polymorphism in the TNFα 
promoter that affects hypertension also impacts atheroma 
formation. Once again, the A  allele confers an increased 
risk of coronary artery disease.66,67 Since the 1990s, TNFα 
inhibitors have been used clinically to treat inflammation 
associated with autoimmune diseases including rheumatoid 
arthritis, psoriasis, and inflammatory bowel disease.68 These 
patients are chronically inflamed and have a higher incidence 
of cardiovascular morbidity and mortality compared with 
the general population.69 The use of TNFα inhibitors in these 
disorders has been associated with a reduction in cardiovas-
cular complications. This effect was well demonstrated in 
rheumatoid arthritis patients receiving anti-TNFα therapy 
who showed a marked reduction in the incidence of cardi-
ovascular disease compared with controls.70 A recent meta-
analysis showed that anti-TNFα therapy reduced the overall 
incidence of cardiovascular events in another cohort of 
patients with rheumatoid arthritis, though the relatively low 
sample size and heterogeneity of patients studies impaired 
the statistical significance.71 Patients with inflammatory 
bowel disease also have an increased risk of cardiovascular 
events compared with the general population72 and patients 
with inflammatory bowel disease who received anti-TNFα 
therapy showed a reduction in arterial stiffness compared 
with those who did not. Increased stiffness is associated with 
atherosclerosis and increased cardiovascular disease.73,74 
However, not all inflammatory bowel disease patients re-
ceiving TNFα inhibitors have exhibited the same protection, 
suggesting a mixed picture that may be dependent upon di-
sease severity.75

REACTIVE OXYGEN IN TNFα SIGNALING

A common pathophysiologic finding in hypertension 
and atherosclerosis is that both are associated with a more 
oxidized microenvironment in the vasculature and both en-
dothelial cells and VSMCs are under “oxidative stress.” 76,77 
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There is a complex and relatively poorly understood inter-
dependence between ROS generators (e.g., mitochondria 
and NADPH oxidases) and cellular antioxidant systems. 
Antioxidants are present diffusely within the cytoplasm 
(glutathione, vitamins C and E, etc.) and can also be more 
highly localized within subcellular compartments such as 
peroxisomes or in multiprotein complexes that incorporate 
antioxidant enzymes such as thioredoxins, peroxiredoxins, 
superoxide dismutase (SOD), or catalase. Relative deficiency 
or defective localization of antioxidant protection may theo-
retically be as damaging as overproduction of ROS. The need 
to better understand the localization of redox-dependent 
signaling events is highlighted by the fact that nonspecific 
antioxidant supplementation has thus far not proven to pro-
vide effective treatment of cardiovascular diseases.78,79

Many of the critical proinflammatory drivers of vascular 
inflammation (e.g., Ang II, endothelin-1, platelet-derived 
growth factor, interleukin-1beta, thrombin) share a critical 
commonality with TNFα signaling, that is a requirement 
for O2

·− production by Nox enzymes. It has been proposed 
that oxidative stress can result from excessive activation of 
NADPH oxidases as part of these ROS-dependent signaling 
pathways. Given the large number of redox reactions within 
the cell, and the risks associated with off-target oxidation, 
it seems likely that effective redox-dependent signaling 
requires highly localized production of ROS. While we 
know relatively little about molecular colocalization of ROS 
generators with downstream targets, it seems likely that both 
tight local control of oxidant production and localization of 
antioxidant systems contribute to the creation of spatial and 
temporal constraints on “normal” signaling. Causes of ox-
idative stress may therefore include the disruption of local 
control of ROS production or scavenging. This might in-
clude failure of negative feedback or inappropriate activation 
of positive feedback influences on ROS signaling.80

An ideal therapeutic intervention to address oxidative 
stress will need to selectively target excessive ROS produc-
tion without disrupting the relatively low levels of ROS 
production that are required for normal signaling and to 
support the many redox reactions that are part of normal 
biochemical homeostasis. These concepts present novel in-
vestigatory challenges and highlight the need to develop a 
detailed understanding of the topography and chronology 
of ROS generation. Using TNFα signaling in VSMCs as 
a model system, we will now focus on how localized ROS 
production and metabolism may confer specificity to subse-
quent signaling steps.

