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C A N C E R

Endogenous retroviruses drive KRAB zinc-finger protein 
family expression for tumor suppression
Jumpei Ito1*, Izumi Kimura1*, Andrew Soper2, Alexandre Coudray3, Yoshio Koyanagi2, 
Hirofumi Nakaoka4, Ituro Inoue4, Priscilla Turelli3, Didier Trono3, Kei Sato1,5†

Gene expression aberration is a hallmark of cancers, but the mechanisms underlying such aberrations remain 
unclear. Human endogenous retroviruses (HERVs) are genomic repetitive elements that potentially function as 
enhancers. Since numerous HERVs are epigenetically activated in tumors, their activation could cause global gene 
expression aberrations in tumors. Here, we show that HERV activation in tumors leads to the up-regulation of 
hundreds of transcriptional suppressors, namely, Krüppel-associated box domain–containing zinc-finger family 
proteins (KZFPs). KZFP genes are preferentially encoded nearby the activated HERVs in tumors and transcriptionally 
regulated by these adjacent HERVs. Increased HERV and KZFP expression in tumors was associated with better 
disease conditions. Increased KZFP expression in cancer cells altered the expression of genes related to the cell 
cycle and cell-matrix adhesion and suppressed cellular growth, migration, and invasion abilities. Our data suggest 
that HERV activation in tumors drives the synchronized elevation of KZFP expression, presumably leading to 
tumor suppression.

INTRODUCTION
Aberrant gene expression is a hallmark of cancers. The gene expres-
sion status in tumors is highly diverse among patients and is associ-
ated with the phenotypes of tumors, such as proliferation, invasion/
metastasis capacity, and therapeutic response, as well as the clinical 
outcome of patients (1). In particular, many genes that are aberrantly 
expressed in tumors and associated with cancer progression have 
been identified (2); however, the abnormality of the gene regulatory 
network underlying the aberrant expression of these genes in tumors 
is poorly understood (3–5).

Decades of research have highlighted the significance of regulatory 
sequences derived from human endogenous retroviruses (HERVs) 
in the modulation of human gene expression (6). HERVs are a type 
of transposable element (TE) that originates from ancient retroviral 
infection in host germ cells (7). There are several hundred types of 
HERVs in the human genome, constituting 8% of the genome 
(8). Unlike other TEs, HERVs have long terminal repeat (LTR) 
sequences that particularly densely contain transcriptional regu-
latory elements (9, 10) and function as viral promoters (7). In ad-
dition, HERV LTRs have the potential to function as promoters 
or enhancers of adjacent genes (6). While most HERVs are epi-
genetically silenced in normal tissues by DNA methylation and 
repressive histone modifications, some HERVs function as a part 
of the host gene regulatory network and play crucial roles in di-
verse biological events (6, 11–16). For instance, HERVs harboring 
STAT1 (signal transducer and activator of transcription 1)– and 
IRF1 (interferon regulatory factor 1)–binding sites are essential 

for the interferon inducibility of genes related to the innate immune 
response (17).

The expression of HERVs in normal tissues is controlled by 
epigenetic mechanisms (18, 19); in contrast, HERV expression is 
highly elevated in various types of cancers (20–24). Since the elevation 
of HERV expression in tumors is presumably caused by epigenetic 
reactivation, the expressed HERVs could up-regulate the expres-
sion of adjacent genes. Therefore, it is possible that the derepression 
of numerous HERVs in tumors globally alters host gene expression 
and changes the characteristics of cancers (25, 26). To test this 
hypothesis, we investigated the multiomics dataset of tumors pro-
vided by The Cancer Genome Atlas (TCGA) (27) and assessed the 
effects of HERV activation on host gene expression. We found that 
genome-wide HERV activation in tumors is associated with the 
up-regulation of potent transcriptional suppressor genes, namely, 
Krüppel-associated box (KRAB) domain–containing zinc-finger 
family protein (KZFP) genes (28), which are preferentially located 
in the vicinity of activated HERVs. Although KZFPs are widely known 
as transcriptional silencers against TEs, including HERVs (28), our 
data highlight that the expression of KZFP genes is induced by 
adjacent HERVs in tumors, presumably leading to global gene ex-
pression alterations and phenotypic changes.

RESULTS
Characterization of expressed HERVs across  
12 types of solid tumors
We investigated the tumor RNA sequencing (RNA-seq) data of 
5470 patients provided by TCGA (table S1). Only RNA-seq reads 
that were uniquely mapped to the human genome were analyzed. A 
total of 11,011 loci of expressed HERVs were identified across 12 types 
of solid tumors (Fig. 1A and table S2). While some HERVs were 
detected in only specific types of cancers, most of the expressed 
HERVs were detected in multiple types of cancers, and the sets of 
the expressed HERV loci were highly similar among all cancer types 
(fig. S1, A and B). In 9 of the 12 types of cancers, the overall expres-
sion levels of HERVs in tumors were increased compared to the 
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levels in the normal tissues adjacent to the tumors (Fig. 1B), consistent 
with the findings of previous reports (20–24). Dimension reduction 
analysis based on HERV expression profiles showed that each type 
of cancer displayed a distinguishable pattern of HERV expression 
(Fig. 1C and fig. S1C). The expressed HERVs preferentially over-
lapped with the open chromatin regions determined by assay for 
transposase-accessible chromatin sequencing (ATAC-seq) in tumors 
(Fig. 1D), suggesting that the HERVs expressed in tumors have high 
chromatin accessibility and the potential to modulate adjacent gene 
expression.

Transcriptome signatures associated with the global 
derepression of HERVs in tumors
Although HERV expression levels tended to be elevated in tumors 
compared to the corresponding normal tissues (Fig. 1B), the genome-
wide expression levels of HERVs in tumors were highly hetero-
geneous among patients, even within the same cancer type (Fig. 1E 
and fig. S1D). Such global HERV activation occurred regardless of 
the type of HERV (Fig. 1E and fig. S1, E and F), although the regu-
latory sequences of these HERVs were highly diverse (10). In many 
types of cancers, the global expression levels of HERVs were nega-

tively correlated with the DNA methylation levels of CpG sites that 
are on or proximal (<1 kb) to the expressed HERVs (fig. S1, G and 
H), suggesting that derepression due to DNA demethylation is a 
cause of the elevation of HERV expression in tumors.

To elucidate the effects of the global derepression of HERVs on 
host gene expression in tumors, we investigated the genes whose 
expression was associated with HERV derepression in tumors. We 
assessed the correlation of the expression level of each gene with the 
total expression level of HERVs in tumors and subsequently performed 
gene set enrichment analysis (GSEA) (29) based on the correlation 
scores above. We found that the genes showing a correlation with 
HERVs were highly similar among distinct types of cancers (fig. S1I). 
KZFP genes (i.e., genes having the KRAB domain) were highly 
up-regulated upon the elevation of HERV expression in multiple 
types of tumors (Fig. 1F). Most KZFP genes were coexpressed with 
each other (fig. S1J) and with most HERV subfamilies in tumors 
(fig. S1K). Furthermore, genes related to the cell cycle, cell-matrix 
adhesion, and immune response were down-regulated upon the 
up-regulation of HERV and KZFP genes (Fig. 1F and fig. S2A). We 
investigated another RNA-seq dataset of cancer cell lines provided 
by the Cancer Cell Line Encyclopedia (CCLE) (30) and verified that 

Fig. 1. Landscape of HERV expression in 12 types of solid cancers. (A) Numbers of expressed HERV loci identified in the respective types of cancers. (B) Total expression 
levels of HERVs [log2 (counts per million (CPM) + 1)] in tumors and tumor-adjacent normal tissues. A significant increase is denoted as an asterisk [family-wise error rate 
(FWER) < 0.05 in two-sided Wilcoxon rank sum test]. (C) t-SNE plot representing the expression patterns of HERVs in tumor samples. The expression levels of the 1000 most 
highly expressed HERVs were used. (D) Fold enrichments of the overlaps between expressed HERV loci (entire HERVs or LTRs) and open chromatin regions (ATAC-seq 
peaks) in respective types of cancers. The enrichment value relative to random expectation is shown. Statistical significance was evaluated by a genome perturbation test. 
(E) Normalized expression levels of the respective HERV subfamilies in BLCA tumors. The 25 most highly expressed HERV subfamilies are shown. Tumors were ordered 
according to the total HERV expression. (F) Gene set enrichment analysis (GSEA) (29) representing the transcriptome signature associated with global HERV activity. 
Spearman’s correlation scores between the expression levels of respective genes and the total expression level of HERVs were calculated, and GSEA was subsequently 
performed on the basis of those scores. For the positive and negative correlations, the top 15 highest-scored gene sets (regarding the mean value among cancer types) 
are shown. Redundant gene sets were filtered.
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the expression of HERVs was positively associated with that of KZFP 
genes and negatively associated with that of genes related to the cell 
cycle, cell-matrix adhesion, and immune response in cancer cell 
lines (fig. S2B). These results suggest that the gene expression fluc-
tuation associated with HERVs observed in primary tumors origi-
nates from the gene expression alteration that occurs in cancer cells 
themselves rather than the change in the composition of noncancer 
cells (e.g., infiltrating lymphocytes).