TNFα receptors

TNFα activates 2 receptor subtypes, both of which are 
expressed in VSMCs. TNFR1 and TNFα receptor type 
2 (TNFR2) both share homology with the Fas death re-
ceptor, but only TNFR1 has a death domain that can ac-
tivate caspase (Figure  2).81 This domain binds to the TNF 
receptor-associated death domain (TRADD) protein which 
can promote either apoptosis via association with the Fas-
associated death domain (FADD) protein, or inflamma-
tion via TNF receptor-associated factor 2 (TRAF2) which 

promotes activation of NF-κB and leads to VSMC prolifer-
ation. TNFR2 signals only through the TRAF2-dependent 
pathway. Thus, TNFR1 activation appears to initiate most 
of the deleterious effects of TNFα, while TNFR2 receptors 
modify this response. Since the inflammatory response of 
cultured aortic VSMCs to TNFα was completely dependent 
on TNFR1,82 we will focus on this signaling pathway.

Serum levels of “soluble” TNFR1 correlate directly with 
cardiovascular risk,2,83–86 particularly in women.83,86 These 
receptors were initially thought to represent only the ex-
tracellular TNFα-binding portion of the protein that had 
been proteolytically cleaved from the membrane by TNFα 
converting enzyme (TACE, ADAM 17).87 However, the pre-
dominant form of plasma TNFR1 is the full length mem-
brane spanning protein expressed on exosomal vesicles.88 
These particles are now recognized to mediate intercellular 
communication and act as important modulators of inflam-
mation.89 The “outside out” orientation of TNFR1 allows 
them to bind circulating TNFα which has been theorized 
to act as a TNFα “sink,” but this orientation may also target 
these vesicles to cells expressing cell surface TNFα. The pre-
cise biologic role of exosomes is an exciting topic of current 
investigation.

The topography of ROS signaling

The critical requirement for NADPH oxidase activation in 
TNFα signaling in VSMCs was first established by the observa-
tion that p22phox, an essential membrane protein that is part 
of all Nox enzymes, was required.8 Nox1 was subsequently 
identified as the important isoform in VSMCs.9 NADPH 
oxidases localize to specific membrane regions including 
ruffles, lamellopodia, focal complexes, and endosomes.90 In 
resting VSMCs Nox1 was found in caveolae and lipid rafts.91 
Neointimal VSMCs display enhanced Nox1 expression92 and 
heterologous Nox1 overexpression in VSMCs potentiates Ang 
II-induced hypertension and medial hypertrophy.93 Increased 
O2

·− production by Nox1 impairs endothelium-dependent re-
laxation by reducing nitric oxide bioavailability via combined 
effects of oxidative endothelial nitric oxide synthase (eNOS) 
uncoupling and direct scavenging of nitric oxide by O2

·−.94 
Fully functional Nox1 requires not only membrane association 
with p22phox, but also recruitment of 3 cytoplasmic proteins: 
Nox Organizer 1 (NOXO1), Nox Activator 1 (NOXA1), 
and the Rac1 GTPase (Figure  2). TNFα causes Nox1 to be 
phosphorylated by the β1 subtype of protein kinase C at 
T429 and this event facilitates association between Nox1 and 
NOXA1. Thus, T429 phosphorylation is markedly increased 
by both acute and chronic vascular injury.95