Transcriptional up-regulation of KZFP genes  
by surrounding HERVs
We hypothesized that the derepressed HERVs near KZFP genes in-
duce the expression of these genes, leading to the synchronized 
expression of HERVs and KZFP genes in tumors. It is known that 
KZFP genes form genomic clusters, particularly on chromosome 
19 in the human genome (31). We found that the expressed HERVs 
in tumors were predominantly present in these clusters of KZFP genes 
(Fig. 2A). The expressed HERVs in tumors and those overlapping 
with open chromatin regions or enhancers defined by GeneHancer 
(32) were highly enriched in the vicinity of the transcriptional start 
sites (TSSs) of KZFP genes (Fig. 2B and fig. S3A). Several types of 
HERV LTRs, such as LTR70, LTR25, LTR5B, and LTR5_Hs, showed 
particularly strong enrichment around the TSSs of KZFP genes (Fig. 2C).

We next investigated the association between the transcriptional 
up-regulation of KZFP genes and the epigenetic derepression of ad-
jacent HERVs in tumors. The mean expression level of KZFP genes 
was associated with the mean chromatin accessibility of the expressed 
HERVs around those genes in tumors (Fig. 2D). In addition, the 
mean expression level of KZFP genes in tumors was negatively cor-
related with the mean DNA methylation level of the CpG sites that 
are on or proximal (<1 kb) to the expressed HERVs around those 
genes (fig. S3B). These findings suggest that the expression of KZFP 
genes in tumors is up-regulated by the epigenetic derepression (i.e., 
decreasing DNA methylation and increasing chromatin accessibility) 
of adjacent HERVs.

Next, we searched for the genes that are likely to be regulated by 
respective HERV loci according to the coexpression, chromatin 
accessibility–expression, and DNA methylation–expression relation-
ships, as well as the predefined enhancer–gene links (Fig. 2E, left) 
(table S3) (32). In these four types of predictions, KZFP genes were 
highly enriched in the set of genes that are likely to be regulated by 
HERVs (fig. S3C), supporting the significance of HERVs in the tran-
scriptional regulation of KZFP genes. On the basis of these inter-
actions, we constructed a network representing the regulation of KZFP 
genes by HERVs (Fig. 2E, middle). We identified several “hub” HERV 
loci, which are connected to many KZFP genes in the network and 
are likely to be involved in the transcriptional regulation of these 
genes (Fig. 2E, right).

To experimentally address the significance of HERVs in the 
transcriptional modulation of KZFP genes in cancer cells, we per-
formed CRISPR-Cas9 excision of two hub HERV loci (HERV-
enhancer1 and HERV-enhancer2; Fig. 2E, right) in a human lung 
adenocarcinoma (LUAD) cell line (A549 cells) (Fig. 2F and fig. S4). 
We selected these HERV loci because they displayed active histone 
marks in A549 cells (Fig. 2F). We demonstrated that the homo-
zygous excision of these HERV loci decreased the expression of ad-
jacent genes, including many KZFP genes (Fig. 2G). These results 
suggest that these HERVs work as parts of enhancers modulating 
adjacent genes, including KZFP genes, in LUAD cells.

Associations of the expression status of KZFPs and HERVs 
with the clinical outcomes of cancer patients
Since KZFPs are potent transcriptional suppressors (28), it is possible 
that the synchronized induction of many KZFPs in tumors alters 
gene expression globally and changes the characteristics of tumors. 
In addition, we found that somatic mutations accumulated particu-
larly in the DNA-binding interfaces of KZFPs in tumors (fig. S5A), 
highlighting the aberrations of KZFPs in tumors. We therefore in-
vestigated the associations of the expression of KZFPs and HERVs 
with the clinical outcomes of cancer patients and found the follow-
ing marked associations: in 3 [bladder carcinoma (BLCA), head and 
neck squamous cell carcinoma (HNSC), and LUAD] of 12 types of 
cancers, patients with high expression levels of KZFPs and HERVs 
in tumors tended to show a better prognosis than those with low 
expression levels [family-wise error rate (FWER) < 0.05] (Fig. 3A 
and fig. S5B). In addition, the investigation of the association of the 
expression levels of human genes and HERV loci with cancer prog-
nosis using the Cox proportional hazards model revealed that KZFP 
genes and HERVs tended to show a stronger association with better 
prognosis than the other expressed genes in four cancer types 
[BLCA, HNSC, LUAD, and kidney renal papillary cell carcinoma 
(KIRP)] (Fig. 3B and fig. S5C). We performed GSEA on the basis of 
the results of the Cox proportional hazards analysis and found that 
KZFPs and HERVs were one of the gene sets exhibiting the stron-
gest association with better prognosis in the four cancer types above 
(Fig. 3C and fig. S5D). Conversely, the gene sets related to the cell 
cycle and cell-matrix adhesion showed the strongest association 
with worse prognosis (fig. S5D). We further examined the associa-
tion of KZFP expression levels and cancer stage, which reflects the 
degree of invasion and metastasis of tumors. The overall expression 
level of KZFPs decreased as the cancer stage progressed in multiple 
types of cancers (Fig. 3, D and E, and fig. S5, E and F). Conversely, 
the expression of genes related to the cell cycle and cell-matrix ad-
hesion increased as the cancer stage progressed (fig. S5F). Together, 
these results suggest the possibility that the increased expression of 
KZFPs exerts suppressive effects on tumor progression.

Gene expression and phenotypic changes induced by 
the overexpression of KZFP genes in LUAD cells
Analysis of the chromatin immunoprecipitation sequencing (ChIP-
seq) dataset of KZFPs provided by Imbeault et al. (33) showed that 
many KZFPs preferentially bound to genes related to the cell cycle 
and cancer-associated signaling pathways, such as transforming growth 
factor (TGF)–related pathways (TGF-, bone morphogenetic pro-
tein, SMAD2/3 pathways) and the Wnt pathway (fig. S6). These 
pathways are critical for the regulation of cell-matrix adhesion and 
are associated with cell migration/invasion and proliferation in can-
cers (34, 35). The expression levels of genes related to the cell cycle 
and cell-matrix adhesion were negatively correlated with those of 
KZFP genes in tumors (fig. S2A) and associated with worse disease 
conditions (fig. S5, D and F). Moreover, many KZFPs preferentially 
bound to genes that were anti-coexpressed with KZFPs in tumors 
(fig. S6). These data suggest the possibility that a variety of KZFPs 
suppress the expression of these genes in tumors and modulate can-
cer phenotypes.

To assess the effects of elevated KZFP expression on cancer cells, 
we established a panel of A549 LUAD cells overexpressing 30 types 
of KZFPs (referred to as A549/KZFP cells) (fig. S7). These KZFPs 
were coexpressed with HERVs in tumors and harbored expressed 
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HERVs in the vicinity of their TSSs. A549 cells were selected as the 
parental cells since the expression levels of KZFPs (and HERVs) 
were relatively low in this cell line (fig. S7A). The expression levels 
of overexpressed KZFPs in A549/KZFP cells were the highest 
among LUAD tumors and lung cancer cells but did not abnormally 
deviate from those in naturally existing tumors and cancer cells (fig. 