The Nox1 complex is part of a larger multiprotein com-
plex that supports TNFα signaling (Figure  2). TNFR1 is 
physically linked to p22phox through mutual binding to 
riboflavin kinase (RFK).96 This linkage is of functional im-
portance because the product of RFK activity is flavin 
mononucleotide (FAD), an essential cofactor for all NADPH 
oxidases. Apoptosis signal-regulating kinase 1 (ASK1) is a 
mitogen activated protein kinase kinase kinase (MAPKKK) 
that associates with the TNFR1 multiprotein complex via 
binding to TRAF2,97 and thus also coimmunoprecipitates 
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with Nox1.98 Under resting conditions, ASK1 is inhibited 
by association with reduced thioredoxin (Trx). In response 
to oxidation, Trx dissociates from ASK1 causing activa-
tion of the kinase. TNFα induces Nox1-dependent activa-
tion of ASK1 in VSMCs.98 Targeting of ASK1 in VSMCs 
by pharmacologic inhibition or siRNA silencing reduced 
multiple downstream responses to TNFα including: c-jun 
N-terminal kinase (JNK) and p38 activation, phosphoryla-
tion of dynamin and caveolin, TNFα endocytosis and NF-κB 
activation.98 Thus, ASK1 appears to be an important redox-
sensitive mediator of Nox1-dependent TNFα signaling.

Extracellular O2
·− production by Nox1 is also required 

to initiate TNFR1 endocytosis. Uptake of labeled TNFα 
by VSMCs is disrupted by either siRNA knockdown of 
Nox1 or extracellular O2

·− scavenging using exogenous ex-
tracellular SOD, but not by extracellular catalase.37 TNFα 
signaling continues in cytoplasmic vesicles following 
dynamin-dependent endocytosis of the occupied receptor.33 
Nox1 generates superoxide into this compartment and 
endosomal ROS support specific aspects of the response 
of VSMCs to TNFα.9,99,100 The vesicles are early endosomes, 
coated by the early endosomal antigen 1 (EEA1) and the Rab5 
GTPase.9 TNFα induces phosphorylation of both caveolin and 

dynamin via a process that is dependent upon ASK1 activa-
tion.98 Interference with the endocytic process (dominant 
negative dynamin) disrupts downstream extracellular signal-
regulated kinase 1 and 2 (ERK1/2) and NF-κB activation, 
suggesting that ERK1/2 activation is driven by events that 
occur after receptor endocytosis.82 In contrast, activation of 
JNK was enhanced by inhibition of endocytosis, suggesting 
that TNFα activates this mitogen-activated protein kinase 
(MAPK) at the plasma membrane. The 2 MAPKs have very 
distinct downstream effects; JNK provides important feed-
back inhibition of Nox1 activity, while ERK1/2 promotes acti-
vation of NF-κB.82 Of note, TNFα-induced activation of p38, 
which also activates NF-κB and promotes inflammation, is in-
different to disruption of receptor endocytosis (Figure 2).

The mechanistic contribution of endosomal O2
·− to 

TNFα signaling remains unknown. It may be important 
for local redox reactions or may be an important influ-
ence on endosomal pH, a critical parameter of endosomal 
function.101 In general, endocytic vesicles become pro-
gressively more acidic as they progress from early to 
late endosomes and then into lysosomes. However, Nox-
derived O2

·− has been shown to be a mechanism of phago-
some alkalinization in dendritic cells,102 neutrophils, and 

Figure 2. Schematic representation of the complex interplay between the TNFR1, Nox1, and anion channels in oxidant-dependent signaling. The close 
association of these 3 proteins along with aquaporins may provide a mechanism by which highly localized changes in O2

·− and H2O2 concentrations can 
affect intracellular signaling processes. Furthermore, endocytosis of redox-active vesicles that can by trafficked along the cytoskeleton may allow local 
delivery of oxidants throughout the cytoplasm. Collectively, this inflammatory signaling pathway influences NF-κB activation via redox-dependent acti-
vation of ASK1. Downstream activation of the p38 MAPK is a prime driver of NF-κB activation while JNK provides negative feedback regulation of Nox1. 
ERK also contributes to NF-κB activation but by an ASK1-independent mechanism that requires receptor endocytosis. LRRC8 anion channels support 
Nox1 activity at the plasma membrane while ClC-3 appears to be required for generation of endosomal O2