S7C). In addition, the expression levels of overexpressed KZFPs in 
A549/KZFP cells were less than the upper quantile of those of all 
protein-coding genes expressed (fig. S7D). These results suggest 
that our A549/KZFP cell panel is a reasonable system that mimics 
cancer cells with higher expression levels of KZFPs. Using this 
A549/KZFP cell panel, we investigated the phenotypic and gene 

Fig. 2. Transcriptional upregulation of KZFP genes by adjacent HERVs. (A) The genomic densities (top) and locations (bottom) of KZFP genes and the expressed 
HERVs in tumors. (B) Enrichments of the expressed HERVs in tumors around the transcription start sites (TSSs) of KZFP genes. Fold enrichments of the respective catego-
ries of HERVs in the regions within the indicated distances from the KZFP TSSs are shown. (C) Enrichments of respective subfamilies of expressed HERVs (LTRs) around the 
KZFP TSSs. LTR subfamilies that were significantly [false discovery rate (FDR) < 0.05 in a genome permutation test] enriched within 50 kb from the TSSs are shown. 
(D) Association between the mean expression level of KZFPs and the mean chromatin accessibility of the expressed HERVs nearby (<50 kb) KZFP genes in tumors. 
(E) Prediction of the genes regulated by the expressed HERVs. (Left) Schematics of the regulatory relationship prediction. (Middle) Integrated network representing the 
predicted regulation of KZFP genes by HERVs. (Right) Numbers of KZFPs connected to the respective HERV nodes in the network. (F) UCSC genome browser view of the 
excised HERVs. (G) Effect of HERV excision on the expression of adjacent genes in LUAD (A549) cells. The x axis indicates the Wald statistic, in which the positive and neg-
ative values indicate the up- and down-regulation, respectively, of the gene expression compared to that in the nontarget control cells. Genes were stratified according 
to the distance from the excised HERV.
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expression changes caused by the increased expression of these KZFPs. 
Twenty-nine of the 30 KZFPs tested induced apoptosis, while many 
KZFPs suppressed cell growth, migration, and invasion (Fig. 4A, 
bottom, and fig. S7E). Furthermore, we examined the tendencies of 
the phenotypic alterations caused by the increased expression of 
KZFPs: We tested whether the distribution of the log2 fold change 
values of the phenotype scores in A549/KZFP cells (compared to 
A549/empty vector cells) deviated from zero (Fig. 4B). In apoptosis, 
the mean value of A549/KZFP cells significantly and positively 
deviated from zero. In growth, migration, and invasion, the mean 
value significantly and negatively deviated from zero. These results 
suggest that KZFPs tend to induce apoptosis and suppress cellular 
growth and the migration and invasion abilities of cancer cells.

RNA-seq analysis revealed that the expression of 2368 genes was 
significantly altered by the overexpression of any of the KZFPs tested 
[false discovery rate (FDR) < 0.05; absolute value of log2 fold change >1] 
(Fig. 4A). Genes related to the cell cycle and cell-matrix adhesion tended 
to be down-regulated by KZFP overexpression (Fig. 4C). Although 

the phenotypic and gene expression alterations caused by KZFPs were 
relatively similar among all types of A549/KZFP cells (Fig. 4, A and B, 
and fig. S7F), the alterations in cellular phenotype and gene expression 
were related to each other (fig. S7G and S7H). These data suggest 
that the phenotypic changes in A549/KZFP cells, which are associ-
ated with tumor suppression, could presumably be attributed to the 
alteration of gene expression by KZFPs.

To infer the mechanisms of KZFP-mediated tumor suppression, 
we identified the genes that are likely to be targeted by KZFPs and 
are critical for cancer progression. Of the genes that were bound by 
many (≥10) KZFPs, we extracted the genes showing the following: 
(i) a negative correlation with KZFPs in the TCGA tumor and CCLE 
cancer cell line datasets; (ii) an association with worse prognosis and 
stage progression in the TCGA tumor dataset; and (iii) decreased 
expression in A549/KZFP cells (fig. S8). Of the extracted genes, the 
genes related to the cell cycle and cell-matrix adhesion were highly 
enriched (Fig. 4D and fig. S8D). In particular, many genes related to 
cytoskeletal regulation (i.e., ACTG1, GIT1, PFN1, RAC1, and RRAS), 

Fig. 3. Associations of the expression status of KZFPs and HERVs in tumors with disease conditions. (A) Survival plots of cancer patients with high or low expression 
levels of HERVs and KZFPs (see also fig. S5B). The patients were stratified according to the mean value of the gene set–wise expression scores [GSVA scores (49)] between 
KZFPs and HERVs. Statistical significance was evaluated by the two-sided log-rank test. (B) Associations of respective genes and HERVs with the prognosis of cancer pa-
tients. Z score was calculated using the Cox proportional hazards model. Positive and negative Z scores indicate associations with worse or better prognoses, respectively. 
The Z score distributions were compared among KZFPs, HERVs, HERVs around KZFPs (within 50 kb), and the other genes expressed in respective types of cancers with a 
two-sided Wilcoxon rank sum test. (C) Results of GSEA based on the Z scores in the Cox proportional hazards model. Positive and negative NES values indicate associations 
with worse or better prognoses, respectively. The gene sets of interest are highlighted. See also fig. S5D. (D) Overall expression levels (GSVA scores) of KZFPs in respective 
cancer stages. Statistical significance was evaluated by single linear regression. (E) Multiple linear regression analysis evaluating pan-cancer associations of the expression 
levels of respective gene sets with cancer progression. Positive and negative t scores indicate the tendencies of increase and decrease, respectively, in the GSVA scores 
along with cancer progression. See also fig. S5F.
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which are critical for cell-matrix adhesion and modulate cell migration/
invasion and proliferation (36), were identified as candidate KZFP 
targets. In addition, a serine-threonine kinase gene (AURKB) and 
ubiquitin-proteasome pathway genes (UBC, RPS27A, PSMB4, and 
PSMA7), which are critical for cell cycle regulation (37, 38), were 
identified.

To show further evidence supporting the tumor-suppressive ef-
fects of KZFPs, we analyzed a publicly available dataset of the CRISPR 
loss-of-function screening on cancer cell viability, provided by Cancer 
Dependency Map (DepMap) (39). We examined the genes in which 
knocking-out exerted the positive effects on cancer cell viability 
(i.e., suppressor genes of cancer cell viability). We extracted the top 
100 of such suppressor genes in the data of A549 cells and found 
that eight KZFPs, as well as several well-characterized tumor sup-
pressor genes (i.e., PTEN, NF2, TP53, and TSC1/2) (40), were in-
cluded in the top 100 suppressor genes (fig. S9A). Moreover, KZFP 
genes were significantly enriched in the top 100 suppressor genes in 
a substantial fraction of cancer cell lines, including A549 cells (fig. 
S9, A and B). Together, these data suggest that the loss of function 

of several KZFPs up-regulate the viability in cancer cell lines, sup-
porting the tumor-suppressive effects of KZFPs.

Furthermore, we examined whether the predicted target genes of 
KZFPs (Fig. 4D) are essential for cancer cell viability using the 
DepMap dataset. As shown in fig. S9C, we found that the knockout 
of the predicted KZFP target genes tended to be more critical for 
cancer cell viability than that of the other expressed genes, support-
ing the importance of those genes for cancer cell proliferation.

Transcriptional modulation of cancer phenotype-associated 
KZFP genes by adjacent HERVs in LUAD cells
Last, we validated whether the cancer phenotype-associated KZFP 
genes are transcriptionally modulated by adjacent HERVs. ZNF75D 
is a good candidate for this validation because the up-regulation of 
ZNF75D was capable of altering all four cancer phenotypes we in-
vestigated (Fig. 4A and fig. S7E). In the region approximately 5 kb 
upstream of a TSS of ZNF75D, two HERV integrants, LTR5_Hs and 
THE1D-int, were present (Fig. 5A), and the THE1D-int was coexpressed 
with ZNF75D in LUAD tumors (Fig. 5B). A luciferase reporter assay 

Fig. 4. Phenotypic and gene expression changes caused by the overexpression of KZFPs in LUAD cells. LUAD (A549) cells overexpressing 30 types of KZFPs were 
established (referred to as A549/KZFP cells), and the phenotypic and gene expression changes compared to empty vector–transduced cells were examined. (A) Pheno-
typic and gene expression changes in A549/KZFP cells. (Top) Heatmap showing the gene expression alterations of 2368 differentially expressed genes (DEGs) identified 
in any of the A549/KZFP cells. (Bottom) Heatmap summarizing the phenotype alterations observed in A549/KZFP cells (see also fig. S7E). An asterisk denotes a significant 
change (P < 0.05). Heatmap color shows the “scaled” log fold change (i.e., the standard deviation was adjusted at 1). (B) Distribution of the log2 fold change values of the 
phenotypes of A549/KZFP cells. Statistical significance was evaluated by the two-sided one-sample t test. (C) Results of GSEA summarizing genes with expression levels 
commonly down-regulated in A549/KZFP cells. An asterisk denotes a significant (FDR < 0.05) down-regulation of the gene set in certain A549/KZFP cells. The top 20 gene 
sets with respect to the number of cells exhibiting significant down-regulation are shown. Redundant gene sets were filtered. Gene expression–based clusters [shown in 
(A)] are displayed. (D) Genes that are likely to be targeted by KZFPs and critical for cancer progression. The details are described in fig. S8. Protein-protein interactions 
defined by STRING (version 11.0) (59) are shown.



Ito et al., Sci. Adv. 2020; 6 : eabc3020     21 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 15

revealed that these two HERV elements exhibited enhancer activity 
in A549 cells (Fig. 5C and fig. S10) regardless of their orientation 
(fig. S10E). Furthermore, we excised these two HERVs in A549 cells 
using the CRISPR-Cas9 system (fig. S4) and demonstrated that the 
deletion of these HERVs decreased ZNF75D expression in an allelic 
number–dependent manner (Fig. 5D). These results suggest that these 
HERVs are involved in the transcriptional modulation of ZNF75D 
in LUAD cells.

Moreover, for 12 of the 30 KZFP genes tested in A549 cells, we 
investigated the potential of transcriptional modulation of the adja-
cent HERVs by performing a luciferase reporter assay. HERVs in 
the vicinity of seven KZFP genes (ZNF141, ZNF248, ZNF30, 
ZNF320, ZNF44, ZNF611, and ZNF846) enhanced the promoter 
activities of these genes in A549 cells (fig. S10, F and G). Together, 
these results support the significance of HERVs in the transcrip-
tional regulation of these KZFP genes in cancer cells.

DISCUSSION
In the present study, we found that the global activation of HERVs 
occurred in a substantial fraction of tumors (Fig. 1E and fig. S1D). 
Although the ultimate cause of HERV activation in tumors remains 
unclear, the attenuation of the epigenetic silencing (e.g., DNA de-
methylation) of HERVs would be a trigger of HERV activation (fig. 
S1, G and H). HERV activation was associated with the coordinated 
up-regulation of many KZFPs in tumors (Fig. 1F and fig. S1, J and 
K). Further analyses, including in vitro experiments, showed that 
HERVs in the vicinity of KZFP genes play a critical role in the tran-
scriptional regulation of KZFPs (Figs. 2 and 5). We also provided 
evidence that the coordinated induction of KZFP expression is as-
sociated with better disease conditions in multiple types of cancers 
(Fig. 3). Moreover, we demonstrated that the increased expression 
of KZFPs in cancer cells tends to alter the expression of genes related 
to the cell cycle and cell-matrix adhesion and suppress some 
properties of cancers, such as cellular growth, migration, and inva-
sion (Fig. 4, A and B). Furthermore, the analysis of the CRISPR loss-
of-function screening dataset (39) suggested that several KZFPs are 
critical for suppressing the growth and viability of cancer cells (fig. 
S9, A and B). These results suggest that the increased expression of 
many KZFPs could exert suppressive effects on tumors. Since several 
notorious cancer-related genes [e.g., RAC1 (41) and AURKB (37)] 

and essential genes for cancer cell viability [e.g., RAN (fig. S9, A and C)] 
were identified as candidate KZFP targets in tumors (Fig. 4D), these 
genes may function in KZFP-mediated tumor suppression. Collec-
tively, our data suggest that the activation of HERVs in tumors 
induces the coordinated expression of multiple KZFP genes, pre-
sumably leading to the suppression of the progressive characteris-
tics of cancer cells by modulating gene expression.

Although our data highlight the significance of HERVs in the 
transcriptional activation of KZFP genes (Fig. 2), it is widely con-
sidered that one of the primary functions of KZFPs is to silence the 
disordered expression of TEs, including HERVs (28). Such seem-
ingly paradoxical findings suggest the presence of a transcriptional 
negative feedback loop between HERVs and KZFPs—once HERVs 
are derepressed globally, the regulatory activity of the HERVs 
around KZFP genes is elevated simultaneously, resulting in the in-
duction of KZFP expression. In other words, KZFP genes seem to 
use HERVs as their regulatory sequences to respond to the global 
derepression of HERVs. A previous report proposed the possibility 
that the HERV-KZFP negative feedback loop functions during em-
bryogenesis to silence the activation of TEs, including HERVs (42). 
Overall, our data suggest that the HERV-KZFP regulatory axis, which 
works physiologically in embryogenesis, also functions in cancers 
and presumably contributes to tumor suppression.

We showed that many KZFPs are highly coexpressed in tumors 
(fig. S1J) and concordantly associated with better disease conditions 
(Fig. 3). The analysis of the public ChIP-seq dataset (33) showed 
that many KZFPs tended to bind similar sets of genes (fig. S6). Further-
more, the increased expression of individual KZFPs tended to cause 
similar phenotypic and gene expression alterations (Fig. 4, A and B, 
and fig. S7F). These results suggest that many KZFPs coordinately 
and further redundantly function in tumors. Moreover, it is known 
that some KZFPs target other KZFPs for transcriptional suppression 
and form a mutual suppressive regulatory network (33, 43). In addition, 
the present study and Pontis et al. (42) proposed that the HERV-
KZFP negative feedback loop contributes to the formation of the 
complex network of KZFPs (Figs. 2 and 5). Together, these results 
suggest that each KZFP functions in tumors not individually but as 
a part of the complex network of KZFPs. Therefore, to further eluci-
date the roles of KZFPs as well as the complex HERV-KZFP net-
work in tumors, experimental systems that can perturb the entire 
HERV-KZFP network in cancer cells are needed in the future.

Fig. 5. Transcriptional modulation of ZNF75D by adjacent HERVs in LUAD cells. (A) Schematic view of the ZNF75D gene locus. (B) Expressional correlation between 
ZNF75D and an upstream HERV (THE1D-int) in tumors. (C) Effect of the HERV integrant on the promoter activity of ZNF75D. The effect was assessed by a luciferase reporter 
assay in A549 cells. A pair of reporter plasmids harboring the ZNF75D promoters with and without the HERV were constructed, and subsequently, the promoter activities 
were compared. Error bars indicate the SEM. (D) Effect of CRISPR-Cas9 excision of the HERV on the expression of ZNF75D in A549 cells. The mRNA expression level of 
ZNF75D in each clone of cells was measured by qRT-PCR. The P value was calculated using linear regression.
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In conclusion, we highlighted the presence of tumor heterogene-
ity driven by the gene regulatory network composed of HERVs and 
KZFPs. The present study provides new insights into the potential 
functions of KZFPs, the largest transcriptional repressor family in 
the human genome, as well as the complex regulatory networks of 
HERVs and KZFPs in tumors.

MATERIALS AND METHODS
Ethical approval
The utilization of the TCGA multiomics dataset was authorized by 
the National Cancer Institute (NCI) data access committee through the 
Database of Genotypes and Phenotypes (http://dbgap.ncbi.nlm.
nih.gov) for the following projects: “Systematic identification of re-
activated human endogenous retroviruses in cancers (#15126),” 
“Effects of the genome-wide activation of human endogenous ret-
roviruses on gene expression and cancer phenotypes (#18470),” and 
“Screening of subclinical viral infections in healthy human tissues 
(#19481).”

Construction of the gene-HERV transcript  
model for RNA-seq analysis
For the gene transcript model, GENCODE version 22 (for GRCh38/
hg38) obtained from the GENCODE website (http://www.gencodegenes.
org/) was used. For the HERV transcript model, the RepeatMasker 
output file (15 January 2014; for GRCh38/hg38) obtained from the 
University of California Santa Cruz (UCSC) genome browser 
(http://genome.ucsc.edu/) was used. For the gene model, transcripts 
with the flag “retained intron” were excluded. For the HERV model, 
HERV loci with low reliability scores (i.e., Smith-Waterman 
score < 2500) were excluded. In addition, the regions of HERV loci 
overlapping with the gene transcripts were also excluded. A gene-
HERV transcript model was generated by concatenating the gene 
and HERV models. This model includes 60,483 protein-coding/
noncoding genes in addition to 138,124 HERV loci, which occupy 
3.4% of the genome.

RNA-seq data analysis of the TCGA dataset
Poly A–enriched RNA-seq (mRNA-seq) data provided by TCGA 
were analyzed. Of the RNA-seq data, we analyzed only the data pro-
duced by paired-end sequencing with a read length of 48 to 50 bp. 
The BAM-formatted read alignment file (for GRCh38/hg38) of 
the RNA-seq data was downloaded from the Genomic Data Commons 
(GDC) data portal site (http://portal.gdc.cancer.gov/) using the GDC 
Data Transfer Tool (http://gdc.cancer.gov/access-data/gdc-data-
transfer-tool/). Data for tumors and tumor-adjacent normal tissues 
were downloaded. To measure the expression levels of HERVs and 
genes, RNA-seq fragments mapped on HERVs and the exons of genes 
were counted using Subread featureCounts (44) with the BAM file 
and the gene-HERV transcript model. The option “fracOverlap” was 
set at 0.25. The RNA-seq fragments assigned to multiple features 
were not counted.