·−. Understanding the details of O2
·−-dependent 

TNFα signaling may identify novel opportunities to disrupt the process for therapeutic purposes. Abbreviations: ASK1, apoptosis signal-regulating kinase 
1; ClC-3, Chloride Channel 3; ERK, extracellular signal-regulated kinase; H2O2, hydrogen peroxide; JNK, c-jun N-terminal kinase; LRRC8, leucine-rich repeat 
containing 8; NF-κB, nuclear factor-kappaB; Nox1, nicotinamide adenine dinucleotide phosphate oxidase 1; O2

·−, superoxide; TNFα, tumor necrosis factor 
alpha; TNFR1, TNFα receptor type 1.
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macrophages.103 These effects are based on the ability of O2
·− 

to consume protons during dismutation to H2O2. Therefore, 
phagosomal pH results from a balance of inward proton 
transport via the vacuolar ATPase (V-ATPase) and proton 
consumption by Nox-derived ROS. Alkaline conditions 
prolong the half-life of O2

·− by approximately 10-fold for 
every 1 point rise in pH between pH 6 and 14.104 For this 
reason, the relative concentrations of O2

·− and H2O2 within 
endosomes will be related to the pH of the compartment. 
Higher V-ATPase activity will create a compartment with a 
lower pH and a higher H2O2 content relative to O2

·−. An al-
kaline endosome would still be likely to contain significant 
H2O2 (pKa 11.7) but would have a much higher concen-
tration of O2

·−. The redox biochemistry of endosomes has 
been discussed in detail elsewhere.105,106 We speculate that 
the presence of channels permeant to these oxidants could 
mediate pinpoint delivery to cytoplasmic targets based on 
trafficking of the vesicles via the cytoskeleton. While the 
molecular identity of an endosomal O2

·− conductance re-
mains unknown, one has been characterized in interleukin-
1beta-induced Rab5 early endosomes from Michigan 
Cancer Foundation-7 (MCF-7) epithelial cells.107

Despite a growing recognition of the sequence of events 
associated with TNFα signaling in VSMC, it remains largely 
unclear how extracellular deposition of O2

·− by Nox19,82 
promotes specific cytoplasmic redox reactions that result 
in signaling. What are the critical extracellular oxidant spe-
cies and what are their targets? For instance, by what mech-
anism does a cytoplasmic protein like thioredoxin bound 
to ASK1 become oxidized following deposition of O2

·− into 
the extracellular space? Superoxide is rapidly and sponta-
neously converted into H2O2 in aqueous solution, and this 
reaction can be accelerated by SOD, 1 isoform of which 
(SOD type 3)  is present in the extracellular space. H2O2 
is much more stable than O2

·− making it a superior para-
crine signaling molecule, thus the contribution of H2O2 to 
TNFα signaling has received significant attention. Direct 
application of H2O2 to cultured rat aortic VSMCs activates 
ASK1 and induces hypertrophy.39 The site of action of H2O2 
was found to be intracellular as these effects were blocked 
by siRNA targeting of aquaporin 1, the pathway through 
which H2O2 enters the cells. Importantly, H2O2 alone was 
not sufficient to activate ASK1, but surprisingly did activate 
Nox1, and this intermediate O2

·− generating step initiated 
both ASK1 phosphorylation and subsequent VSMC hy-
pertrophy. It is interesting to consider how extracellular 
O2

·− might contribute to this process. It seems unlikely that 
formation of additional H2O2 is required in the presence 
of an already quite significant triggering concentration of 
H2O2. Alternatively, the Nox1-dependence of the response 
to H2O2 points to a critical role for O2

·−, which is quite 
capable of oxidizing thiols.108 A  key role for O2

·− is con-
sistent with the observation that exogenously applied and 
membrane impermeant SOD profoundly inhibited both 
TNFα endocytosis and JNK phosphorylation in response 
to TNFα, while extracellular catalase had no effect.37 This 
raises a critical question; how can a short-lived and charged 
molecule like O2

·− directly influence an intracellular pro-
tein like thioredoxin? Might a pathway exist by which O2

·− 
can directly cross membranes?