To control the quality of the RNA-seq data used in the present 
study, we checked the proportion of nonassigned RNA-seq fragments 
(i.e., the fragments that were uniquely mapped on the reference 
genome but not on HERVs or the exons of genes) in each sequence 
library. For this proportion of fragments, outlier libraries were de-
tected recursively using the Smirnov-Grubbs test (the threshold was 
set at 0.05). These outlier libraries were excluded from the down-

stream analyses. The final RNA-Seq data (for both tumors and tumor-
adjacent normal tissues) used in this study are summarized in table S4.

The expression count matrices of the RNA-seq data were sepa-
rately prepared for the datasets of the respective types of cancers. In 
addition, an expression matrix including all tumor data was pre-
pared, and an expression matrix including the data from the tumors 
and corresponding normal adjacent tissues was also prepared for 
each type of cancer. Genes and HERVs with low expression levels 
were removed from the expression matrices as follows. The counts 
per million (CPM) value of each gene and HERV locus were calcu-
lated in the respective RNA-seq libraries. Subsequently, genes and 
HERVs were discarded from the expression matrices if the 90th 
percentile of CPM values was less than 0.2.

In each type of cancer, the expressed HERVs in tumors, which 
are HERVs included in the expression matrix of the corresponding 
types of cancers, were determined.

The total expression level of the HERVs was normalized as 
CPM. The expression levels of genes and HERV loci were normal-
ized using variance-stabilizing transformation (VST) implemented 
in DESeq2 (version 1.18.1) (45). This VST-normalized expression 
level was used unless otherwise noted.

RNA-seq data analysis of the CCLE dataset
The BAM-formatted read alignment file (for GRCh37/hg19) of the 
mRNA-seq data was downloaded from the GDC data portal site 
(http://portal.gdc.cancer.gov/) using the GDC Data Transfer Tool 
(http://gdc.cancer.gov/access-data/gdc-data-transfer-tool/). The 
RNA-seq data of CCLE used in this study are summarized in table 
S5. Since the gene-HERV transcript model prepared above is for 
GRCh38/hg38, the genomic coordinates of the gene-HERV tran-
script model were converted to those in GRCh37/hg19 using UCSC 
liftOver (http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/
liftOver). The option “minMatch” was set at 0.95. The generation of 
the expression count matrix, filtering of genes and HERVs with low 
expression levels, and normalization of the expression data were 
performed using the same procedures as those in the above section 
(“RNA-Seq data analysis of the TCGA dataset”).

RNA-seq analysis of A549/KZFP cells
The RNA-seq sample information is summarized in table S6. Low-
quality sequences in RNA-seq fragments were trimmed using Trim-
momatic (version 0.36) (46) with the option “SLIDINGWINDOW:4:20.” 
RNA-seq fragments were mapped to the human reference genome 
(GRCh38/hg38) using STAR (version 2.5.3a) (47) with the gene-
HERV transcript model. STAR was run using the same options and 
parameters as those used in the GDC mRNA Analysis Pipeline 
(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
Expression_mRNA_Pipeline). The generation of the expression 
count matrix, filtering of genes and HERVs with low expression lev-
els, and normalization of the expression data were performed using 
the same procedures as those in the above section (“RNA-seq data 
analysis of the TCGA dataset”).

Quantification of the expression levels of overexpressed 
KZFPs in A549/KZFP cells
The gene expression matrix was generated with the same procedure 
described in the “RNA-seq analysis of A549/KZFP cells” section ex-
cept for the following points. In the RNA-seq fragment mapping 
step, the genome index including both the human reference genome 
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(GRCh38/hg38) and the 3xHA (hemagglutinin) tag sequence used 
in the KZFP overexpression vector [Imbeault et al. (33)] was used. 
In the RNA-seq fragment counting step, the fragments mapped 
on the HA sequence were also counted, and the count of the HA 
sequence was added to that of the overexpressed KZFP gene.

Comparison of total HERV expression levels between tumors 
and normal tissues
The total HERV expression level was compared between tumors and 
tumor-adjacent normal tissues via data provided by TCGA. Since 
only a portion of patients (586 of 5470) had both tumor and tumor-
adjacent normal tissue data in the TCGA dataset, an unpaired com-
parison was performed using a two-tailed Wilcoxon rank sum test.

Dimension reduction analysis of HERV expression profiles 
using t-SNE
The expression matrix including all tumor data was used in this 
analysis. The expression levels of the 1000 most highly expressed 
HERVs were used in the analysis. t-distributed stochastic neighbor 
embedding (t-SNE) analysis was performed using the “Rtsne” R 
package. For the analysis, the first 10 principal components of the 
HERV expression profiles were used, and the parameter “perplexity” 
was set at 70.

ATAC-seq data analysis
The ATAC-seq data of tumors and normal adjacent tissues provided 
by TCGA (TCGA-ATAC_PanCan_Log2Norm_Counts.rds) were 
downloaded from the GDC website (https://gdc.cancer.gov/about-
data/publications/ATACseq-AWG). This file contains the normalized 
read count matrix comprising all ATAC-seq samples (n = 796) and 
ATAC-seq peaks (open chromatin regions) (n = 562,709) analyzed 
in the previous study (4). In the respective types of cancers, the up-
per one-fourth of open chromatin regions with respect to the mean 
value were regarded as the open chromatin regions that are active in 
the corresponding cancer types.

To calculate the fold enrichment of the overlaps between 
the expressed HERVs in tumors and open chromatin regions, 
randomization-based enrichment analysis was performed as follows: 
genomic regions of open chromatin regions were randomized using 
BEDTools “shuffle” (48), and subsequently, the number of open 
chromatin regions on the expressed HERVs was counted. This 
process was repeated 1000 times, and the mean value of the counts 
in the randomized datasets was regarded as the random expecta-
tion value. The fold enrichment was calculated by dividing the 
observed count by the random expectation value. The P value was 
calculated according to the assumption of a normal distribution.

DNA methylation data analysis
The DNA methylation data [produced by the methylation micro
array HumanMethylation450 (Illumina, San Diego, CA)] of tumors 
and normal tissue controls were downloaded from the GDC data 
portal (http://portal.gdc.cancer.gov/) using the GDC Data Transfer 
Tool (http://gdc.cancer.gov/access-data/gdc-data-transfer-tool/). 
These data describe the methylation level (beta value; proportion of 
methylated CpGs at a CpG site) of each probe in the array. Probes 
overlapping with single-nucleotide polymorphisms (SNPs) with >0.05 
minor allele frequency were excluded from the analysis using the 
function “rmSNPandCH” implemented in the “DMRcate” library 
in R. The CpG sites that were on or proximal (<1 kb) to HERVs 

were extracted using the “slop” and “intersect” functions in BEDTools 
(48). The DNA methylation data used in this study are summarized 
in table S7.

Preparation of gene sets for enrichment analyses
As sources of gene sets, “GO biological process,” “GO cellular com-
ponent,” “MSigDB canonical pathway,” and “InterPro” were used. 
The gene sets in these sources were concatenated and used. InterPro 
is a collection of gene sets according to protein families or domains 
and includes the gene set “KRAB,” representing the KZFP family 
genes. GO biological process and GO cellular component were obtained 
from the Gene Ontology (GO) consortium (http://geneontology.
org/; GO validation date: 30 August 2017); “canonical pathway” was 
obtained from MSigDB (http://software.broadinstitute.org/gsea/msigdb; 
version 6.1); and InterPro was obtained from BioMart on the 
Ensembl website (www.ensembl.org; on 13 February 2018).

In addition, we defined the gene sets “HERVs” and “HERVs 
around KZFP genes.” The “HERV” gene set included all expressed 
HERVs in tumors, while “HERVs around KZFP genes” included 
the HERVs present in the genomic regions within 50 kb from the 
TSSs of KZFP genes expressed in tumors. These gene sets were used 
in Fig. 3 (C and E) and fig. S5 (D and F), in addition to the pre-
defined gene sets.

Furthermore, we defined gene sets according to their negative 
expression correlation with HERVs or KZFP genes as follows. In 
the respective tumor datasets of TCGA, Spearman’s correlations 
between the expression levels of the respective genes and the total 
expression level of HERVs were calculated, and the genes were ranked 
according to their median value in the datasets. The top 100, 200, 
and 500 genes with respect to their negative expression correlation 
with HERVs were used as gene sets. Using the same procedures as 
above, the top 100, 200, and 500 genes with respect to their negative 
expression correlation with KZFP genes were extracted and used as 
gene sets. As the representative value of KZFP expression, the gene 
set–wise expression score [Gene Set Variation Analysis (GSVA) score 
(49)] of the KZFP genes was used. The GSVA score is described in 
the following section (“Calculation of the gene set–wise expression 
score using GSVA”). These gene sets were used in fig. S6 in addition 
to the predefined gene sets.

Calculation of the gene set–wise expression score using GSVA
The VST-normalized expression matrix was converted to a gene set–
wise expression score matrix using GSVA (49) with the gene sets pre-
pared above. The option “minimum size of gene set” was set at 20.

Gene set enrichment analysis
To perform GSEA (29), the R package “fgsea” (50), a fast implemen-
tation of GSEA, was used. The parameters of “number of permutations” 
and “minimum size of gene set” were set at 10,000 and 50, respec-
tively. In the analyses of Fig. 1F and fig. S2B, Spearman’s correla-
tions between the expression levels of the respective genes and the 
total expression level of HERVs were used as statistical scores. In 
the analysis of fig. S2A, Spearman’s correlations between the expres-
sion levels of the respective genes and the GSVA score of the KZFP 
genes were used. In the analyses of Fig. 3C and fig. S5D, the Z scores 
from the Cox proportional hazards regression were used (the Z score 
is described in the “Survival analysis of the cancer patients” section). 
In the analysis of Fig. 4C, the Wald statistics of the respective genes 
in the differential expression analysis were used (the Wald statistic 
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is described in the “Differential expression analysis” section). Gene 
sets with FDR < 0.05 were regarded as significant.

Summarizing the results of GSEA and GO enrichment 
analysis by removing redundant gene sets
Since the gene members of some gene sets highly overlapped with 
each other, redundant gene sets were removed from the results of 
the enrichment analyses as follows. Gene sets were ranked accord-
ing to the score of interest [e.g., the mean value of the normalized 
enrichment score (NES)]. If the gene members of a certain gene set 
highly overlapped with those of the upper-ranked gene sets, the gene 
set was removed from the result. As a statistic of the overlap, the 
Szymkiewicz-Simpson coefficient was used, and two gene sets were 
regarded as highly overlapped if the coefficient was greater than 0.7. 
This gene set filtering was applied to the analyses shown in Figs. 1F 
and 4C and figs. S5D, S6, and S7H, which show only the top-ranked 
gene sets.

GO enrichment analysis to identify gene sets that are 
preferentially present in the vicinity of the expressed HERVs
Randomization-based GO enrichment analysis was performed as 
follows. Only genes whose expression levels were detected in the 
TCGA tumor datasets were used. Regions of interest were defined 
as the regions within 50 kb from the TSSs of the gene members of a 
certain gene set. The genomic regions of HERVs were randomized 
using the “shuffle” function of BEDTools (48), and subsequently, 
the number of HERVs in the region of interest was counted. This 
process was repeated 1000 times, and the mean value of the counts 
in the randomized datasets was regarded as the random expectation 
value. The fold enrichment was calculated by dividing the observed 
count by the random expectation value.

In addition, we calculated the fold enrichments of the HERVs in 
the regions within 10, 100, and 500 kb and 1 Mb from the TSSs of 
the KZFP genes using the same procedures as above.

Prediction of genes regulated by HERVs
The regulatory interactions between HERV loci and genes were 
predicted according to the following information: coexpression be-
tween HERVs and genes, positive correlations between HERV 
chromatin accessibility and gene expression, negative correlations 
between HERV DNA methylation and gene expression, and pre-
defined links between the regulatory sequences on HERVs and genes. 
The coexpression interaction was used only for pairs of HERVs and 
genes within 50 kb of each other, while the chromatin accessibility–
expression, methylation-expression, and predefined interactions 
were used only for pairs of HERVs and genes within 500 kb of 
each other. A coexpression interaction was defined if the expres-
sion of a HERV and a gene were positively correlated (Spearman’s 
correlation > 0.4) in any type of cancer in TCGA. A methylation-
expression interaction was defined if the DNA methylation level of 
the CpG site that is on or proximal (<1 kb) to a HERV and the 
expression of a gene were negatively correlated (Spearman’s cor-
relation < −0.3) in any type of cancer or in the pan-cancer dataset in 
TCGA. As the source of chromatin accessibility–expression inter-
actions, the interactions defined in a previous study (4) were used. 
As the source of predefined regulatory interactions, the interactions 
recorded in GeneHancer version 4.7 obtained from the GeneLoc 
database (https://genecards.weizmann.ac.il/geneloc/index.shtml) 
were used.

Mutation analysis
To define the DNA-binding amino acids of KZFP genes, we first 
determined the precise genomic positions of the KRAB and C2H2 
zinc-finger domains as follows. For both the KRAB and C2H2 
zinc-finger domains, hidden Markov model (HMM) profiles were 
generated using hmmbuild from HMMER2 (http://hmmer.org/). 
Multiple sequence alignments used to build the HMM profiles were 
generated from the seed sequences downloaded from Pfam (https://
academic.oup.com/nar/article/44/D1/D279/2503120). Next, the 
human reference genome (GRCh37/hg19) was scanned using 
hmmpfam from HMMER2 with the built HMM profiles. Both strands 
of chromosomes translated in three reading frames were scanned. 
KZFP genes were collected if a KRAB domain had ≥2 downstream 
C2H2 zinc fingers found on the same strand within 40 kb, which 
corresponds to the maximum length from the first base of the 
KRAB domain to the last base of the zinc finger domain. Detected 
KZFP genes were then annotated according to the Ensembl annota-
tion (version 92; for GRCh37/hg19). Last, the DNA-binding amino 
acid positions were inferred from the C2H2 zinc fingers annotated 
above, taking the 4th, 6th, 7th, and 10th positions (also called posi-
tions −1, +2, +3, and + 6) after the second cysteine of C2H2. Only 
zinc fingers with a canonical C2H2 structure and associated with a 
KRAB domain were taken into account.

Processed mutation data were obtained from the International 
Cancer Genome Consortium (release 27) (https://icgc.org/). Then, 
we measured the somatic missense mutation density (counts per 
megabase per patient) of KZFP genes in the DNA-binding amino 
acids and the whole coding regions of the canonical transcript.

Survival analysis of the cancer patients
The overall survival rate of the cancer patients was used for survival 
analyses with the R package “survival.” The survival curve of the 
patients was estimated by the Kaplan-Meier method, and statistical 
significance was evaluated by the two-sided log-rank test. With re-
spect to the expression level of interest, the upper and lower third of 
patients were regarded as patients with higher and lower expression 
statuses, respectively. In Fig. 3A and fig. S5B, the patients were 
stratified according to the mean value of the GSVA scores of the 
HERVs and KZFPs in tumors.

To examine the association of the expression level of each gene 
and HERV locus with the prognosis of cancer patients, Cox propor-
tional hazards regression analysis was performed with adjustment 
for the effects of patient sex and race. In addition to HERVs, genes 
that were included in any of the gene sets prepared above were used.

Association analysis of gene expression  
and cancer stage progression
Prostate adenocarcinoma (PRAD) tumors were excluded from the 
analysis since information on cancer stage for most PRAD patients 
was not available from TCGA. In the analysis, cancer stage was re-
garded as an interval scale. For each type of cancer, the association 
between the expression of each gene and the progression of the can-
cer stage was evaluated by single linear regression. Similarly, the 
association between the GSVA score of each gene set and the pro-
gression of cancer stage for each type of cancer was evaluated using 
the same procedure. To evaluate the pan-cancer association of the 
GSVA score of each gene set and the progression of cancer stage, 
multiple linear regression analysis with adjustment for the effects of 
cancer type was performed.
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Analysis of a publicly available ChIP-seq dataset of KZFPs
This analysis was based on a publicly available ChIP-seq dataset of 
KZFPs in human embryonic kidney–293 (HEK293) T cells presented 
in a previous study [Imbeault et al. (33); Gene Expression Omnibus 
(GEO) accession no. GSE78099]. Information on predefined ChIP-
seq peaks (GSE78099_RAW.tar) was downloaded from the GEO 
database (www.ncbi.nlm.nih.gov/geo/). Since these ChIP-seq 
peaks [referred to as transcription factor binding sites (TFBSs)] 
are for GRCh37/hg19, the genomic coordinates of these TFBSs 
were converted to those in GRCh38/hg38 using UCSC liftOver 
(https://genome-store.ucsc.edu/). The option “minMatch” was set 
at 0.95. If multiple technical replicates of ChIP-seq are available 
for one KZFP, the replicate files were merged using the BEDTools 
“merge” (48) function with the option “-c 5 -o mean.” KZFPs 
were removed from the downstream analyses if the total number 
of TFBSs was less than 500. If >10,000 TFBSs were available for 
one KZFP, only the top 10,000 highest scoring TFBSs were used 
for the analyses.