ANION CHANNEL MODULATION OF TNFα SIGNALING

Anion channels regulate a variety of critical functions and 
contribute significantly to membrane depolarization of activated 
VSMCs.109 They can also regulate the Cl− concentration of the 
cytoplasm or of intracellular compartments and these changes 
may also act as signaling effectors.110,111 The efficacy of TNFα 
signaling in VSMCs has been linked to 2 anion conductances: 
(i) the leucine-rich repeat containing 8A (LRRC8A) subunit 
of volume-regulated anion channels (VRACs) associates with 
Nox1 and is required for extracellular superoxide production37 
and (ii) the Chloride Channel 3 (ClC-3) 2Cl−/H+ antiporter 
which is required for Nox1 activity in endosomes.9

LRRC8A volume-regulated anion channels

Maintenance of proper volume is an essential function of 
all cells. Cells swell in response to hypotonic conditions and 
this activates VRACs.112 The subsequent efflux of anions and 
organic molecules (e.g., taurine) helps to return cell volume 
to normal. The proteins responsible for VRACs belong to the 
LRRC8 family (A through E). Hexameric VRACs with di-
verse biophysical properties result from combinations of 2 
or even 3 subtypes of LRRC8 proteins, but all VRACs that 
function at the plasma membrane must contain the LRRC8A 
subunit.113 While VRACs composed of LRRC8A and D ap-
pear to mediate the efflux of osmolytes such as taurine and 
myo-inositol,114 the physiologic roles of LRRC8 subtypes are 
only beginning to be explored.

LRRC8A coimmunoprecipitates with both Nox137 
and ASK1.98 Nox1 and LRRC8A also colocalize by 
immunostaining in murine VSMCs.37 Thus, LRRC8A is part 
of the TNFR1 signaling complex. Furthermore, channel 
activity is required for proper function of Nox1 because 
extracellular O2

·− production in response to TNFα is mark-
edly reduced when LRRC8A expression is either targeted 
by siRNA or inhibited pharmacologically.37 The nature of 
the functional relationship between VRAC channels and 
Nox1 remains unknown. We have considered the possibility 
that Cl− ion movement through LRRC8A VRACs provides 
charge compensation which is required to maintain electron 
flow through NADPH oxidases.115 Nox2 derives this support 
from a proton channel in neutrophils and macrophages. The 
observation that LRRC8 currents can be activated or inhib-
ited by oxidation in a subtype-dependent manner116 raises 
the potential for tight local redox-dependent feedback regu-
lation of Nox1 by the oxidants that it produces. This stresses 
the need to explore which VRAC subtypes interact with 
Nox1 in VSMCs and how this impacts TNFα signaling.

In view of the importance of extracellular O2
·− for TNFα 

signaling it is worth considering a second role for LRRC8A 
VRACs; providing a pathway by which O2

·− can enter the cell 
facilitated by the association of Nox1 with the channel. It is 
not possible to determine the local concentration of O2

·− at 
the extracellular surface of the oxidase, but it would need to 
be high enough to drive inward O2

·− movement against a neg-
ative membrane potential. However, it is also worth consid-
ering that this potential may be mitigated by local effects of 
the magnetic field imposed by electron flow through Nox1 in 
extreme proximity to the channel. O2

·− has an anionic radius 
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of 140 pm, between that of fluoride (119 pm) and chloride 
(167 pm), and has been indirectly demonstrated to be ca-
pable of moving through anion channels.107 Intracellular flux 
of O2

·− through an LRRC8A channel could support extremely 
tight localization of redox signaling. Physical association of 
Nox1, LRRC8A, and ASK1 would allow very small amounts 
of O2

·− to provide a redox signal capable of ASK1 activa-
tion. One appeal of such a system is reduction of off-target 
redox reactions which are clearly a higher risk if extracellular 
Nox-derived H2O2 is the primary signal. A  second appeal 
is that following endocytosis of this multiprotein complex, 
trafficking of endosomes through the cytoplasm might allow 
highly localized delivery of either O2

·− via LRRC8A, or H2O2 
via an aquaporin to intracellular targets at a significant dis-
tance from the plasma membrane without exposing the en-
tire cytoplasm to oxidative stress.