To identify sets of genes that are preferentially targeted by a cer-
tain KZFP, genomic region enrichment analysis (51) was performed 
as follows. Only genes whose expression was detected in the TCGA 
tumor datasets were used. Regions of interest were defined as the 
regions within 10 kb from the TSSs of the gene members of a certain 
gene set. Regions of background were defined as the regions within 
10 kb from the TSSs of genes belonging to any of the gene sets. The 
lengths of the regions of interest and regions of background were 
calculated and referred to as Li and Lb, respectively. In the regions of 
interest and regions of background, the numbers of TFBSs were 
counted [referred to as counts of interest (Ci) and counts of back-
ground (Cb), respectively]. The fold enrichment value was calculated 
by dividing Ci/Cb by Li/Lb, and the statistical significance was evalu-
ated using a binomial test.

Differential expression analysis
Differential expression analysis was performed using DESeq2 (ver-
sion 1.18.1) (45) in R. Genes that were included in any of the gene 
sets prepared above were used. A549/KZFP cells and empty vector–
transduced cells were compared (Fig. 4A). Statistical significance 
was evaluated by the Wald test with FDR correction. In addition, a 
comparison was conducted between A549 cells in which HERV-
enhancer1 or HERV-enhancer2 were excised and the nontarget 
control cells (Fig. 2G).

Scoring system of genes for predicting the targets of KZFPs 
critical for cancer progression
The scheme is summarized in fig. S8A. For each gene, the following 
scores were defined. The TCGA expressional correlation score was 
defined as the Spearman’s correlation between the expression of 
each gene and the GSVA score of KZFPs in the TCGA dataset (the 
median value among all cancer types was used). The CCLE expres-
sional correlation score was also defined using the same procedure 
but on the CCLE dataset. The prognosis score was defined as the 
Z score representing the association of each gene with the prognosis 
of cancer patients (the mean value among BLCA, HNSC, KIRP, and 
LUAD tumors was used). This Z score was described in the “Survival 
analysis of the cancer patients” section. The progression score was 
defined as the t score representing the association of each gene with 
cancer progression (the mean value among BLCA, BRCA, KIRC, 
KIRP, LUAD, and thyroid carcinoma tumors was used). This t score 

was described in the “Association analysis of gene expression and 
cancer stage progression” section. The suppression score was de-
fined as the mean value of the Wald scores in the differential expres-
sion analysis of the A549/KZFP cells. This Wald score was described 
in the “RNA-seq analysis of A549/KZFP cells” section. Regarding 
the TCGA and CCLE correlation scores and suppression scores, the 
signs of the scores were inverted. All scores were standardized as 
Z scores and subsequently quantile-normalized. Genes were extracted 
if the minimum score was greater than 0.5 and the median score was 
greater than 1. Of the extracted genes, genes targeted by ≥10 KZFPs 
were further extracted and regarded as the target genes of KZFPs 
critical for cancer progression. A gene was regarded as the target of 
a certain KZFP if the KZFP bound to the regions within 10 kb 
from the TSSs of the gene. In this analysis, only TSSs of “principal 
transcripts” (principals 1 to 3) defined by APPRIS (52) were used. If 
>1000 genes were assigned to a certain KZFP as its targets, only the 
top 1000 genes with high-scored TFBSs were used.

Analysis of DepMap CRISPR loss-of-function  
screening dataset
The dataset of the loss-of-function screening using CRISPR library 
provided by the DepMap Achilles project (39) was analyzed. The 
preprocessed data of the estimated knockout effect scores [CERES 
scores (39)] of individual genes in respective cancer cell lines 
[“Achilles_gene_effect.csv” (version: Public 20Q2)] were downloaded 
from the DepMap portal (https://depmap.org/portal/depmap/). The 
preprocessed data of RNA-seq for DepMap cell lines [“CCLE_
expression.csv” (version: Public 20Q2)] were also downloaded. Data 
of cancer cell lines in which both CRISPR screening and RNA-seq 
data are available were used in the downstream analysis. In each 
cancer cell line, the genes that are not expressed were excluded from 
the analysis, and the genes with positive high scores are regarded as 
the suppressor genes of cancer cell viability. Statistical enrichment 
of KZFP genes in the top 100 of the suppressor genes of cancer cell 
viability was evaluated using the two-sided Fisher exact test in each 
cancer cell line. To compare the knockout effects between the pre-
dicted KZFP target genes and other expressed genes, the mean value 
of knockout effect scores of each gene in respective cancer types was 
calculated. The statistical significance was evaluated by the two-sided 
Wilcoxon rank sum test.

Data visualization
All visualizations were performed in R. Graphs were plotted using 
the “ggplot2” package or the preimplemented function “plot” unless 
otherwise noted. Heatmaps were drawn using the “ComplexHeatmap” 
package. Networks were plotted using the “igraph” package. Kaplan-
Meier plots were drawn using the “ggsurvplot” function in the 
“survminer” package.

Cell culture
HEK293T cells [CRL-11268; American Type Culture Collection 
(ATCC), Manassas, VA] were cultured in Dulbecco’s modified 
Eagle’s medium (Sigma-Aldrich, St. Louis, MO, #D6046) with 10% 
fetal bovine serum (FBS; Sigma-Aldrich, #172012-500ML) and 1% 
penicillin-streptomycin (Sigma-Aldrich, #P4333-100ML). A549 cells 
(CCL-185; ATCC) were cultured in Ham’s F-12K (Kaighn’s) medium 
(Thermo Fisher Scientific, Waltham, MA, #21127022) with 10% 
FBS (guaranteed doxycycline free; Thermo Fisher Scientific, #2023-03) 
and 1% penicillin-streptomycin. A549/KZFP cells were cultured in 

www.ncbi.nlm.nih.gov/geo/
https://genome-store.ucsc.edu/
https://depmap.org/portal/depmap/


Ito et al., Sci. Adv. 2020; 6 : eabc3020     21 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 15

F-12K medium with puromycin (1.0 g/ml; Invivogen, San Diego, 
CA, #ant-pr-1). An A549 cell line stably expressing Cas9 (A549/
Cas9 cells) was cultured in F-12K medium with 10% FBS (guaran-
teed doxycycline free; Thermo Fisher Scientific, #2023-03) and blas-
ticidin (5.0 g/ml; Invivogen, #ant-bl-1). All cells were cultured in 
5% CO2 at 37°C.

Establishment of a panel of A549/KZFP cells
We selected 30 types of KZFP genes satisfying the following criteria: 
(i) showing a positive correlation (Spearman’s correlation > 0.3) 
between its expression and the total expression of HERVs in >2 types 
of cancers; (ii) having expressed HERVs within the vicinity (<20 kb) 
of its TSSs in tumors; (iii) showing a positive correlation (Spearman’s 
correlation > 0.3) between its expression and the expression of 
HERV loci in the vicinity (<20 kb) of its TSSs in >2 types of cancers; 
and (iv) having available ChIP-seq data presented by a previous study 
[Imbeault et al. (33)]. Information on the selected KZFP genes is 
summarized in table S8.

To prepare lentiviral vectors expressing 3xHA-tagged KZFPs, 
HEK293T cells were cotransfected with 12 g of pCAG-HIVgp 
(RDB04394, kindly provided by H. Miyoshi), 10 g of pCMV-VSV-
G-RSV-Rev (RDB04393, kindly provided by H. Miyoshi), and 17 g 
of pEXPpSIN-TRE-GW ZNF-3xHA (33) by the calcium phosphate 
method. The pEXPpSIN-TRE-GW ZNF-3xHA plasmids encoded 
the respective HA-tagged KZFP proteins. After 12 hours of trans-
fection, the culture medium was changed to fresh F-12K medium. 
After 48 hours of transfection, the culture supernatant including 
lentivector particles was collected. A549 cells were infected with these 
particles at a multiplicity of infection (MOI) of 0.1. After 2 days of 
infection, the cells were selected with puromycin (1 g/ml) for 7 days. 
Three days before the start of the experiments, doxycycline (1.0 g/ml) 
was added to induce the expression of KZFP. The expression of KZFP 
was verified by Western blotting with an HA-specific antibody 
(Roche, Basel, Switzerland, #12013819001). Empty vector–transduced 
A549 cells [referred to as negative control (NC) cells] were estab-
lished according to the procedures described above.

Apoptosis detection assay
A549/KZFP cells and NC cells were stained with Annexin V conju-
gated to Alexa Fluor 647 (Invitrogen Carlsbad, CA, #S32357). After 
staining, the number of Annexin V–positive cells was counted by a 
FACSCalibur system (BD Biosciences, San Jose, CA), and the rate of 
apoptotic cells was calculated. A single set of triplicate experiments 
was performed, and the mean and SEM values are shown in fig. S7E.

Cell growth assay
A549/KZFP cells and NC cells were seeded at 1.0 × 105 cells per well 
in six-well plates (Thermo Fisher Scientific). After 72 hours of seed-
ing, the number of cells was counted manually under a microscope, 
and the growth rate of the cells was calculated. Single-replicate ex-
periments were performed at least seven times independently, and 
the mean and SEM values are shown in fig. S7E.

Cell scratch assay [wound-healing assay (53)]
A549/KZFP cells and NC cells were seeded in 12-well plates (Thermo 
Fisher Scientific) and cultured until >90% confluence. A single 
straight wound was formed in each well by scratching with a sterile 
1000-l pipette tip. The cells were washed with phosphate-buffered 
saline (PBS), and 2 ml of F-12K medium was added. Images were 

taken under a microscope immediately after the scratch and again 
after 24 hours. Using ImageJ (54) software with in-house scripts, 
the area (pixels) in which cells migrated for 24 hours was calculated. 
Triplicate experiments were performed independently twice. Regard-
ing the mean and SEM, the average values between the two sets of 
experiments are shown in fig. S7E. Two-sided Student’s t test with a 
threshold of 0.05 was performed for each set of experiments. Only if 
a significant difference was observed in both sets of experiments 
was the comparison considered significant.

Cell invasion assay
An invasion assay was performed using a 96-well Transwell plate 
(8.0-m pore size) (Corning, Corning, NY, #3374) with Corning 
Matrigel Basement Membrane Matrix (Corning, #354234). The 
Matrigel matrix was diluted 50-fold with serum-free F-12K medium. 
To coat the Transwell insert plate, 30 l of Matrigel matrix was dis-
pensed into the insert plate. After 2 hours of incubation, 20 l of the 
supernatant was removed from the coated Transwell plate. Subse-
quently, A549/KZFP cells and NC cells were seeded at 5.0 × 104 cells 
per well in the insert plate. The insert plate was filled with serum-
free F-12K medium, while the reservoir plate was filled with F-12K 
medium with 10% FBS. After incubation at 37°C for 48 hours, the 
cells that had invaded the Matrigel and migrated to the opposite side 
of the insert plate were washed with PBS, stripped with trypsin-
EDTA, and stained with calcein AM (Invitrogen, #C3100MP). To eval-
uate the degree of cell invasion, the fluorescence intensity of the cells 
was measured using a 2030 ARVO X multilabel counter (PerkinElmer, 
Waltham, MA). The relative fluorescence intensity was calculated as 
(FIi − FIb)/(FIc − FIb), where FIi denotes the fluorescence intensity 
of the A549/KZFP cells of interest, FIb denotes the intensity of the 
blank, and FIc denotes the intensity of the NC cells. Triplicate ex-
periments were performed independently twice. Regarding the mean 
and SEM, the average values between the two sets of experiments 
are shown in fig. S7E. Two-sided Student’s t test with a threshold of 
0.05 was performed for each set of experiments. Only if a significant 
difference was observed in both sets of experiments was the com-
parison considered significant.

Construction of plasmids for the luciferase reporter assay
Genomic DNA from the human peripheral blood lymphocytes of a 
healthy donor was used as the DNA source. A luciferase reporter 
vector, pGL3-basic (Promega, Madison, WI), was used. Using nested 
polymerase chain reaction (PCR), the genomic region indicated by 
the arrow in fig. S10 (A and B) was cloned into pGL3-basic.

Information on the plasmids and primers prepared in this section 
is summarized in tables S9 and S10, respectively.

Luciferase reporter assay to assess the promoter  
activity of genes
A549 cells were seeded at 1.0 × 105 cells per well in 12-well plates 
(Thermo Fisher Scientific). After 24 hours of seeding, the luciferase 
reporter plasmid was transfected using polyethylenimine transfec-
tion. To fairly compare the reporter activities of the two plasmids 
with different sequence lengths, 1 g of the longer plasmid and the 
same molar of the shorter plasmid were used for the transfection. 
After 12 hours of transfection, the culture medium was changed to 
fresh F-12K medium. After 48 hours of transfection, the lumines-
cence intensity of the transfected cells was measured using a 2030 
ARVO X multilabel counter (PerkinElmer) or a GloMax Explorer 
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Multimode Microplate Reader 3500 (Promega) with a BrillianStar-LT 
assay system (Toyo-B-Net, Tokyo, Japan, #307-15373 BLT100). A 
single set of triplicate experiments was performed, and the mean 
and SEM values are shown in Fig. 5C and fig. S10 (E to G).

Establishment of HERV-excised cells
First, an A549 cell line stably expressing Cas9 (referred to as A549/
Cas9 cells) was established as follows. To prepare lentiviral vectors 
expressing Cas9, HEK293T cells were cotransfected with 12 g of 
pCAG-HIVgp, 10 g of pCMV-VSV-G-RSV-Rev, and 17 g of 
plentiCas9-Blast (Addgene, Watertown, MA, #52962) by the calcium 
phosphate method. After 12 hours of transfection, the culture medium 
was changed to fresh F-12K medium. After 48 hours of transfection, 
the culture supernatant including lentivector particles was collected. 
A549 cells were infected with these particles at an MOI of 0.1. After 
2 days of infection, the cells were selected with blasticidin (5 g/ml) 
for 7 days. After selection, single cell clones were obtained through 
the limiting dilution method. By screening the expression level of 
Cas9 among the candidate clones, A549/Cas9 cells were established.

To excise the target HERV, a pair of guide RNAs (gRNAs) 
were designed in the upstream and downstream regions of the 
HERV using the web applications sgRNA designer (55) (http://
portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) 
or CRISPOR (56) (http://crispor.tefor.net). The gRNA information 
is summarized in table S11. The gRNA was cloned into a gRNA 
expression plasmid, lentiGuide-Puro (Addgene, #52963). A pair of 
gRNA expression plasmids was cotransfected into A549/Cas9 cells 
by electroporation using the NEON Transfection System (Thermo 
Fisher Scientific) (1200 V, 30 ms, 2 pulses, 1.0 × 105 cells, and 500 ng 
of each plasmid). After transfection, the cells were selected with pu-
romycin (1 g/ml) for 3 days. After selection, single cell clones were 
obtained through the limiting dilution method. Of these candidate 
clones, the clones in which homozygous or heterozygous excision 
of the target HERV occurred were screened using PCR (fig. S4). 
Regarding homozygous clones, the PCR fragments were checked 
through molecular cloning into a TOPO vector (Invitrogen, #450245) 
followed by Sanger sequencing.

Quantitative reverse transcription polymerase  
chain reaction
Total RNA was extracted from cells by the QIAamp RNA Blood 
Mini Kit (QIAGEN, Hilden, Germany, #52304) and subsequently 
treated with DNase I, Amplification Grade (Invitrogen, #18068015). 
cDNA was synthesized by reverse transcription of the total RNA using 
SuperScript III reverse transcriptase (Life Technologies, #18080044) 
with Oligo(dT)12-18 Primer (Invitrogen, #18418012). Quantitative 
reverse transcription (qRT)–PCR was performed on the cDNA 
using a CFX Connect Real-Time PCR Detection System (Bio-Rad, 
Richmond, CA, #1855201 J1) with a TaqMan Gene Expression Assay 
kit (Thermo Fisher Scientific). The primer and TaqMan probe 
information are listed in table S12. GAPDH was used as an internal 
control.

Preparation of RNA-seq samples and sequencing
Cells were seeded at 1.0 × 106 cells in 100-mm dishes (Thermo Fisher 
Scientific, EasYDish, #150466). After 48 hours of seeding, the cells 
were harvested and stored at −80°C. Total RNA was extracted from 
the cells by the QIAamp RNA Blood Mini Kit (QIAGEN, #52304) 
and subsequently treated with RNase-Free DNase Set (QIAGEN, #79254).

Quality checks, library construction, and sequencing were per-
formed by Novogene (https://en.novogene.com). Paired-end 150-bp 
read length sequencing was performed on an Illumina NovaSeq 
6000 system.

Statistical analysis
Statistical significance was evaluated by two-sided Student’s t test 
unless otherwise noted. To address multiple testing problems, the 
FWER and FDR were calculated by the Holm method (57) and 
Benjamini-Hochberg method (58), respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/43/eabc3020/DC1

View/request a protocol for this paper from Bio-protocol.
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