The ClC-3 2Cl−/H+ antiporter

ClC-3 is a member of the chloride channel (ClC) family 
of Cl− channels and Cl−/H+ antiporters117 that is expressed in 
virtually all cell types. Only a small fraction of the protein is 
expressed on the cell surface and the vast majority of ClC-3 
protein localizes to intracellular vesicles.118 Assayed by patch-
clamp recording in the plasma membrane, ClC-3 is a function-
ally a unidirectional transporter that is oriented such that it is 
only capable of carrying outward current (Cl− in, H+ out).119 
Following endocytosis ClC-3 becomes oriented such that 
in response to negative voltage in the vesicular lumen, Cl− is 
transported out and H+ in. Immediately following endosome 
formation, negative cell surface charges may create such a neg-
ative vesicle lumen, allowing a ClC protein to contribute to the 
rapid fall in Cl− concentration and acidification that follows 
endosome formation.105,120 This orientation of ClC-3 makes 
it appear challenging for ClC-3 to provide charge compensa-
tion for proton pumping into these vesicles by the V-ATPase 
as initially proposed,117 but is consistent with an ability to pro-
vide charge compensation for endosomal Nox. This concept 
is supported by the observation that both Nox1 in VSMCs9 
and Nox2 in neutrophils121,122 require the presence of ClC-3 
in order for O2

·− to be produced within endosomes. Of note, 
although the impact of the loss of ClC-3 on extracellular O2

·− 
production in VSMCs has not been assessed, this function 
is completely unaffected in neutrophils.123 Taken together, 
these data are consistent with LRRC8A playing the key role 
supporting Nox1 at the plasma membrane while ClC-3 may 
become a critical partner for the oxidase in endosomes.

SUMMARY AND FUTURE DIRECTIONS

TNFα is an important driver of the inflammatory process 
that underlies the vascular pathology associated with both 
hypertension and atherosclerosis. A key response of VSMCs 
to TNFα is phenotypic switching which results in cells that 
are less contractile and more motile and proliferative. TNFα 
signaling is achieved via a multiprotein complex which 
incorporates key functionalities including: (i) generation 
of reactive oxygen by Nox1 which is required for multiple 
signaling steps including receptor endocytosis, (ii) charge 

compensation and/or superoxide conduction by LRRC8A 
anion channels, and (iii) redox signal sensing and transduc-
tion by thioredoxin/ASK1. The net response to TNFα is a 
complex mixture of signaling events occurring at both the 
plasma membrane and within early endosomes following re-
ceptor endocytosis.

The ultimate goal of understanding the molecular 
mechanisms of TNFα signaling is to identify novel ways to se-
lectively interfere with the process. A survey of recent patent 
applications reveals that several companies are developing 
small molecule inhibitors for Nox1,124 and a mixed Nox1/Nox4 
inhibitor (GTK137831) was shown to reduce atherosclerosis in 
mice.125 Monoclonal antibodies like Etanercept that selectively 
target TNFα signaling are first-line therapy for autoimmune 
inflammatory disease126 and also ameliorate the increased car-
diovascular risk that is associated with these conditions.127–131 
Unfortunately, due to their high target affinity, they com-
pletely block TNFα signaling, disrupting its adaptive roles, and 
increasing risk of infection and cancer. This precludes their use 
as primary preventative therapy in cardiovascular disease, even 
in patients at very high risk. An ideal agent for targeting the 
inflammation associated with cardiovascular disease would 
be titratable and capable of “normalizing” cytokine signaling 
while preserving the essential function of these important 
pathways. Ion channels are established targets of lower affinity 
ligands that allow titratable therapy of arrhythmias, hyperten-
sion and seizures. Selective Nox inhibitors or LRRC8 family 
channel blockers have the potential to downregulate TNFα 
signaling as well as multiple other proinflammatory signaling 
pathways simultaneously by targeting a shared mechanism. 
Finally, improved understanding of how oxidants support 
these signaling pathways may provide novel approaches to se-
lective inhibition through the use of antioxidant agents that 
target-specific local reactions.
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